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Hepatocellular Carcinoma (HCC) is one of the most common types of primary liver cancer. Current treatment options have limited
efficacy against this malignancy, primarily owing to difficulties in early detection and the inherent resistance to existing drugs.
Tumor heterogeneity is a pivotal factor contributing significantly to treatment resistance and recurrent manifestations of HCC.
Intratumoral heterogeneity is an important aspect of the spectrum of complex tumor heterogeneity and contributes to late
diagnosis and treatment failure. Therefore, it is crucial to thoroughly understand the molecular mechanisms of how tumor
heterogeneity develops. This review aims to summarize the possible molecular dimensions of tumor heterogeneity with an
emphasis on intratumoral heterogeneity, evaluate its profound impact on the diagnosis and therapeutic strategies for HCC, and
explore the suitability of appropriate pre-clinical models that can be used to best study tumor heterogeneity; thus, opening new
avenues for cancer treatment.
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INTRODUCTION
Based on GLOBOCAN’s 2020 report, liver cancer accounted for
830180 deaths globally and accounts for 4.7% of the total cancer
cases worldwide [1]. Of all the total cancer cases, liver cancer is the
6th most common cancer with an age-standardized rate (ASR) of
8.6 whereas it is the 3rd most common cause of cancer-related
deaths. Asia constitutes around 73% of the liver cancer cases
prevailing in the last 5 years, followed by Western and Northern
Africa (9.4%), Europe (8.7%), and Northern America (5.2%) [2]. A
retrospective study based on observing the survival years of
32,556 cases confirmed the overall survival rates of less than 8%
for both males and females [3]. In Australia, 2424 liver cancer-
related deaths were estimated in 2022 with a 5-year survival of
just 22% [4]. Furthermore, the incidence and mortality rates are
two to three times higher in men as compared to women [5, 6].
The incidence of liver cancer in the USA has more than tripled
since 1980. Additionally, the incidence of liver cancer is projected
to rise significantly by more than 55% with an estimated 1.3
million deaths globally by 2040 [1, 7]. The rising trend of liver
cancer incidence and its associated mortality poses a great
healthcare burden and calls for attention.
Primary liver cancer originates within the liver and, depending

on the cellular type and pathological morphology, it can be
hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma
(CAA), angiosarcoma, hemangiosarcoma, and hepatoblastoma
[8–10]. Whereas, secondary liver cancer refers to those metasta-
sized to the liver from other sites of the body such as colorectal
cancer or pancreatic cancer [11]. Among all, hepatocellular
carcinoma (HCC) is the most common form of primary liver
cancer, contributing to 90% of the total liver cancer cases. It
originates from hepatocytes with a doubling time of 4–5 months

[12]. HCC predominantly occurs in the background of chronic liver
diseases such as hepatitis B and C viral infections, metabolic
(dysfunction) -associated fatty liver diseases (MAFLD, previously
known as non-alcoholic fatty liver disease, NAFLD), and cirrhosis
[13, 14]. Other commonly seen risk factors for HCC include
aflatoxin exposure, obesity, diabetes mellitus, and alpha
1-antitrypsin deficiency [15]. Over the past years, MAFLD has
become an increasingly important cause of HCC [16]. In addition
to these causative agents, several intrinsic factors such as genetic
mutations, tumor microenvironment, clonal evolution of cancer
cells and epigenetic changes also contribute to the development
of HCC. Regardless of etiological factors, non-resolving liver
inflammation is a key predisposing factor for the development
of primary liver cancer, in that approximately 90% of HCC cases
are associated with chronic inflammation leading to fibrosis,
cirrhosis, and ultimately HCC (Fig. 1).
HCC is notorious for its rapid progression and poor survival

rates, which are often attributed to the presence of hetero-
geneous subpopulations of cancer cells in the tumor. While there
are multiple treatments available for HCC, their effectiveness is
limited due to the complexity and heterogeneity of the disease. In
this review, we will delve into the factors inducing tumoral
heterogeneity in HCC and the associated underlying mechanisms,
and propose novel pre-clinical models that can be used to best
study HCC heterogeneity, with the ultimate goal of exploring
novel approaches that can be used to tackle tumor heterogeneity.

TUMOR HETEROGENEITY
Tumor heterogeneity encompasses the presence of various cell
subgroups within a tumor or among tumors sharing the same
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histopathological subtype. These subpopulations of cells exhibit
different genetic and physical characteristics, potentially leading
to distinct biological behaviors [17, 18]. At the population level,
tumor heterogeneity is observed between tumors of different
patients or between different tumor nodules of the same patient
(inter-tumoral heterogeneity), within the same tumor nodule
(intratumoral heterogeneity) [19], before and after treatments
(spatiotemporal heterogeneity) [20] and cancers with different
etiologies such that HCCs caused by hepatitis virus infection and
alcohol consumption may exhibit distinct cellular and molecular
features (etiological heterogeneity) [21]. Heterogeneity is a well-
observed phenomenon in HCC resulting in cellular, molecular,
functional, and lineage diversity and is connoted to be a result of
varying genetic diversity in patients and environmental factors.
The mechanisms of heterogeneity are multifactorial including
genomic mutations, tumor microenvironment (TME), evolution
and reprogramming of cancer cells, the transition from non-cancer
to cancer cells, and epigenetics changes, all contributing to the
clonal evolution of cancer thereby causing genomic, molecular,
and functional heterogeneity in the tumor [22–24]. The multi-
faceted development of HCC not only contributes to the
complexity of the disease but also plays a crucial role in clinical
observation such as treatment resistance, tumor dormancy, and
recurrence after the initial treatment (Fig. 2).

Intratumor heterogeneity in HCC
Intratumoral heterogeneity (ITH) reflects the presence of diverse
cellular subpopulations, and distinct molecular signatures within
the same tumor [17, 23]. Cellular heterogeneity in HCC has been
long known based on their histology, cytological findings,
morphology, and microscopic growth patterns [24]. These findings
have been the basis for developing HCC subtypes and grading the
tumor into diverse groups, allowing us to tailor the treatments and
predict the prognosis of HCC patients. Despite decades of
research and innovation of techniques, a clear understanding of
HCC heterogeneity has been a great challenge. In addition to the
varying mutations driving a heterogeneous population of cells in
HCC, tumor cells exhibit different cell surface markers and have
differential expression of genes and dysregulated cellular

pathways. For example, a study by Yamashita et al. using 40
HCC patient tissues identified the presence of multiple cell
subpopulations within the same tumor, based on the presence of
cell surface markers (EpCAM+ AFP+, EpCAM+ AFP−, EpCAM−

AFP+, EpCAM− AFP−) [25]. Similarly, a study by Gao et al. involving
55 spatially distinct samples from 10 HCC patients confirmed the
presence of 39.7% heterogeneous mutation in all the samples [26].
Recent studies using single-cell RNA sequencing (scRNA-seq) and
cell cluster analysis revealed ITH of the global molecular profiles
suggesting that the expression of varying biomarkers reflects the
different cellular origins in HCC [27]. Furthermore, these biomar-
kers contribute to the expression of different signaling pathways
which means that multi-targeted therapeutic approaches are
needed to achieve a cure for heterogeneous cancer.
ITH presents several challenges in the treatment of patients

with liver cancer. Firstly, the presence of multiclonality, or the
coexistence of multiple distinct tumor cell populations within a
single tumor means that the tumor cells may have varied
biological behavior, and this compounded with the sampling
errors makes accurate diagnosis and pathological analysis difficult.
Secondly, the presence of complex and heterogeneous subpopu-
lations in tumor mass implies that these heterogeneous tumor
cells may exhibit asynchronous responses to the same treatment,
hence leading to treatment resistance and relapse. This is
reflected by the lack of targeted therapies that can effectively
target the multiple mutated driver genes present within the
tumor. The currently available immunotherapy has opened new
avenues for treating HCC, however, the monotherapy targeting
PD-1 receptor and CTLA-4 receptors showed low anti-tumor
response, underscoring a need to combine immunotherapies with
other chemotherapies. It is now understood that the complex TME
and different genetic and phenotypic characteristics in tumor cells
exhibit different biomarkers which are responsible for the varying
responses to immunotherapy and difficulty in targeting the entire
tumor [28, 29].

HCC heterogeneity at the molecular level
With the advent of molecular technologies, researchers over the
past many years have identified numerous signaling pathways

Fig. 1 Schematic representation of multi-stage HCC development from common etiological factors.
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and genetic and epigenetic changes that are aberrantly
expressed during the development and progression of HCC
(Table 1). Aberrant activation or dysregulation of signal
transduction pathways in the liver affects the proliferation,
survival, differentiation, and apoptosis of parenchymal liver cells,
consequently resulting in tumorigenesis. The most significantly
altered pathways include Notch, Wnt/β-catenin, PI3/AKT/mTOR,
Ras/Raf/MAPK, JAK/STAT, and ubiquitin-proteasome [30–35].
Consequently, multiple molecular-targeted drugs (e.g., Sorafenib,
Regorafenib, etc.) have been developed to inhibit the activity of
relevant signaling pathways. However, the current targeted
therapies only offer limited efficacy and the tumor often
becomes insensitive to the drugs after a few rounds of exposure
[36], and the development of drug resistance can be attributed to

the presence of heterogeneous subpopulations of the cancer
cells and their mechanism of drug efflux [37]. Clearly, there is a
need to study the interwoven networking of pathways in HCC
thereby finding better molecular markers to target the entire
tumor.

Liver cancer stem-like cells in HCC heterogeneity
HCC is a diverse and complex cancer comprising both non-stem
cancer cells and cancer stem cells (CSCs). Well-documented
evidence has explained HCC development as a result of clonal
evolution resulting from the accumulation of mutations over the
period [23]. Solid evidence also confirms the role of CSCs in the
pathogenesis of HCC [33] making this subpopulation of cells an
ideal target for therapy.

Fig. 2 Factors causing cellular heterogeneity in hepatocellular carcinoma and associated clinical implications.

Table 1. Recent significant findings enhancing the understanding of heterogeneity in HCC.

Studies Experimental techniques used Findings/ Remarks

Xue et al. [91] Exome and whole genome
sequencing

Common mutations shared by all HCC lesions varied from 8% to 97%,
indicating significant ITH. Confirmed correlation between the tumor size and
ITH.

Ho et al. [92] Single-cell RNA sequencing A rare subpopulation of CD24+/CD44+ cells in HCC was identified,
demonstrating the association of the CTSE gene in imparting stemness to
HCC.

Ding et al. [93] Next-generation sequencing and
methylome analysis

Studied the genomic and epigenomic alterations and confirmed that various
signaling pathways (JAK-STAT) and a combination of mutations (in TP53 and
17p) provide with HCC progression and replicative advantages.

Karagonlar et al. [40] HuH-7 cell lines KLF-4 induces EpCAM+/CD133+ LCSCs and modulates de-differentiation

Sun et al. [84] Single-cell RNA sequencing CCL5 chemokine is associated with immune evasion (by recruiting Tregs) in
HCC and is overexpressed in circulating tumor cells

Yao et al. [94] Single-cell RNA sequencing AURKA and EZH2 expression contributes to tumor proliferation, HCC
migration, and invasion.

Zhao et al. [95–100] Spatial transcriptomics Defined 6 marker genes as the prognostic signature in HCC. Tumors with
histological similarities showed significant differences in transcription profiles.

CD Cluster of differentiation, CTSE Cathepsin E, JAK-STAT Janus kinase/signal transducers and activators of transcription, TP53 Tumor protein p53, KLF-4 Krüppel-
like factor 4, EpCAM epithelial cell adhesion molecule, CCL5 C-C Motif Chemokine Ligand 5, Tregs Regulatory T cells, AURKA Aurora kinase A, EZH2 Enhancer of
zeste homolog 2.
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According to the stem cell theory of tumor evolution, CSCs
exhibit similar properties to normal stem cells including embryo-
nic stem cells in that they are capable of unlimited self-renewal,
division, and differentiation that begets a strong survival
advantage [34]. Consequently, CSCs increase the chance of
recurrence, metastasis, and therapeutic resistance [35].
Over decades, multiple surface markers for liver cancer stem-

like cells (LCSCs) have been identified, such as EpCAM, CD13,
CD24, CD44, CD47, CD90, CD133, ICAM1, LGR5, OV6, ALDH, and
CK19 [33]. Although LCSCs positive for any of these markers show
features for CSCs, no marker is unique for LCSCs. In fact, these
molecules are not simply the biomarkers of CSCs but are also
functionally linked to multiple biological features of the CSCs and
their tumorigenic abilities such as drug resistance, proliferation,
migration, metastasis, plasticity, and contribution to tumor
heterogeneity. It is known that LCSCs and non-cancer stem cells
dynamically switch phenotypes over time, a phenomenon known
as “phenotype switching”. This has been demonstrated in animal
models using lineage tracing and scRNA-seq analysis [37, 38]. The
plasticity of CSCs is of particular relevance to tumor heterogeneity,
and this phenomenon is a very unique and common feature of
LCSCs. For example, in the studies by Zheng et al. [39] and
Karagonlar et al. [40], its was found that non-stem cells (or marker-
negative cells) can gain the features of CSCs by trans-differentia-
tion, either spontaneously or by over-expression of certain
transcription factors such as KLF-4, and this “trans-differentiation”
of CSCs contributes to the development of tumor heterogeneity.
Key mechanisms of how LCSCs contribute to the progression and
development of heterogeneity in HCC are shown in Fig. 3. With
emerging technologies such as scRNA-seq and spatial transcrip-
tomics, our understanding of how LCSCs contribute to the
heterogeneity of liver cancer has improved. However, many
questions remain, including the cellular origins of HCC and LCSCs,
the factors that drive the plasticity of LCSCs, underlying
mechanisms, and consequently, how we can tackle tumor
heterogeneity via intervening CSC plasticity. Indeed, the complex-
ity of ITH, mostly driven by the existence of varying tumor cell
populations each exhibiting unique biological characteristics and
responses to treatment, further complicates the matter. Since
LCSCs are believed to dictate the cellular clones within the tumor
bulk and drive tumor heterogeneity, they are an ideal therapeutic
target (Fig. 3). However, there are still many challenges that must
be overcome for the clinical adoption of using LCSCs as the target

for liver cancer therapy, and these may include the identification
of specific targetable molecules, efficient delivery approaches, and
accurate assessment of the therapeutic efficiency.

HETEROGENEITY IMPACTS THE ACCURATE DIAGNOSIS OF HCC
Despite multiple advanced imaging techniques and blood serum
markers have been introduced into clinical practice [41], accurately
diagnosing HCC at an early stage has been a significant challenge.
Imaging modalities, such as ultrasound, computed tomography,
and magnetic resonance imaging, are commonly used tools for
detecting liver lesions, but they often lack sensitivity, especially
with small lesions or in the context of liver cirrhosis [42].
Meanwhile, false-positive diagnosis may also occur, leading to
unnecessary invasive procedures or undue anxiety for patients.
Thus, molecular signatures such as serum and tumor biomarkers
that can offer heightened sensitivity and specificity for early and
accurate diagnosis of HCC are much desirable diagnostic tools.
A well-known diagnostic biomarker for HCC is alpha-fetoprotein

(AFP), a crucial glycoprotein in fetal development. The serum level
of AFP usually ranges around 0-40 ng/mL in healthy adults but can
rise to >400 ng/mL in HCC [43–45]. AFP is so far the most widely
used biomarker for HCC diagnosis. However, it is not the most
recommended test for early detection of HCC because of its poor
specificity (its elevation has also been reported in other conditions
such as liver cirrhosis, gastric cancer [46], pancreatic and lung
cancer [47]) and poor sensitivity (a proportion of HCC patients do
not have AFP secretion [48]). The mosaic pattern of AFP
expression in HCC stems from the heterogeneity of HCC tissues.
Similarly, other markers such as Des-γ-Carboxy Prothrombin (DCP)
(also known as prothrombin induced by vitamin K absence-II,
PIVKA-II) cannot accurately diagnose the HCC in patients with
vitamin K deficiency, poor nutrition with alcohol abuse, and those
using oral anticoagulants [49]. Furthermore, the combination of
the commonly used serum markers (e.g., AFP, DCP, and AFP-L3)
does not seem to significantly enhance the sensitivity and
specificity of early HCC diagnosis [50–53]. In a US-based study
by Marrero et al., the combination of AFP, DCP, and AFP-L3 could
identify 43% of HCC patients who had AFP levels below 10.9 ng/
mL but showed a sensitivity of only 60% [52]. Combination of AFP
and DCP showed an improved sensitivity but the specificity
decreased significantly [53]. These data indicate tumor hetero-
geneity as a confounding factor for accurate diagnosis.

Fig. 3 Role of LCSCs in heterogeneity of hepatocellular carcinoma.
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The impact of heterogeneity on accurate diagnosis of HCC is
also reflected in the complexity of the established tissue markers.
For example, each of Glypican-3 (GPC3), glutamine synthetase
(GS), and heat shock protein 70 (HSP70) (recommended by the
European Association for the Study of Liver to distinguish the
dysplastic nodules and well-differentiated HCCs smaller than 2 cm
[50]) have shown significant diagnostic value for HCC: GPC3 is
positive in ~80% HCCs [54, 55] including in 63.24% of AFP-
negative HCCs [55]; has an overall sensitivity of 97.7%, and an
overall specificity of 94.7% [56]; GS is positive in 72.4% HCCs [57];
HSP70 is positive in 56.3% of HCCs [58] with a sensitivity of 78.2%
and specificity of 100% [59]. However, a combination of GPC3, GS,
and HSP70 showed reduced sensitivity for the detection of HCC
(25%) [60]. Furthermore, the positivity of these markers shows
considerable variations across different tumor stages. For example,
GPC3 is positive in 37.3% of Stage I HCC, 71.9% of Stage II HCC,
and 92.9% of Stage III HCC [61]. The complexity and inefficiency of
the commonly used biomarkers for HCC are also indicated in a
recent study by Wang et al. which confirms the presence of
diverse ways of tumor evolution and these biomarkers may be just
expressed in a partial subpopulation of the HCC while the
remaining subpopulation may remain undiagnosed [62]. Hence,
accurate diagnosis and subsequent treatments of HCC require a
thorough understanding of the inter- and intratumoral hetero-
geneity. As a result, there is a constant need for identifying and
validating the HCC-specific markers that can potentially be
diagnostic and screening targets.

HETEROGENEITY IMPARTS TREATMENT RESISTANCE
Currently, the US Food and Drug Administration (FDA) and
European Medicines Agency (EMA) have approved multiple first-
line therapies for advanced HCC, including multi-target tyrosine
kinase inhibitors (TKIs) such as Sorafenib and Lenvatinib which
downregulate signal transduction promoting cell proliferation,
angiogenesis, cell migration, and survival [63, 64], and immune
checkpoint inhibitors (ICIs) such as atezolizumab, Bevacizumab or
Durvalumab/Tremelimumab, which bind to specific ICIs pro-
grammed cell death ligand-1 (PDL-1), or cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) to inhibit the downregulation of
immune response [65–67]. However, the efficacy of these agents is
limited and drug resistance frequently develops, due to multiple
mechanisms such as the presence of CSCs, alteration in the
signaling pathway, and altered drug efflux mechanism in the HCC
[31, 68]. Importantly, cancer heterogeneity contributes to poor
treatment outcomes as the heterogeneous cancer cells within a
tumor may develop into mixed subclones of cancer cells with
different genetic and molecular signatures, eventually responding
differently to the same treatments [34, 69], complicating the choice
for the most effective treatment for patients. The negative impact
of tumor heterogeneity on cancer therapy is supported by a recent
study in acute myeloid leukemia where cellular hierarchy composi-
tion was closely associated with drug sensitivity of targeted
therapies. Clinically, patients with higher tumor diversity scores
showed significantly poorer overall and progression-free survivals
[70]. Deciphering heterogeneous cell subpopulations and identify-
ing tumor-specific molecular signatures are crucial for advancing
personalized cancer therapeutics. To achieve this, there is a pressing
need for improved translational research models that can bridge
the gap between basic discoveries and clinical applications.

CURRENT APPROACHES FOR DISSECTING HCC
HETEROGENEITY
Earlier techniques employed to study tumor heterogeneity include
microscopic examination of the tumor tissues, the use of cancer
cell lines with varying genetic and pathological backgrounds,
immunohistochemistry staining, and bulk RNA sequencing to

examine the different populations of cells within the tumor.
Coupling the more advanced technologies such as scRNA-seq,
spatial transcriptomics, pathway enrichment analysis, and whole
genome sequencing, with clinically relevant translational models
that can faithfully recapitulate the true pathogenesis of HCC will
have great potential in dissecting the interactions of different cell
types and their biological behaviors within the tumor bulk.

Organoids
Organoids are in vitro, self-organizing, stem cell-based 3D tissue
models that mimic the native in vivo tissue, allowing researchers
to recapitulate the biological, structural, and genetic complexity of
an organ [71, 72]. Over the past decades, organoids have been
used to study tumor complexities, test drug efficacy, and study the
pathogenesis of tumor development [73–76]. This 3D model can
be applied to study the cellular heterogeneity in tumors thereby
attaining a comprehensive understanding of the interactions
among different subpopulations in tumors. The heterogeneous
population of LCSCs is one of the major hurdles in the
development of an effective therapeutic outcome and leads to
drug resistance. Healthy liver organoids have been developed
from the liver stem cells wherein various differentiation factors
such as dexamethasone, Notch signaling inhibitor, and BMP
without Rspo1 [77] are employed to drive the stem cells toward
developing into hepatocyte-based organoids. These organoids
can be used to study how stemness is imparted to non-stem-like,
well-differentiated hepatocytes, thus allowing us to understand
the functionalities of stem cells and CSCs in forming hetero-
geneous tumors as well as how drug resistance occurs in the
background of heterogeneous cell populations. The great
potential for using organoids in studying tumor heterogeneity is
reflected in recent studies where organoids from primary and
metastatic colorectal cancer (CRC) were studied by transcriptome
and histopathology and the intra- and inter-tumoral heterogeneity
of CRC was confirmed [78, 79]. We envisage that organoids
derived from HCC patient tissues of various backgrounds will form
a promising translational model for deciphering the mechanisms
of tumor heterogeneity, particularly the role of LCSCs in HCC.

Precision-cut liver slice
Precision-cut Liver Slice (PCLS) is an ex vivo model obtained by
slicing human liver tissues. The key feature of PCLS is that the
multicellular histoarchitecture, the spatial structural relations of
the original cell populations, as well as the genetic characteristics
of the original organ are well-preserved and maintained for a
period of time in vitro, making it a great model for studying
heterogeneous subpopulations in HCC. PCLS has been extensively
used in studying drug response and toxicity, elucidating the
stages of fibrosis and the efficacy of anti-fibrotic agents [80–82].
The PCLSs containing both HCC tissues and surrounding normal
(or non-tumoral) liver tissues form an ideal model for determining
the efficacy and specificity of anti-cancer drugs on a histologically
diverse population of cells. PCLSs from various portions of the
same tumor are a good model for studying the impact of ITH on
treatment responses. Likewise, PCLSs from before and after
chemotherapy may provide a useful model for studying spatio-
temporal heterogeneity and deducing the therapeutic response.

LIQUID BIOPSY
Liquid biopsy is emerging as an alternative to tumor tissue biopsy.
It allows the circulating tumor cells (CTCs), nucleic acids from the
tumors including circulating tumor RNA (ctRNA) and circulating
tumor DNA (ctDNA), as well as other tumor biomarkers in the
bloodstream and other body fluids to be studied [83–85]. These
materials shed from the primary and/or metastatic tumors and
represent their heterogeneity. In particular, the presence of a
heterogeneous population of CTCs in the blood indicates tumor
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heterogeneity at the phenotypic and genotypic levels [86, 87]. In
fact, the phenotypic characterization of CTCs can offer insights
into treatment choices, with some CTC phenotypes linked to drug
sensitivity, including pERK/pAkt and PD-L1-positive CTCs [88, 89].
In addition, the level of CTCs and their phenotypic characteristics
can enhance our understanding of metastatic biology and
mechanisms of drug resistance. In given HCC patients, spatial
analysis of CTCs from different vessels can predict metastases [90].
Taken together, liquid biopsy not only provides valuable insights
into tumor heterogeneity but also holds promise for predicting
metastases through spatial analysis of CTCs.

CONCLUSION AND PROSPECTS
Cellular and molecular heterogeneity contribute significantly to
the late diagnosis, drug resistance, and treatment failure in HCC.
Previous techniques such as bulk RNA sequencing, whole genome
sequencing, and scRNA-seq have been extremely useful in
deriving different cell types in HCC. However, more clinically
relevant and translational study models that can faithfully mimic
the native tumors will advance the understanding of the
mechanisms of HCC heterogeneity and its impact on the
development of drug resistance and therapy failure. More studies
using advanced translational models in large cohorts of patients of
varying etiological, ethnic, and genetic backgrounds may facilitate
the identification of critical biomarkers for accurate early diagnosis
of HCC and lead to efficient treatments.
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