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Deep learning for detecting and
characterizing oil and gas well pads
in satellite imagery

Neel Ramachandran 1,2,6 , Jeremy Irvin3,6, Mark Omara 4, Ritesh Gautam4,
Kelsey Meisenhelder4, Erfan Rostami 3, Hao Sheng3, Andrew Y. Ng3 &
Robert B. Jackson 2,5

Methane emissions from the oil and gas sector are a large contributor to
climate change. Robust emission quantification and source attribution are
needed for mitigating methane emissions, requiring a transparent, compre-
hensive, and accurate geospatial database of oil and gas infrastructure.
Realizing such a database is hindered by data gaps nationally and globally. To
fill these gaps, we present a deep learning approach on freely available, high-
resolution satellite imagery for automatically mapping well pads and storage
tanks. We validate the results in the Permian and Denver-Julesburg basins, two
high-producing basins in the United States. Our approach achieves high per-
formance on expert-curated datasets of well pads (Precision =0.955, Recall =
0.904) and storage tanks (Precision = 0.962, Recall = 0.968). When deployed
across the entire basins, the approach captures a majority of well pads in
existing datasets (79.5%) and detects a substantial number (>70,000) of well
pads not present in those datasets. Furthermore, we detect storage tanks
(>169,000) on well pads, which were not mapped in existing datasets. We
identify remaining challenges with the approach, which, when solved, should
enable a globally scalable and public framework for mapping well pads, sto-
rage tanks, and other oil and gas infrastructure.

Methane emissions are a key contributor to climate warming,
accounting for around 30% of the recent rise in global temperatures1.
Methane absorbs radiation more efficiently than CO2; the pound-for-
pound Global Warming Potential (GWP) of methane is ~83 times
greater than CO2 over a 20-year time period, and ~30 times greater
over a 100-year timeperiod2.Methane’s atmospheric lifetime is about a
decade and significantly shorter than that of carbon dioxide.
Consequently, mitigating methane emissions provides one of the
best opportunities for reducing the rate of warming over the next
decade or two.

Substantial rises inmethane emissions over the past four decades,
and in particular over the last 15 years, can be attributed primarily to
anthropogenic factors, of which fossil fuels are a leading contributor
(35% of anthropogenic methane emissions)3–5. As such, mitigation
measures to reduce methane emissions from the fossil fuel sector are
considered to be among themost attractive and cost-effective options
available5–8. A large portion of methane emissions from the oil and gas
(O&G) industry arise during production, specifically from O&G infra-
structure such as well pads9. Moreover, aerial surveys suggest that
most large sources of methane from well pads emanate from storage

Received: 16 November 2023

Accepted: 8 July 2024

Check for updates

1Stanford Research Computing, Stanford University, Stanford, CA, USA. 2Department of Earth System Science, Stanford University, Stanford, CA, USA.
3Department of Computer Science, Stanford University, Stanford, CA, USA. 4Environmental Defense Fund, Austin, TX, USA. 5Woods Institute for the Envir-
onment and Precourt Institute for Energy, Stanford University, Stanford, CA, USA. 6These authors contributed equally: Neel Ramachandran, Jeremy Irvin.

e-mail: neelr@stanford.edu

Nature Communications |         (2024) 15:7036 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0004-9679-1157
http://orcid.org/0009-0004-9679-1157
http://orcid.org/0009-0004-9679-1157
http://orcid.org/0009-0004-9679-1157
http://orcid.org/0009-0004-9679-1157
http://orcid.org/0000-0002-8933-1927
http://orcid.org/0000-0002-8933-1927
http://orcid.org/0000-0002-8933-1927
http://orcid.org/0000-0002-8933-1927
http://orcid.org/0000-0002-8933-1927
http://orcid.org/0009-0006-4367-5149
http://orcid.org/0009-0006-4367-5149
http://orcid.org/0009-0006-4367-5149
http://orcid.org/0009-0006-4367-5149
http://orcid.org/0009-0006-4367-5149
http://orcid.org/0000-0001-8846-7147
http://orcid.org/0000-0001-8846-7147
http://orcid.org/0000-0001-8846-7147
http://orcid.org/0000-0001-8846-7147
http://orcid.org/0000-0001-8846-7147
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50334-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50334-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50334-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50334-9&domain=pdf
mailto:neelr@stanford.edu


tanks10. Therefore the detection, quantification, and mitigation of
methane emissions from well pads and storage tanks remain high
priorities and motivate the work presented here.

A critical component of both measuring and mitigating methane
emissions in the O&G sector is the availability of transparent, compre-
hensive, and accurate geospatial information for O&G facilities. Such a
repository would enable more accurate bottom-up (BU) estimates of
methane emissions and granular source attribution from top-down (TD)
estimates, including those from satellites. BU estimates of methane
emissions have been frequently observed to underestimate overall
emissions, in part attributable to uncertainties in activity (i.e., count)
data in terms of the underlying inventory of facilities and equipment11,12.
Meanwhile, advancements in aerial-based and satellite-based observa-
tions have improved the TD quantification of methane emissions. Sev-
eral satellite missions over the past decade have provided useful
information on methane emissions globally; this was not possible with
conventional groundmeasurements and airborne campaigns of limited
spatial context13. Global satellites (e.g., SCIAMACHY, GOSAT, TROPOMI)
can detect coarse methane “hot spots”, whereas other satellites and
airborne survey instruments (GHGSat, AVIRIS-NG) can detect high
emission sources at a fine-grained resolution, albeit with more limited
spatial coverage14. MethaneSAT andCarbonMapper, satellites launching
in 2024, allow methane emissions to be tracked with relatively high
resolution and broad spatial coverage, enabling improved quantifica-
tion of area emissions and high-emitting point sources. Performing
both area-source and point-source attribution on such top-down
obtained methane emissions data requires the comprehensive dataset
of methane-emitting O&G infrastructure mentioned above.

Reconciling the disagreement between BU/TD emission estimates
and performing accuratemethane source attribution have been shown
to be successful in limited geographic areas such as the Barnett shale
and California thanks to granular, facility-level O&G databases manu-
ally assembled and validated from existing public data sources and/or
remote sensing imagery11,15. However, large data gaps exist both
nationally and globally, and extending these manual approaches is
infeasible at larger scales. In the United States, the Department of
Homeland Security’s Homeland Infrastructure Foundation-Level Data
(HIFLD) program16 aggregates state-level well data into a national
database. The sources of this data include required reporting by
facility operators and publicly available state data, which can be out-
dated and vary in scope and coverage from state to state17. Uncertainty
about the total number of active wells exists even between agencies
like the EPA and EIA, which cite different national totals17. This uncer-
tainty is compounded by abandoned and orphaned wells, which are
often undocumented. Furthermore, sub-facility inventories of equip-
ment such as storage tanks, which are significant sources of
production-site methane emissions10,18, are scarce. At the global level,
recently there has been a comprehensive development of a spatially
explicit oil and gas infrastructure database using bottom-up reported
data; however, major gaps exist in terms of well pad and storage tank
data which are readily not available in bottom-up sources globally19.

The emergence of freely available, high-resolution remote sensing
imagery, coupled with recent progress in deep learning methods, pre-
sents a promising opportunity for filling many of these data gaps and
updating them regularly. Deep learning techniques have been increas-
ingly applied to fine-scale infrastructure mapping efforts, from building
footprint detection20 and urban land use classification21 to energy infra-
structure identification22, including solar photovoltaics23, wind turbines24,
oil refineries25, and other methane-emitting infrastructure26. The appli-
cation of similar methods to methane-emitting O&G facilities and sub-
facilities such as well pads and storage tanks to develop large-scale,
granular, and accurate geospatial databases has the potential to address
these challenges in emissions estimation and source attribution. Pre-
vious work has illustrated the potential for deep learning to effectively
detect O&G well pads and storage tanks in the Denver-Julesburg

(hereafter referred to as Denver) basin27 but the model was only manu-
ally assessed in small subregions of the basin, and not assessed against
existing well pad data repositories. Here, we design a larger-scale fra-
mework, trained and validated ondiverse facilities inmultiple full basins.

In this work, we develop and deploy deep learning models to
detect O&G well pads and storage tanks across the Permian and Den-
ver basins automatically. We focus on these basins because of their
high production rates (over 40% of U.S. oil production occurs in the
Permian basin alone28) and high leakage rates (60% higher than the
national average in the Permian basin29). These two basins also have
diverse well-pad types and settings (including relatively arid land-
scapes in the Permian and dense urban landscapes in the broader
Denver area), which are useful for testing the models across varied
environments.

Our main contributions are as follows: First, we develop deep-
learning approaches using public satellite imagery to map well pads
and storage tanks. To do this, we carefully curate labeled datasets of
satellite imagery with well pad and storage tanks annotations, and
adapt well-established object detection models to perform well pad
and storage tank detection by leveraging these datasets. Second, we
present results from many experiments which rigorously evaluate the
performance of the models, including several metrics capturing the
proportion of false positive and false negatives in each basin, the
impact of jointly training models in basins, the effect of well pad size
on model performance, the benefits of using a well pad verification
model for reducing false positives, and the generalizationof themodel
to new regions. Crucially, both thewell pad and storage tank detection
approaches achieve high performance assessed against expert anno-
tated data in the Permian and Denver basins. Third, we apply the final
approach to create a database of well pads and storage tanks across
the entire Permian and Denver basins, and conduct thorough analyses
evaluating the quality of the data, including comparing to existing well
pad databases. The deep learning-mapped well pads capture the
majority of wells in existing databases that were visible in the satellite
imagery and include a substantial number of well pads not captured in
the existing datasets, illustrating the potential of these methods to fill
data gaps. Through our analyses, we also identify remaining data and
modeling challenges with the approach, which, if solved, would enable
a globally scalable well pad and storage tank mapping framework.

Results
Training deep learning models to detect and verify well pads
We developed a well pad detection pipeline with two stages to detect
and verifywell pads in the Permian andDenver basins. In thefirst stage,
we framed well pad detection as an object detection task, wherein a
modelwas trained to input an image and output axis-aligned bounding
boxes around instances of well pads. For this stage, we trained a
RetinaNet30 detector with a ResNet-5031 backbone, and thresholded
the model (hereafter referred to as the detection model) to maximize
recall. In the second stage, we used a binary classifier to eliminate false
positive detections and “verify” individual instances of well pads pro-
duced in the first stage by outputting whether or not a satellite image
contains a well pad. We trained an EfficientNet-B332 model, and thre-
sholded the model (hereafter referred to as the verification model) to
maximize precision. For training and validating both models, we col-
lected a dataset of images of 88,044 images captured from the Google
Earth33 satellite basemap, including 10,432 images with manually
labeled well pads (positives) and 77,612 negative images. For evaluat-
ing thedetectionmodel,weused the terms “precision” (theproportion
of model predictions that are actually well pads) and “recall” (the
proportion of actual well pads in the dataset that were correctly
identified by the model). We also used average precision (AP), which
estimates the average precision across all recall thresholds and pro-
vides a more holistic way to compare model performance than preci-
sion and recall at a single threshold. The verificationmodel is evaluated
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with precision and recall. We selected the best architecture, backbone,
and hyperparameters for the detection and verification models based
on which led to the highest performance on the validation set (see
“Methods”, Supplementary Tables 1 and 2).

The full well pad detection pipeline demonstrated strong per-
formanceon a “held-out” test set comprising 10% of the overall dataset
(Table 1). The model achieved high AP across all thresholds (0.959 in
the Permian basin and 0.928 in the Denver basin). After choosing
confidence thresholds to maximize recall in the detection stage and
precision in the verification stage, the model achieved high overall
precision (0.955) with over 0.9 recall. From inspecting a selection of
the undetected well pads in both basins, we found that false negatives
primarily occurred on small well pads, and partially visible well pads at
the edge of images that do not meet our filtering criteria (described in
the “Methods” section below). We note that while the latter issue
affected evaluation metrics, we used overlapping tiles to prevent such
errors during deployment. We found that false positives primarily
occurred on facilities sharing visual similarity with well pads such as
wind turbines, other O&G infrastructure (e.g., compressor stations),
and other types of cleared land (e.g., cleared farmland).

We also examined the effect of the second stage of our detection
pipeline, wherein the verification model eliminates false positives and
“verifies” the remaining well pad detections. When evaluated inde-
pendently, the verification model achieved high performance in both
basins: On the test set, the models achieved perfect precision (1.0) in
both basins while maintaining high recall (>0.97).

To validate the advantage of using the verification model, we
compared the performance of the stand-alone detection model with
the detection model in conjunction with the verification model. To
evaluate the models together, we downloaded images centered at
every candidate prediction produced by the detection model to feed
to the verification model; candidates that were not “verified” were
removed from the predictions. We then used precision and recall to
evaluate the remaining “verified” predictions. We compared these
results to the standalone detection model thresholded at the recall
value obtained from evaluating the models together to determine if
the verification model improved overall precision. The verification
model improved precision by 0.013 and 0.009 on average in the Per-
mian and Denver respectively, validating our hypothesis that a dedi-
cated model for eliminating false positives by verifying candidate well
pads is more effective than just using a higher confidence threshold
with the standalone detection model (Supplementary Table 3).

When stratifying performance by basin, we found that the pipe-
line performs poorer in the Denver than the Permian basin. The APwas
0.031 lower in the Denver basin than in the Permian basin on average,
indicating that over 3%more of the predictions were false positives on
average across all confidence thresholds in the Denver basin. We
mainly attribute the lower performance in the Denver basin to the
higher prevalence of smaller well pads in the region, which the model
identified less reliably thanmedium and large well pads in both basins

(Table 2). We defined small well pads as <41m2 (100 image pixels),
largewell pads as >164m2 (400 imagepixels), andmediumwell pads as
those in between (Supplementary Fig. 1). We note that performance
across medium and large well pads in both basins is roughly compar-
able, but that performance for small well pads is over 0.09 and 0.25 AP
lower than medium and large-sized well pads in the Permian and
Denver, respectively (small object detection remains a known chal-
lenge with current techniques34). Notably, only 5.2% of well pads in the
Permian test set are designated as small, compared to 18.3% in the
Denver basin (Table 2), where single wellhead pads are common. Thus,
theoverall performance in theDenver basinwas relatively penalizedby
errors on small well pads. Further, the performance on small well pads
is considerably worse in the Denver basin than in the Permian, a result
we attribute to the lack of discernible features on small well pads in the
Denver basin and the higher likelihood of incurring false positives
(Supplementary Fig. 1). We also acknowledge that the Denver basin
contains a broader range of “built” urban and suburban infrastructure
than the Permian basin, which are also likely to contribute to false
positives.

We experimented with training basin-specific detection models
compared with training a detection model jointly in both basins and
found that the jointly trainedmodel outperformed both basin-specific
models. The basin-specific models achieved the best performance
when evaluated in the same basin they were trained in, but there was a
significant drop in AP (>0.1) when the Permianmodel was evaluated in
the Denver basin and vice versa, which is likely due to a large dis-
tribution shift between the regions. The model trained jointly in both
basins outperformed the basin-specific models by 0.004 AP in the
Permian basin and 0.006AP in theDenver basin on average, indicating
that despite the distribution shift, performance in both basins
mutually benefited from jointly training the model (Supplementary
Table 4). We thus selected the joint model for deployment in both
regions.

Finally, we evaluated the model in new regions that were
“unseen” during training to test the generalization of the model
beyond the Permian and Denver basins. To do so, we collected
additional labeled well pad datasets in the Appalachian, Texas-
Louisiana-Mississippi (TX-LA-MS) Salt, Anadarko, and Uinta-
Piceance basins, which together comprise over 38% of U.S.
production34 and that span diverse geographies across the country
(Supplementary Fig. 2). We collected an average of 4,774 images
across each basin, including an average of 622 images withmanually
labeled well pads; we then evaluated our model trained solely in the
Permian and Denver in these new basins. We found that perfor-
mance varied considerably by basin: Notably, when evaluated in the
Uinta-Piceance basin, the model achieved high precision and recall
(0.948 and 0.943 respectively), exhibiting no decrease in perfor-
mance as compared to the Permian and Denver basins. However,
when evaluated in the Appalachian basin, the model achieved con-
siderably lower precision and recall (0.647 and 0.552 respectively).
Performance decreased slightly in the TX-LA-MS Salt (>0.8 preci-
sion and recall) and Anadarko (>0.85 precision and recall) basins
but the model remained a relatively accurate detector of well pads.
The results suggest that the model generalizes well in regions with
low distribution shift; in the Uinta-Piceance basin, for example, well
pads exhibit similar visual characteristics in an arid environment as
in the Permian basin. Meanwhile, in the Appalachian basin, well pads
are typically small with poorly defined footprints, and are often
obscured by trees and shade. The model performance in the
Appalachian indicates that the model is unable to generalize across
a large distribution shift, and also that the well pad detection task
may be significantly harder in some regions. Full results and dataset
counts for the evaluation basins are shown in Supplementary
Table 5 and satellite imagery examples are shown in and Supple-
mentary Fig. 3.

Table 1 | Test set results of the well pad detection pipeline for
the Permian and Denver basins individually and together
(“Overall”)

Average precision
(mean ± SD)

Precision
(mean ± SD)

Recall (mean ± SD)

Permian 0.959 ±0.002 0.975 ±0.003 0.906 ± 0.005

Denver 0.928 ±0.003 0.935 ±0.005 0.901 ± 0.007

Overall 0.944 ±0.002 0.955 ±0.004 0.904 ± 0.006

Because positive examples were downloaded centered around well pads, we used stochastic
data augmentations (random cropping and scaling) when evaluating the model to simulate the
distribution of well pads during deployment to the full basins, where well pads are rarely cen-
tered in the image. As such, the results are reported as the mean and standard deviation (SD)
across 10 runs.
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Basin-scale well pad deployment
Wedeployed ourwell pad detection pipeline to the entire Permian and
Denverbasins.We tiledbothbasins into >13.9million images, spanning
approximately 313,340 km2, that we evaluated for well pad and storage
tank detections. Well pads were considered verified if they matched
reported data from the Enverus35 and HIFLD Open Data16 datasets or if
they were confirmed by the verificationmodel; all unverified well pads
were removed from the detections. The full deployment procedure is
described in further detail in the Methods section. The deployment
produced 194,973 well pad detections in the Permian and 36,591
detections in the Denver basin.

We then analyzed our detections against reported data. We
focused first on “captured” well pads (those present in our detections
that matched reported data) and on “missed”well pads (those present
in the reported data that were not detected by our model). We also
analyzed “new” well pad detections (those that we detected but were
not in the reporteddata, including actualwell pads and falsepositives),
plus the storage tank detections described in the next section. Sample
detections and density heatmaps from the well pad deployment are
shown in Fig. 1.

For the Permianbasin, weobserved recall rates of 80.5%and 73.3%
on active well pads when compared against the Enverus and HIFLD
datasets, respectively. Similarly, in the Denver basin, we found recall
rates of 68.1% and 46.1% when compared against the Enverus and
HIFLD datasets (Fig. 2). We note that both datasets are not perfect
sources to compare against as they may contain inaccurate coordi-
nates and/or well pads that are no longer visible in satellite imagery
(examples are shown in Supplementary Fig. 4); therefore, the recall
rates calculated here likely underestimate the true proportion of well
pads captured. Further, recall is considerably lower when comparing
against the HIFLD dataset than against the Enverus dataset, and the
number of reported well pads is also much higher in the former than
the latter in both basins.We note that theHIFLD dataset was published
in 2019 and contains aggregated state-level data which may be out-
dated in some states; theHIFLDdata is onlyup-to-date as of 2014 in the
Denver basin and 2018 in the Permian basin. Meanwhile, the Enverus
dataset is frequently updated and is up-to-date as of 2021 in both
basins. As such, the HIFLD dataset is more likely to contain decom-
missioned well pads that are no longer present in the Enverus dataset,
which helps explain the disparity in recall and number of reportedwell
pads in the datasets.

We found marginally lower recall rates on both datasets and in
both basins when comparing against all well pads. Lower recall rates
on the “all” category are attributable to the difficulty in detecting
inactive well pads, which can contain little to no equipment, are
rehabilitated by vegetation, or are no longer visible in imagery.
Below, we focus mainly on assessing the detections against active
well pads in the Enverus dataset for the reasons presented above,
and because of access to site-level production data in the Enverus
dataset, which are not available in the HIFLD dataset. Across both
basins, themodel detections capture 79.5% of active well pads in the
Enverus dataset.

We also examined recall rates across time, and found that in the
Permian basin, recall generally increased over time before dropping

sharply in the mid-2010s. In the Denver basin, recall generally
decreased over time before increasing and sharply decreasing in the
2010s. We found that recall rates largely correspond to the evolving
size of constructedwell pads, which we calculated based on the size of
bounding box detections (Fig. 3). Recall is higher in years where larger
well padswere constructed, and lower in yearswhere smaller well pads
were constructed. This trend is consistent with our observation that
themodel performs better on larger well pads (Table 2). However, well
pad size does not explain the drop in performance on recently con-
structed well pads, as well pads aremissed substantially while well pad
size increases in the 2010s. In the Permian, recall remains high for well
pads constructed from 2010 to 2016, then drops sharply from 2016 to
2021 (Fig. 4a). This trend is primarily due to outdated imagery in the
Google Earth basemap, wherein recently constructed well pads may
not appear in imagery acquired before their completion date. In the
Permian, imagery acquisition dates range from 2014 to 2019 (Supple-
mentary Table 6). For well pads completed in 2012 the recall rate is
0.97; these well pads are unaffected by outdated imagery. For well
pads completed in 2019, the recall rate drops to 0.67, as 52.3% of
imagery coverage in the basin is from 2018 or earlier and would not
depict the well pad (Fig. 4a and Supplementary Table 6). We found a
similar trend in the Denver basin.

Further compounding the impact of outdated imagery is the fact
that recently constructed well pads account for a large majority of the
production (measured in kilo barrels of oil equivalent per day, i.e.
kBOE/d). In the Permian, the total kBOE/d produced by wells com-
pleted from2016 to 2021 increases rapidly; these high-producingwells
were largelymissed by the model due to outdated imagery (Fig. 4a, c).
The same trend is visible in the Denver basin. As such, outdated ima-
geryhas a disproportionate effect onproduction: In the Permianbasin,
well pad recall is 0.805, whereas production recall is only 0.555
(Table 3). Notably, by evaluating well pad detections against reported
data while removing all reported well pads with outdated imagery, we
saw a substantial increase in well pad recall, and nearly 100% produc-
tion recall in the Permian basin, suggesting that outdated imagery is
responsible for a large portion of recall issues on recently constructed
wells at deployment. We found similar trends in the Denver basin
(Table 3). Examples of the outdated satellite imagery are shown in
Supplementary Fig. 4.

We also founda large number of “new”well paddetections in both
basins. Well pads were considered “new” if they were detected by the
model but did not match any well pad, active or inactive, in the union
of the Enverus and HIFLD datasets. 67,201 such detections were found
in the Permian basin, and 24,525 in the Denver basin.

We evaluated a sample of 5000 new detections (n = 2500 in each
basin), and found that 83.04% and 57.9% of the new detections were in
fact well pads in the Permian and Denver basins respectively, while the
remaining detections were false positives. These well pads represent
new detections that were not previously recorded in available data-
bases as of their published dates (2019 for HIFLD and 2021 for
Enverus). Based on this sample, we estimate that our detection pipe-
line identified over 55,800 and 14,200 new well pads in the Permian
and Denver basins respectively, a total increase of 33% over the
existing repositories.

Table 2 | Test set results of the detection pipeline stratified by well pad size

Permian Denver

% Well pads Average precision (mean ± SD) % Well pads Average precision (mean ± SD)

Small (<41m2) 5.2 0.853 ± 0.082 18.3 0.700 ±0.011

Medium (41–164m2) 83.7 0.962 ± 0.002 68.4 0.976 ±0.005

Large (>164m2) 11.1 0.944 ±0.001 13.2 0.953 ±0.012

Overall – 0.959 ±0.002 – 0.928± 0.003

The results are reported as the mean and standard deviation (SD) across 10 runs.
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We note that 21.6% of new well pad detections in the sample
were completely bare, i.e. containing no visible equipment such as
pump jacks, storage tanks, well head fencing, or well heads (which
may in some cases be too small to see in satellite imagery) typically
used to discern well pads from other infrastructure. These “well
pads” could represent plugged and abandoned/orphaned well
pads, or well pad footprints that were cleared but not yet drilled at
the time of imagery acquisition. As such, these “well pads”may not
be expected to appear in reported well pad datasets. The
remaining 78.4% did feature equipment, and yet also did not

appear in the reported well-pad datasets. We also note that we
distinguish the bare “well pads” from land cleared for other pur-
poses (e.g. agriculture) through features such as proximity to
other well pads, presence of characteristic road(s) leading to the
site, and proximity to other infrastructure, which often indicate
that a cleared area is not a well pad (i.e. a cleared region next to a
farm is unlikely to be a well pad and more likely to be associated
with agricultural use).

Based on the sample and the number of captured detections, we
estimate the overall deployment precision to be 0.909, with estimated

Fig. 1 | Visualization of basin-scale well pad deployments in the Permian and
Denverbasins. a,bGriddeddensityheatmapsofdetectedwell padcounts. Eachgrid
cell represents 5 km2. c, d Deployment detections (magenta boxes) from subregions

of the basins. e, f Sample deployment detections (magenta boxes) of captured (first
row),missed (second row), andnew (third row)well pads.Deploymentdetections are
matched against reported sources of data (displayed as orange circles).
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precisions of 0.944 and 0.720 in the Permian and Denver basins,
respectively.

Storage tank detection
In addition to the well pad detection pipeline, we developed a storage
tank detection model, also framed as an object detection task, where
themodel outputs a bounding box for each storage tank on awell pad.
We obtained 10,470 storage tank labels on 1833 well pad images, and
used images of well pads without storage tanks as negatives to train a
discriminative model. We selected a FasterRCNN36 architecture with a
Res2Net37 backbone as the highest-performing model (see “Methods”
section, Supplementary Table 7), evaluated with the same metrics as
thewell paddetectionmodel (AP, precision, recall); we also usedmean
absolute error (MAE) to compare ground truth and predicted storage
tank counts at the well pad level. We do not adopt the two-stage

approach we used previously for detecting storage tanks because (a)
the detection model achieves high precision and recall on its own and
(b) verifying individual instances of storage tanks is difficult, as they
often appear in clusters or in close proximity.

The storage tank detection model achieved high performance,
with slightly higher overall AP in the Permian basin and higher recall
than precision in both basins (Table 4). Themodel accurately identifies
the number of storage tanks per well pad, estimating within
0.082 storage tanks of the true count on average (MAE). On well pads
with no ground truth storage tanks, the model rarely produces false
positives (MAE0.010), while onwell padswith storage tanks themodel
is relatively more error-prone but still produces accurate counts (MAE
0.272). We note that despite their small size, storage tanks are less
susceptible to the issues with small object detection mentioned pre-
viously, primarily due to their homogeneity and to the fact that they

Fig. 2 | Deployment performance of the well pad detection pipeline assessed
against reported well pad datasets. a, bWe examined the recall rates of the well
pad detection pipeline assessed against the Enverus35 and HIFLD Open Data16 well
pad datasets for both active well pads in the reported data and against all well pads

(active + inactive). Our methodology for classifying well pads as active/inactive
relies mainly on leveraging the “Well Status” properties of the Enverus and HIFLD
datasets (Supplementary Note 1).

Fig. 3 | Comparison of deployment recall andwell pad area (m2) over time. a, b Recall was assessed against active well pads in the Enverus dataset. Time wasmeasured
using the well pad construction completion date for well pads completed between 1950 and 2021, which comprise 99% of all well pads in the dataset.
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only appear on well pads within the context of this work, constraining
the number of false positive detections.

Inspecting a sample of incorrect predictions, we found that the
model sometimes failed to detect storage tanks whose color exhibits
low contrast with the well pad color. False positives most commonly

occurred when the model incorrectly identified other cylindrical
equipment as storage tanks, such as vertical heater treaters, separa-
tors, and water disposal tanks.

Aswith thewell padmodel, we evaluated the generalization of the
storage tank model to new regions, and observed that the model

Fig. 4 | Analysis of recall, well pad production, and undetected well pads
attributed to outdated imagery. a, b Comparison of deployment recall (assessed
against active well pads in the Enverus dataset) and reported production over time,
measured in kilo barrels of oil equivalent per day (kBOE/d). c, d Production of

missed well pads over time. Each point represents a missed well pad and is color-
coded based on whether the imagery is outdated in reference to undetected well
pad (i.e., captured before its completion date) or not.

Table 3 | Recall of well pads and production

2010-2021 All Years

All well pads Excluding outdated imagery well pads All well pads Excluding outdated imagery well pads

Permian recall Well pads 0.889 0.966 0.805 0.833

kBOE/d 0.541 0.992 0.555 0.981

Denver recall Well pads 0.701 0.780 0.681 0.706

kBOE/d 0.788 0.986 0.786 0.979

Rates are shown against all reportedwell pads (assessed against activewell pads in theEnverus dataset), andexcluding thosewithoutdatedGoogle imagery. Production ismeasured in kilobarrels of
oil equivalent per day (kBOE/d).

Table 4 | Test set results of the best storage tank detection model

Average precision Precision Recall Mean absolute error

All well pads Well pads with no tanks Well pads with tanks

Permian 0.989 0.965 0.972 0.072 0.009 0.220

Denver 0.981 0.957 0.963 0.101 0.011 0.360

Overall 0.986 0.962 0.968 0.082 0.010 0.272
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remained a reliable detector of storage tanks with slightly decreased
performance in the Anadarko (>0.930 precision and recall), Uinta-
Piceance (>0.900 precision and recall), and TX-LA-MS Salt (>0.850
precision and recall) basins, with substantially worse performance in
the Appalachian basin (>0.500 precision and recall). Full results and
dataset counts are shown in Supplementary Table 8.

To produce storage tank detections across the full Permian and
Denver basins, we fed images of the verified well pads produced in the
previous section to the model. The storage tank model produced a
total of 175,996 detections,with themajority of detections observed in
the Permian basin (83.6%). We estimate that 18.0% of well pads in the
Permian basin and 23.2% of well pads in the Denver basin have storage
tanks, and the mean number of storage tanks per well pad is slightly
higher in the Permian (4.194) than in the Denver basin (3.397) (Sup-
plementary Table 9).

We evaluated a sample of 10,000 detections (n = 5000 in each
basin), and found that 96.9% and 95.9% of the detections were in fact
storage tanks in the Permian and Denver basins respectively, whereas
the remaining detections were false positives. Based on the sample, we
estimate that the model identified >142,000 and 27,000 storage tanks
in the Permian and Denver basins, respectively. We note that recall
cannot be estimated at the basin-level because no comprehensive
sources of storage tank data are available.

We also analyzed the relationship between storage tanks and well
pad production of oil and natural gas, measured in kBOE/d. At the
individual well pad level, we found a low correlation between storage
tank count and kBOE/d (r =0.20 in Permian, r = 0.22 in Denver). At a
coarser level, however, storage tanks are largely most prevalent in
production “hotspots” in both basins (Fig. 5). Additionally, when
aggregating storage tank counts and production to 5 km2 cells, we
found moderate correlation between counts and kBOE/d (r =0.53 in
Permian, r = 0.68 in Denver). We further stratified production into oil
and gas production, measured in barrels of crude oil (BBL) and thou-
sands of cubic feet (MCF) respectively, and found a higher correlation
between tank counts and gas production (r = 0.55 in Permian, r = 0.72
in Denver) than oil production (r =0.50 in Permian, r = 0.58 in Denver).

Discussion
We show that modern machine learning methods on satellite imagery
are effective for mapping O&G well pads and storage tanks in major
U.S. basins. Inparticular,wedemonstrate themethodology for training
models on carefully curated labeled datasets of well pads and storage
tanks in high-resolution imagery, and the application of those models
at scale across the Permian and Denver basins.

Weperformanumber of experiments evaluating theperformance
of the models, demonstrating that a model trained jointly in the Per-
mian and Denver basins achieves high precision (>0.95) and recall
(>0.90) and outperforms basin-specific models. We found that the
model performs somewhat worse in the Denver basin, which we
attribute primarily to the prevalence of small well pads in the region,
which are difficult to detect, and to a broader range of “built” urban
and suburban infrastructure in the basin. We also demonstrate that a
two-stage detectionapproach,wherein thefirst stage detectswell pads
while maximizing recall and the second stage verifies well pads while
maximizing precision, improves the overall performance of the
detection task. Further, we evaluate the model’s ability to generalize
beyond the Permian and Denver basins, and show that the model
maintains high performance in regions with low distribution shift, but
suffers considerably in regions where well pads and the surrounding
environment exhibit different visual characteristics than the training
regions. These experiments suggest that context-specific training data
is required to fine-tune the model in regions with higher distribution
shifts. Finally, we train highly accurate (>0.96 precision and
recall) storage tank detection models for both the Permian and
Denver basins.

This study produced datasets of bounding boxes for all types of
well pads (including both active/inactive and bare well pads where
drilling may not have occurred). Additionally, this work produced a
dataset of storage tanks on well pads, which to our knowledge is
unavailable in both public and proprietary databases. The application
of this work and the results obtained are significant as the Permian
basin alone accounts for over 40% of US national oil production28.
Based on the analysis of the well pad and storage tank data produced
by our model deployment on high-resolution satellite imagery, we
found distinct well-level activity hotspots in both the Permian and
Denver basins that co-align with the basin-wide production hotspots
and emission profiles in the two basins when compared with recently
published independent data29. Such spatially explicit density heatmaps
of O&G activity data can help better understand production and
emission characteristics in major O&G basins globally.

Our well pad pipeline produces detections that match well with
existing public and private datasets, while also producing >70,000
detections not found in those datasets, an increase of approximately
33%. Similarly, we detect >169,000 previously unidentified storage
tanks across both basins. These new detections illustrate the potential
of ourmethods for filling data gaps in order to performmore accurate
emission estimates and source attribution. Further scaling this work to
national and global scales could provide even more value, as many
regions are not as well studied and documented as the basins in
this work.

Our approach has some limitations. Most notably, we found a
significant gap between the well pad model’s performance evaluated
on our test set and during deployment. In the Permian, we achieved
0.975 precision and 0.906 recall on the test set and 0.944 precision
and 0.805 recall during deployment; in the Denver, we achieved 0.935
precision and0.901 recall on the test set and0.720precision and0.681
recall during deployment. The high performance on the test set and
shift in performance between the test and deployment settings are
comparable to other work using deep learning to map energy
infrastructure25,38; below we describe some reasons for this shift and
strategies for reducing it.

First, we note that our manually-curated test set contained high-
quality well pad annotations, whereas the Enverus and HIFLD datasets
used for evaluation during deployment are noisy and may contain
inaccurate or outdated locations (Supplementary Fig. 4). Therefore,
the deployment metrics (in particular, recall) underestimate true
model performance.

Beyond the quality of the reported datasets, we attribute this gap
to the distribution shift between the two settings. There exists some
label bias in our training dataset, as 50% of the labels were collected by
domain experts whomanually panned around the basins and generally
annotated “prototypical” well pads (e.g. larger well pads with clearly
defined footprints). The other 50% of labels were created by randomly
sampling wells completed post-2005 (chosen tomaximize the number
of actual well pads contained in the sample). While the latter strategy
reduces bias, it does not eliminate it entirely; well pads older than2005
are not well-represented in the training dataset despite comprising a
large portion of the actual distribution of well pads in both basins.

Further, both sampling strategies were biased towards selecting
larger well pads (well pad size grew rapidly post-2005, as shown in
Fig. 3). This may in part explain the high correlation between the
performance of the well pad detection pipeline and well pad size, as
the model struggles to detect smaller, single wellhead pads. This issue
is particularly clear in theDenver basin, where small well pads aremore
prevalent and the precision and recall of the model are significantly
lower than in the Permian basin on the evaluation sets and during
deployment.

These shortcomings could be addressed by randomly sampling
the entire set of labels across all years to better reflect the true dis-
tributionofwell pads in the trainingdataset, includingmoreaccurately
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representing older/smallerwell pads, which couldhelp close the gap in
performance between evaluation and deployment. Additionally, the
diversity of positives and negatives seen during a large-scale deploy-
ment at the basin level is likely higher than what was captured in our
training dataset, leading to false positives and negatives. Solutions
include collecting a larger dataset, and iterative deployments where
false positives and negatives are incorporated into the training dataset
after each iteration before retraining the model.

Outdated imagery also limited our ability to detect recently con-
structed well pads, which are responsible for the large majority of
overall production. We found relatively high agreement between our
detections and reported well pad datasets on well pads constructed
from 2010–2016, and low agreement from 2017–2021, which we
attribute primarily to outdated imagery (acquired before the well pad
construction date) in the Google Earth satellite basemap. While other
publicly available sources of imagery exist with more recent coverage,
they lack in spatial resolution (e.g., Landsat 839, 15m) or geographic
scope (e.g. NAIP40 only captures the contiguous US) for mapping
recently constructed well pads reliably and scalably. Despite this lim-
itation, our ability to fill gaps in themapping of older, lower-producing
well pads is important, as previous work showed that such well pads
account for a disproportionately large amount ofmethane emissions41.
Future work should explore leveraging other commercial imagery
sources that have high spatial resolution, revisit rate, and global cov-
erage like Airbus SPOT42 (1.5m) or PlanetScope43 (3m).

Addressing the challenges mentioned above would enable a
globally scalable well pad and storage tankmapping framework, which

could prove especially useful in high-producing countries with little
transparent O&G infrastructure data (e.g. Russia). Other future direc-
tions include applying our framework to detect otherwell pad features
such as pump jacks and flares, and other methane-emitting facilities
such as natural gas compressor stations and oil terminals. These
directions would further contribute to constructing a large-scale,
granular, and accurate geospatial database of O&G infrastructure, a
key ingredient in measuring and mitigating methane emissions across
the global O&G sector.

Methods
Training dataset for well pads
We framed well pad detection as an object detection task, wherein
models are trained to input an image and output axis-aligned bound-
ing boxes around instances of well pads. To train and validate the
models, we first collected a labeled dataset of images containing
known well pads in the Permian and Denver basins. Although public
and private O&G well databases exist, they are insufficient as a source
of training labels. These databases are limited to point locations of
wells, while bounding boxes around well pads are necessary for
training deep-learning object detection models to output such
bounding boxes. Furthermore, not every image capturing a well from
anO&Gdatabasewill containanactualwell pad for a variety of reasons:
(1) oldwellsmaybedecommissionedby the image capturedate andno
longer visible in the image, (2) newwellsmaynot be constructedby the
image capture date and not yet present in the image, or (3) the well
locations may be imprecise. To create bounding box labels for the

Fig. 5 | Basin-level gridded density heatmaps. Heatmaps show a, b storage tank counts and c, d well pad production measured in kilo barrels of oil equivalent per day
(kBOE/d). Each grid cell represents 5 km2.
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models which capture well pads, we obtained labels via (a) domain
experts and (b) crowd-sourcing, as further described below.

For (a), co-authors with expertize identifying O&G facilities and
associated equipment manually panned around the basins using the
Google Earth33 satellite basemap (30-70 cm spatial resolution in the
US) in QGIS44, an open-source geographic information system (GIS)
application. The experts annotated bounding boxes around well pads
and storage tanks, then saved the coordinates using a QGIS plugin. We
note that these labels are high-quality, but were selected via manual
panning of the basins, and thus cannot be considered a representative
sample of well pads in the regions. We address this with (b) below.

For (b), we uploaded images centered at potential well pad loca-
tions to Scale AI45, a crowd-sourced data labeling service. We obtained
these locations frompublic (HIFLD16) and private (Enverus35 2021) O&G
well databases. We filtered the well databases for active wells with
construction completion dates post-2005 and randomly sampled
5,900 locations from the databases. We chose these filters to increase
the probability that a sampled location would actually contain a well
pad, thereby maximizing the number of labels we could produce
(inactive and/or older wells in the databases more often have inaccu-
rate coordinates or no well pad visible in satellite imagery). Images of
these locations were then uploaded to Scale AI for labeling; 81% of the
images contained well pads. As non-experts labeled this data, the
annotations are lower-quality, but because they were randomly sam-
pled from well data they are more representative of the full distribu-
tion of well pads and surrounding landscapes. To ensure high quality
of the datasets used for evaluation, we manually reviewed the valida-
tion and test sets (described below) to remove false positives and
occasionally correct poorly drawn boxes.

The full well pad training dataset consisted of 10,432 images
containing 12,490 well pads (some images contained multiple well
pads). Approximately 50% of labels came from each of the data
labeling procedures described above.

We sampled negative examples from a variety of sources in order
to train a highly discriminative model. We first sampled random
locations within each basin, as well as random locations within city
boundaries in each basin. These negatives mostly bear low visual
similarity to well pads, and are insufficient for training a discriminative
model. In order to collect more “difficult” negatives with increased
visual similarity towell pads,we launched a preliminary deployment of
an earlywell pad detectionmodel in the basins andmanually identified
commonobjects and landscapes that were incorrectly classified by the
model as well pads including roads, wind turbines, lake beds, river
banks, exposed soil, and agricultural fields. We sampled locations of
roads and wind turbines from the OpenStreetMap database and
included them in the final set of negative locations. For the other
landscapes which led to false positives, we used an open-source Geo-
Visual similarity search tool to collect a large amount of images con-
taining visually similar landscapes46. Several of these images were
collected from outside the Permian and Denver basins, which is
reflected in Supplementary Table 10.

We downloaded 77,612 negative examples from these various
sources, for an approximately 1:7 positive to negative ratio. We con-
structed 640 × 640 pixel tiles and projected the images to Web Mer-
cator at zoom level 1600, which corresponds to ~197m× 197m in the
Denver basin, and ~223m× 223m in the Permian basin.

Finally, we randomly split the dataset into a training set (75%) to
identify the model parameters, a validation set (15%) to tune model
hyperparameters, and a testing set (10%) to evaluate the best model.
We also ensured that any overlapping images appear in the same split
to prevent data leakage. Full dataset counts by split and basin are
shown in Supplementary Table 10 and dataset samples of positive and
negatives in Supplementary Fig. 5.

To evaluatemodel performance in new regions thatwerenot seen
during training, we collected additional well pad datasets in the

Appalachian, TX-LA-MS Salt, Anadarko, and Uinta-Piceance basins.
These datasets were curated in a similar manner to the Permian and
Denver dataset, though positives were labeled solely through crowd-
sourcing and were manually reviewed. Full dataset counts and dataset
samples of positives are shown in Supplementary Table 5 and Sup-
plementary Fig. 3.

Model training and evaluation
Neural networks are a class of models with parameters organized
into several layers, where each layer of the model extracts relevant
features from the input at varying levels of abstraction, and uses
these features to produce an output prediction. We trained a con-
volutional neural network (CNN) -- a particular type of neural net-
work designed for image data – to input a satellite image and output
a list of bounding boxes representing predicted well pad locations
(if any) in the image, a well-established computer vision task called
object detection.

We trained themodel using a standard optimization procedure as
follows: we input batches of satellite images into the model and
compute a loss value that measures how well the output predictions
match the annotated well pads described in the previous section. The
model parameters are then updated using stochastic gradient descent
(SGD), where the update for each parameter consists of the gradient
with respect to the lossmultiplied by a small “step size” in the direction
that minimizes the loss. This procedure was repeated iteratively until
the loss converged, thereby training the model to more closely match
the annotated well pads. The model architecture, loss function, num-
ber of images processed per iteration (referred to as “batch size”), and
step size (referred to as “learning rate”) are tunable hyperparameters.
We describe the various settings we tried below.

We experimented with various object detection architectures
(Faster RCNN36, RetinaNet30, SSD47, YOLOv348) and backbones
(ResNet31, RegNet49, ResNeSt50, Res2Net37, EfficientNet32 variations) and
determined the highest-performing model to be the single-stage
RetinaNet detector with a ResNet-50 backbone. The model was initi-
alized with pretrained ImageNet51 weights, and was trained end-to-end
using Absolute Error Loss and Focal Loss30 for bounding box regres-
sion and classification, respectively.

We trained our model on 512 × 512 images using the Adam
optimizer52 (a modified form of SGD) with learning rate 1e-6 and batch
size 8 on a single NVIDIA RTX A4000 GPU. During training, we per-
formed stochastic image augmentations, including random crops,
flips, scaling, and lighting/saturation jitter to increase the model’s
robustness to natural variation in the satellite imagery. We performed
random cropping and scaling during evaluation in order to simulate
the distribution of well pads during deployment, where well pads are
rarely at the center of the image. Because the imbalance between the
number of positive and negative examples in the dataset can lead to
poor model behavior, we sampled positives and negatives with
weights inversely proportional to their frequencies in the dataset. We
also experimented with training basin-specific detectionmodels in the
Permian and Denver basins versus training a model jointly in both
basins.

Additionally, we removed all ground truth labels and predictions
whose centerpoint was within 50 pixels of the image border, as these
are generally well pads that are only slightly visible within the image.
We evaluated the model on the validation set after each epoch, and
saved the checkpoint with the highest AP.

We evaluated the detection models using a variety of standard
object detectionmetrics. For each image, the detectionmodels output
a list of bounding boxes in the image after non-maximum suppression,
which eliminates predicted boxes with high overlap and retains only
the highest confidence box. Each box is associated with coordinates
and a confidence score between 0 and 1 indicating the likelihood that
the box contains a well pad.
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We evaluated the models at fixed confidence thresholds using
precision (the proportion of model predictions which are actually well
pads) and recall (the proportion of actual well pads in the dataset that
were correctly identified by the model). After fixing a confidence
threshold, any predicted boxes assigned a score higher than the
threshold are kept and boxes with a score lower than the threshold are
discarded. To determine whether a model’s predicted bounding box
matched the ground truth bounding box, we use an Intersection over
Union (IoU) threshold of 0.3 and greedily match boxes until exhaust-
ing the predicted boxes.Matched boxes are true positives, unmatched
predicted boxes are false positives, and unmatched ground truth
boxes are false negatives. Precision and recall are then computed as
described above. We note that the IoU threshold of 0.3 used here is
lower than typical threshold values typically used for evaluation in
object detection (0.5–0.95). We justify the choice of this threshold
based on ambiguity in consistently defining well pad boundaries
(Supplementary Fig. 6).

To evaluate the performance of the model across all confidence
thresholds, we vary the threshold between 0 and 1, and compute the
precision and recall at all thresholds to construct a precision-recall
curve. The area under this curve, also known as average precision (AP),
was used as a single metric to summarize the detection performance
across all thresholds, where the lowest value of the metric is 0 and the
highest is 1.

In addition to AP, we specifically measured performance on the
validation set at thresholds corresponding to 95% recall in the Permian
basin and 93% recall in the Denver basin in order to increase the
completeness of the dataset when themodel is deployed.We show the
selected threshold values and the precision-recall curve of the detec-
tion model in Supplementary Fig. 7.

Because we used stochastic augmentations during validation, we
determined this threshold by calculating the mean over 10 runs. We
report the mean and standard deviation of other relevant metrics
across these 10 runs.

Well pad verification
In addition to the well pad detectionmodel, we trained and validated a
well pad verification model, whose purpose is to serve as a dedicated
model for verifying individual instances of well pads detected by the
detection model. The hypothesis was that a model specialized for an
individual well pad verification task would help reduce false positive
detections produced by the detection model, which is often tasked to
predictmultiplewell pads in a single image. Themodel performsbinary
classification to determine whether or not a satellite image contains a
well pad. During deployment, well pad detections that were verified by
this model were considered “fully verified” and retained in the final
dataset, while detections that were not verified were discarded.

The model was trained on a similar well pad dataset as described
for well pad detection, but for every well pad annotation we down-
loaded an image centered at the centerpoint of the bounding box. We
used the same set of negatives as for well pad detection.

As with the well pad detection model, we experimented with
severalmodel backbones (ResNet, EfficientNet, ResNeXt53, Inception54,
DenseNet55 variants) and hyperparameters, and found EfficientNet-B3
to be the highest performing architecture. We also tuned hyperpara-
meters for learning rate, oversampling of positive examples, and data
augmentations. The model was trained with a 1e-4 learning rate, and
the same optimization, GPU, oversampling, and training data aug-
mentation settings described in the previous section, with no sto-
chastic augmentations during evaluation because well pads were
guaranteed to be centered at this stage.

The model was evaluated against the validation set and check-
pointed using F1 score. Because well pad detections verified by this
model were considered “fully verified,” we chose a threshold corre-
sponding to 99% precision on the validation set to minimize false

positives in the final dataset. Because no stochastic augmentations
were used during evaluation, the metrics were deterministic at
this stage.

To evaluate the detection model in conjunction with the ver-
ification model, we downloaded images centered at every candidate
prediction to feed through the verificationmodel, and candidates that
were not “verified” were removed from the predictions. We used AP,
precision and recall to evaluate the remaining “verified” detection
predictions.

Storage tank detection
We also trained and validated a storage tank detection model, framed
as an object detection task, where the model outputs an axis-aligned
box for each storage tank on a well pad. We obtained labeled storage
tanks through the two annotation procedures described for the well
pad detection dataset. We note that while the number of images with
storage tanks in the dataset is relatively small for a deep learning task
(1,833), each well pad can contain several storage tanks, so the total
number of storage tanks is 10,470. Negative examples are simply well
pads without storage tanks. We did not require the same diversity of
negatives as in the well pad detection and verification tasks because
the storage tank model is only deployed on detected well pads. Full
dataset counts by split and basin are shown in Supplementary Table 11
and dataset samples with storage tank annotations in Supplementary
Fig. 8. To evaluate the generalization of the model, we collected sto-
rage tank datasets in the same evaluation basins previously described
for well pad detection by labeling the storage tanks on well pads in the
basins.

We experimented with the same architectures and backbones
described in the well pad detection section, and found the two-stage
FasterRCNN36 architecture with a Res2Net37 backbone to be the
highest-performing model. We also tuned hyperparameters for learn-
ing rate and anchor box scale due to the small size of storage tanks.
The model was trained with a 5e-5 learning rate, [4,6,8] anchor box
scales, and the same optimization, GPU, and data augmentation set-
tings described in the well pad detection section, with no augmenta-
tions during evaluation because well pads were guaranteed to be
centered at this stage.

We evaluated the models using the samemetrics described in the
well pad detection section. In addition, we measured the mean abso-
lute error (MAE) between ground truth and predicted storage tank
counts across well pads containing ground truth storage tanks, well
pads containing no ground truth storage tanks, and across all well
pads. We thresholded themodel at values that maximized the F1 score
in both basins; we show the selected threshold values and the
precision-recall curve of the model in Supplementary Fig. 7. Because
no stochastic augmentations were used during evaluation, the metrics
were deterministic at this stage.

Deployment
In this section, we detail the procedure for deploying trained well
pad detection and storage tank models in the Permian and Denver
basins (a visual explanation is shown in Fig. 6). Briefly, we tiled each
basin into a collection of images, which were fed through the well
pad detection model. Detections were verified either through the
well pad verification model or by matching reported data. Finally,
images with verified well pads were fed through the storage tank
detection model to obtain finalized well pad and storage tank
datasets.

We tiled both basins into 512 × 512 images, and projected the
images to Web Mercator at zoom level 1600 (~197 × 197m in the
Denver basin ~223 × 223m in the Permian basin). We also overlapped
the tiles by 100 pixels in order to minimize instances where well pads
were at the edge of images, which are difficult to detect. We tiled and
downloaded 7.1 million images in the Permian basin and 6.8 million
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images in the Denver basin through this procedure, spanning a total
area of 313,340km2 across both basins.

We fed each image tile through the well pad detectionmodel and
applied non-maximum suppression with an IoUof 0.2 to produce a set
of candidate detections. Inference took ~14 h to complete on 4 NVIDIA
RTX A4000 GPUs, with a total batch size of 96. We then performed
post processing to convert candidate detections from pixel-based to
latitude/longitude coordinates, merge overlapping detections, and
drop candidate detections whose confidence score was less than the
recall thresholds calculated during model validation.

Once the candidate well pad detections were post-processed, we
downloaded a new image for every candidate detection centered at
the well pad, and fed these images through the well pad verification
model. For well pads larger than the default image size, we down-
loaded images at a higher zoom level. Candidates whose confidence
scores were higher than the 99% precision threshold were considered
to be verified by the verification model.

We also verified candidate detections by matching them to
reported data in the HIFLD and Enverus well datasets. We considered
other commonly known O&G infrastructure data repositories such as
OGIM19 (v1.1) and GOGI56 (v10.3.1) but we did not use them in this study
as the former sources exclusively from HIFLD in the Permian and
Denver basins, and the latter primarily consists of gridded well counts
rather than point locations.

We spatially clustered the wells in each dataset to formwell pad
datasets (described in detail in Supplementary Note 1). We then
buffered candidate detections by 50 meters to account for any
inaccuracies in the point locations, and performed a spatial join
between the candidate detections and reported well pads. Candi-
dates that contain a reported well pad point location were con-
sidered to be verified by the reported data. Finally, we dropped
candidates that were not verified by either the verification model or
reported data. The remaining well pads were considered the fully
verified dataset.

Lastly, we fed images of the fully verified well pads to the storage
detection model and post-processed the detections in the same
manner described for well pads. Because the storage detection model
was highly accurate and no sources of reported data exist, we did not
perform verification on the storage tank detections.

Data availability
The datasets curated to train thewell pad and storage tankmodels and
those generated through the basin-scale deployments have been
deposited at: https://doi.org/10.5281/zenodo.11660152. We are unable
to redistribute the satellite imagery used to train the models in this
study due to data licensing, but these data may be freely accessed
directly from the original provider. Source data are provided with
this paper.

Code availability
The codewritten to evaluate themodels is publicly available at: https://
github.com/stanfordmlgroup/well-pad-denver-permian. Code for
training the models may be made available upon request to the cor-
responding author.
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