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Focal liver lesion diagnosis with deep
learning and multistage CT imaging

Yi Wei1,10, Meiyi Yang 2,10, Meng Zhang3, Feifei Gao1, Ning Zhang4, Fubi Hu5,
Xiao Zhang6, Shasha Zhang7, Zixing Huang1, Lifeng Xu8, Feng Zhang8,
Minghui Liu9, Jiali Deng9,XuanCheng2, TianshuXie2,XiaominWang2,NianboLiu2,
Haigang Gong2, Shaocheng Zhu 4,11 , Bin Song 1,3,11 & Ming Liu 8,9,11

Diagnosing liver lesions is crucial for treatment choices and patient outcomes.
This study develops an automatic diagnosis system for liver lesions using
multiphase enhanced computed tomography (CT). A total of 4039 patients
from six data centers are enrolled to develop Liver Lesion Network (LiLNet).
LiLNet identifies focal liver lesions, including hepatocellular carcinoma (HCC),
intrahepatic cholangiocarcinoma (ICC), metastatic tumors (MET), focal nod-
ular hyperplasia (FNH), hemangioma (HEM), and cysts (CYST). Validated in
four external centers and clinically verified in two hospitals, LiLNet achieves an
accuracy (ACC)of 94.7% and an area under the curve (AUC) of 97.2% for benign
and malignant tumors. For HCC, ICC, and MET, the ACC is 88.7% with an AUC
of 95.6%. For FNH, HEM, and CYST, the ACC is 88.6% with an AUC of 95.9%.
LiLNet can aid in clinical diagnosis, especially in regions with a shortage of
radiologists.

Liver disease poses an ongoing, urgent challenge in the medical field,
imperiling the lives and well-being of millions of people worldwide.
These conditions, ranging from benign liver cysts to malignant hepato-
cellular carcinoma, present substantial threats to patients’ health. Nota-
bly, liver cancer ranks as the sixthmost common cancer globally and the
fourth leading causeof cancer-related fatalities1–3. The 5-year survival rate
for liver cancer patients remains distressingly low, particularly among
advanced cases, at approximately 10%4–6. While some similarities may
exist among different liver lesions, their treatment strategies and prog-
noses differmarkedly. Hence, precise classification plays a pivotal role in
formulating optimal treatment andmanagement strategies to effectively
address the multifaceted challenges of liver diseases.

Liver lesion classification is a complex task that requires the dif-
ferentiation of various tumor types, including malignant lesions such

as hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma
(ICC), and metastatic tumors (METs) and benign lesions such as focal
nodular hyperplasia (FNH), hemangioma (HEM), and cysts. This
necessitates both expert knowledge and meticulous analysis of med-
ical imaging data. However, there are artifacts in hepatic images due to
uneven intensity information, different shapes, and low contrast
between the hepatic parenchyma and the focus7. Moreover, different
acquisition protocols, contrast agents, scanner resolutions, and
enhancement technologies make high-precision automatic classifica-
tion of liver lesions more challenging.

In light of these challenges, AI-assisted methods have demon-
strated remarkable potential in revolutionizing the precision and effi-
ciency of liver lesion diagnosis. Previous research methods have
utilized quantitative radiology8–11 or deep learning models12–14 to
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extract image features for liver lesion identification. In radiomics,
researchers initially extract feature parameters from liver images and
then usemachine learningmodels to distinguish liver lesions based on
important selected parameters. However, this feature extraction pro-
cess relies on the subjective expertise and time-consuming efforts of
researchers. The extracted features cannot be dynamically optimized
as the dataset evolves. With advancements in deep learning algo-
rithms, such asCNNs, AI-aided automatic analysis of liver lesion images
has emerged as a possibility. CNNs can automatically learn and extract
intricate patterns and features from medical images, enabling auto-
mated liver lesion classification with exceptional accuracy. However,
previous studies12–16 have primarily concentrated on predicting HCC
specifically, overlooking the classification and diagnosis ofmany other
common liver lesions. Although the initial findings of these studies
show promise, the clinical applicability of these methods remains
uncertain due to low sensitivity, inadequate datasets for training,
limited external validation, and insufficiently robust verification. To
address these concerns and ensure more reliable and robust results,
we collected a dataset of more than 4000 patients from six medical
centers to develop our deep learning model. Additionally, we rigor-
ously verified the robustness and generalizability of the model in four
independent external validation centers.

Self-supervision, an unsupervised learning approach, has
demonstrated significant potential across various domains, including
medical applications17–20. Self-supervised learning harnesses pretext
tasks to extract valuable supervision information from large, unlabeled
medical datasets, enabling the training of neural networks based on
this constructed supervision. In addition, self-supervised learning can
also be utilized as a type of weak supervision by leveraging auxiliary
tasks or data information to guide the training of models. However,
most existing methods employ pretext tasks for pretraining models,
followedby fine-tuningwithweak labels to performdownstream tasks.
Limited research has explored the direct use of pretextual tasks as
target tasks to assist in classification tasks without separate
pretraining.

In this study, we demonstrate the performance of our AI system,
LiLNet, in distinguishing six common types of focal liver lesions. We
develop the model using data from six centers and assess its gen-
eralization through extensive testing on a test set and four external
validation centers. We compare LiLNet’s performance with

radiologists’ interpretations of contrast-enhanced CT images in a
reader study. To address real-world clinical implementation, we
deploy LiLNet in two hospitals, integrating it into routine workflows
across outpatient, emergency, and inpatient settings. This integration
evaluates the system’s performance in various clinical environments,
ensuring its robustness and reliability in practical use.

Results
Patient characteristics
Reporting of the study adhered to the STARDguidelines. Between June
2012 and December 2022, multiphase contrast-enhanced CT images,
including arterial phase (AP) and portal venous phase (PVP), were
collected from a total of 4039 patients across six hospitals. The
method used for retrospective data collection is depicted in Fig. 1a.
Furthermore, clinical testing was conducted on two real-world clinical
evaluation queues (Fig. 1b): West China Tianfu Center and Sanya Peo-
ple’s Hospital. At Tianfu Center, we examined 184 cases, while at Sanya
People’s Hospital, 235 cases were assessed. Patient cohorts comprised
an internal training set, internal test set, four external validation sets,
and two real-world clinical datasets. Demographic details, including
age and sex distributions, varied across cohorts: for instance, the
training set showed a female-to-male ratio of 155:548 inHCC caseswith
an average age of 53.06 years, while the internal test set had 196
females and 750 males for HCC, averaging 52.34 years. Additional
specifics can be found in Table 1.

Performance of Lesion Detection
In the lesion detection task, we filtered out bounding boxes with a
confidence level above 0.25 and compared them with the actual
ground truth boxes. Boxes with an intersection over union (IoU)
greater than the threshold are true positives, while those with a lower
IoU or fewer repeats are false-positives. Undetected boxes are false-
negatives. As shown in Fig. 2a, we analyzed F1, recall, and precision at
different IoU thresholds. At an IoU of 0.1, we achieved an F1 of 94.2%, a
recall of 95.1%, and a precision of 93.3%. At an IoU of 0.3, the F1 was
92.8%, the recall was 93.7%, and the precision was 91.3%. An IoU of 0.5
yielded anF1 of 87.4%, a recall of 88.3%, and aprecision of 86.6%. These
results demonstrate the robust performance of our model across dif-
ferent IOU thresholds. In the LiLNet system,we chose an IOU threshold
of 0.1. Despite theminimal overlap between the detection box and the
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(2) patients do not have a history of hepatectomy, transarterial chemotherapy(TACE), radiofrequency ablation (RFA)
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(4) Benign tumors were confirmed either by consensus among three radiologists or by follow-up of at least                  
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Fig. 1 | The Flowchart of the Cohort Setup. a Patient recruitment process of the
training, testing, and external validation cohorts. b The real-world clinical test
datasets were obtained from two hospitals. HCC denotes Hepatocellular

Carcinoma, ICC denotes Intrahepatic Cholangiocarcinoma, MET denotes Meta-
static Cancer, FNHdenotes Focal Nodular Hyperplasia, HEMdenotes Hemangioma,
and CYST denotes Cyst.
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true bounding box at this IoU value, the subsequent classification
imageswere extended to a 224 × 224detection box, ensuring coverage
of a portion of the lesion.

Performance of LiLNet
We trained three variations of the LiLNet model on the training set:
LiLNet_BMwasused to distinguish between benign andmalignant liver
lesions, LiLNet_M was used to distinguish between three types of
malignant liver lesions, and LiLNet_B was used to distinguish between
three types of benign liver lesions. On the test set, the LiLNet_BM
model achieved the following performance metrics: an AUC of 97.2%
(95%CI: 95.9–98.2), anACCof 94.7% (95%CI: 93.5–95.9), an F1 of 94.9%
(95%CI: 93.8–96.1), a recall of 94.7% (95%CI: 93.5-95.9), and a precision
of 95.2% (95% CI: 94.2–96.3) (Fig. 2b, e). The LiLNet_Mmodel achieved
an AUC of 95.6% (95% CI: 94.3–96.7), an ACC of 88.7% (95% CI: 86.8-
90.5), an F1 of 89.7% (95% CI: 88.2-91.3), a recall of 88.7% (95% CI:
86.8–90.5), and a precision of 92.0% (95% CI: 90.6–93.4) (Fig. 2c, f).
Finally, the LiLNet_B model achieved an AUC of 95.9% (95% CI:
92.8–98.0), an ACC of 88.6% (95% CI: 83.9–93.3), an F1 of 89.0% (95%
CI: 83.9–93.5), a recall of 88.4% (95% CI: 83.1–93.3), and a precision of
89.9% (95% CI: 85.3-94.2) (Fig. 2d, g). As a reference, we also con-
structed two benchmark models: a naive ResNet50 model and a
ResNet50 model loaded with pretraining parameters. Upon a com-
prehensive analysis of the AUC, the LiLNet model exhibited a 1–2%
improvement compared to the two baseline models, demonstrating
enhanced discriminative capabilities between positive and negative
samples.

We evaluated our model’s performance using 1151 patients from
four different centers. In the Henan Provincial People’s Hospital (HN
Center), our model achieved an AUC of 94.9% (95% CI:93.2–96.5) for
distinguishing benign and malignant tumors, with an 89.9% (95%
CI:87.7–92.1) ACC, a 90.0% (95% CI:87.8–92.2) F1, an 89.9% (95%CI:
87.7–92.1) recall, and a 90.1% (95%CI: 87.9–92.4) precision (Fig. 3a, d).
For malignant tumor diagnosis, it achieved an AUC of 87.9% (95%
CI:84.6–91.0), with an 80.8% (95% CI:77.2-84.4) ACC, an 81.6% (95% CI:
78.1-85.0) F1, an 80.8% (95%CI: 77.2–84.4) recall, and an 83.6% (95%CI:
80.4-86.8) precision (Fig. 3b, e). For benign tumor diagnosis, it
achieved an AUC of 89.9% (95% CI: 85.7-93.3), with an 83.9% (95% CI:
78.8–89.1) ACC, an83.7% (95%CI: 78.6–89.0) F1, an 83.9% (95%CI: 78.8-
89.1) recall, and an84.9% (95%CI: 80.3-89.8) precision (Figs. 3c and 3f).
Visual comparison of t-Distributed Stochastic Neighbor Embedding
between the LiLNet, loaded with pre-trained ResNet50 (*) and the
standard ResNet50 on the HN validation set can be found in

Supplementary Fig. 1. In the First Affiliated Hospital of Chengdu
Medical College (CD Center), an AUC of 94.2% and an ACC of 82.9%
were achieved for diagnosing HCC (Fig. 3g). In the Leshan People’s
Hospital (LS Center), the model achieved an AUC of 87.6% and an ACC
of 82.1% for diagnosingHCC. Similarly, itmaintainedperformancewith
an AUC of 79.2% and an ACC of 79.6% for ICC (Fig. 3h). Finally, at the
Guizhou Provincial People’s Hospital (GZ Center), the ACC was 84.4%
for HCC and 74.4% for ICC, as shown in Fig. 3i.

LiLNet Performance for Tumor Size
Table 2 presents the ACC for different tumor sizes in both the test set
and the HN external validation set. Each cell shows the accuracy per-
centage for a tumor type within its size range, along with the total
sample number. For instance, in the test set, tumors smaller than 1 cm
achieved a 100% ACC for the HCC type, with a total of 4 samples.
However, in the HN validation set, there were no samples in this size
range, resulting in a 0% ACC. The ACC varies with size range, and
specific tumor types show differing ACCs within these ranges. Hence,
tumor size is not the sole factor influencing classification ACC. The
results show varying accuracy levels for different tumor sizes, with no
consistent trend. Some size ranges display high ACCs, while others
show lower ACCs in both the test set and the HN validation set. The
ACC also varies for specific tumor types within different size ranges,
indicating that tumor size alone does not determine the ACC of clas-
sification. Other factors, such as tumor type, likely contribute to these
variations.

LiLNet Performance for Liver Background
To assess the potential impact of background liver conditions, such as
fibrosis or inflammation, on the performance of our proposed system
in analyzing CT images, we collected data from West Chian Tianfu
Hospital, including 3 cases of HCC without hepatitis and liver fibrosis,
21 cases of HCC with hepatitis and liver fibrosis, 5 cases of ICC with
similar liver conditions and 16 cases of MET without hepatitis or liver
fibrosis.We observed that the system achieved an AUC of 88.1% and an
ACC of 80.9% for HCC with liver fibrosis caused by hepatitis, while for
ICC, the AUCwas 96.4%, with anACC of 80%.Our results show that the
background liver condition has minimal impact on lesion extraction
and imaging. This is because our data originate from real clinical
events in which liver lesions often coexist with conditions such as
cirrhosis, hepatitis, and liverfibrosis.Duringdata collection,wedidnot
exclude background liver diseases. The distinct imaging features of
liver diseases, such ascirrhosis,fibrosis, or inflammation, onCT images

Table 1 | Baseline characteristics

Tumor
type

Internal Train-
ing (n = 1580)

Internal
Test (n = 1308)

Validation
HN (n = 636)

Validation
CD (n = 94)

Validation
GZ (n = 205)

Validation
LS (n = 216)

Age, years
(mean, std)

HCC 53.06 ± 11.90 52.34 ± 12.69 55.56 ± 10.34 59.79 ± 12.20 54.04 ± 11.00 57.5 ± 10.88

ICC 57.16 ± 12.10 57.27 ± 12.28 59.29 ± 10.38 — 59.18 ± 11.70 59.92 ± 12.14

MET 55.07 ± 14.37 56.24 ± 13.44 58.61 ± 12.89 — — —

FNH 35.12 ± 13.49 33.65 ± 13.21 35.46 ± 15.22 — — —

HEM 50.13 ± 15.63 47.96 ± 11.06 50.77 ± 10.71 — — —

CYST 58.53 ± 12.93 56.66 ± 12.36 59.13 ± 11.12 — — —

Sex
(Female/
Male)

HCC 155/548 196/750 42/259 20/74 31/142 21/135

ICC 157/166 43/37 18/26 0/0 23/20 31/18

MET 70/79 60/73 39/59 0/0 0/0 0/0

FNH 59/41 19/16 20/19 0/0 0/0 0/0

HEM 84/48 33/30 63/31 0/0 0/0 0/0

CYST 77/96 23/28 31/29 0/0 0/0 0/0

Note: Std denotes standard deviation, HN denotes Henan Provincial People’s Hospital, CD denotes the First Affiliated Hospital of ChengduMedical College, GZ denotes Guizhou Provincial People’s
Hospital, and LS denotes Leshan People’s Hospital. HCC denotes Hepatocellular Carcinoma, ICC denotes Intrahepatic Cholangiocarcinoma, MET denotes Metastatic Cancer, FNH denotes Focal
Nodular Hyperplasia, HEM denotes Hemangioma, and CYST denotes Cyst.
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typically differ from those of liver lesions, making it relatively
straightforward for the model to differentiate between them.

LiLNet Performance for Different Phases
In clinical practice, lesions show different characteristics in various
phases, each presenting unique features. Radiologists often use mul-
tiple phases for lesion diagnosis. Following this practice, our system
simultaneously detects lesions inmultiple phases, providing enhanced
support for medical professionals. To evaluate the advantages of
incorporating different phases, we conducted experiments on a
dataset containing 1569 patients from both the test and HN external
validation sets, covering data from multiple phases. The results are
depicted in Figs. 4a–d. As depicted in Fig. 4a, for malignant triple
classification in the test set, the diagnostic performance of using both
AP and PVP was superior to that of using either AP or PVP alone, while
the results for using AP or PVP alone were comparable. However, for
benign triple classification, the AUC was optimal when utilizing both
AP and PVP images simultaneously, followed by using AP alone and
PVP alone; other performance indicators showed that AP outperforms
AP and PVP, which outperforms PVP. As illustrated in Fig. 4c, in the

validation set, the diagnostic performance of AP and PVP surpassed
that of AP or PVP alone, regardless of malignant or benign classifica-
tion. Analysis of the confusion matrices of the test set and external
validation set (Fig. 4b, d) showed that employing images fromboth the
AP and PVP phases simultaneously yielded superior results compared
to using a single phase. Although the diagnostic outcomes of the two
phases align in approximately 90% of cases, there are still instances
where lesions exhibit better performance in the AP phase than in the
PVP phase, and vice versa. This discrepancy may be attributed to the
inherent characteristics of the data. In summary, integrating informa-
tion from multiphase CT-enhanced images enables a comprehensive
and accurate assessment of liver lesion characteristics and properties,
thereby offering a more reliable basis for clinical diagnosis and
treatment.

Comparison with radiologists
We used a test set of 6743 images from 221 patients at West China
Hospital of Sichuan University to compare the diagnostic ability of
LiLNet with that of radiologists. The evaluation involved three radi-
ologists with varying levels of experience. Radiologists

Benign or Malignant diagnosisb c
Malignant diagnosis

a

e
Benign or Malignant diagnosis f

Malignant diagnosis

Benign diagnosis
d

g
Benign diagnosis

ACC PrecisionRecallF1

88.6 (95%
C

I: 83.9-93.3)

89.0 (95%
C

I: 83.9-93.5)

88.4 (95%
C

I: 83.1-93.3)

89.9 (95%
C

I: 85.3-94.2)

87.9 (95%
C

I: 81.9-93.3)

87.8 (95%
C

I: 81.9-93.3)

87.1(95%
C

I:81.0-92.6)

88.8 (95%
C

I: 83.0-93.5)

81.8(95%
C

I:75.2-87.9)

p=0.852 p=0.752 p=0.741

p=0.093

p=0.754
p=0.133 p=0.188 p=0.103

83.1 (95%
C

I: 76.8-88.8)

83.7 (95%
C

I: 77.6-89.5)

83.1 (95%
C

I: 76.8-88.8)

ACC PrecisionRecallF1

88.7 (95%
C

I: 86.8-90.5)

89.7 (95%
C

I: 88.2-91.3)

88.7 (95%
C

I: 86.8-90.5)

92.0 (95%
C

I: 90.6-93.4)

86.3 (95%
C

I: 84.5-88.2)

87.9 (95%
C

I: 84.5-88.2)

86.3(95%
C

I:84.5-88.2)

90.9 (95%
C

I: 89.4-92.5)

82.4(95%
C

I:80.3-84.6)

p=0.073 p=0.145 p=0.073

p=0.00002

p=0.303
p=0.00003 p=0.00002 p=0.004

84.6 (95%
C

I: 82.9-86.5)

88.6 (95%
C

I: 86.8-90.5)

82.4 (95%
C

I: 80.3-84.6)

ACC PrecisionRecallF1

94.7 (95%
C

I: 93.5-95.9)

94.9 (95%
C

I: 93.8-96.1)

94.7 (95%
C

I: 93.5-95.9)

95.2 (95%
C

I: 94.2-96.3)

92.4 (95%
C

I: 91.0-93.8)

93.1 (95%
C

I: 91.9-94.3)

92.4(95%
C

I:91.9-94.3)

94.5 (95%
C

I: 93.6-95.5)

91.1(95%
C

I:89.6-92.6)

p=0.015 p=0.035 p=0.008

p=0.0003

p=0.333
p=0.0009 p=0.0003 p=0.138

92.0 (95%
C

I: 89.6-92.6)

94.1 (95%
C

I: 93.2-95.2)

91.1 (95%
C

I: 89.6-92.6)

HCC=hepatocellular carcinoma; ICC=intrahepatic cholangiocarcinoma; MET=metastatic tumors; FNH=focal nodular hyperplasia; HEM=hemangioma; CYST=cysts
LiLNet= Liver Lesion Network; IOU=Intersection over Union; AUC=Area Under the Curve; ACC=Accuracy F1=F1 Score TPR=True Positive Rate; FPR=False Positive Rate.
Statistical test = two-sided t-test

Fig. 2 | Performance of the proposed model in the testing cohort. a The out-
come of lesion detection at various IOU thresholds. b, c, and d ROC curves for
distinguishing benign and malignant tumors, malignant tumors (HCC, ICC, and
METs), and benign tumors (FNH, HEM, and cysts), respectively. e ACC, F1, recall,

and precision for benign and malignant tumor classification. f ACC, F1, recall, and
precision for malignant tumor classification. g The same metrics for benign tumor
classification. (*) denotes the use of pretrained parameters from ResNet trained on
ImageNet. Source data are provided as a SourceData file Source_data_Figure_2.xlsx.
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independently labeled the 221 patients based on multiphase
contrast-enhanced CT images. LiLNet demonstrated a diagnostic
accuracy of 91.0% for distinguishing between benign and malignant
tumors, 82.9% for distinguishing between malignant tumors, and
92.3% for distinguishing between benign tumors (Table 3). Com-
pared to junior-level radiologists, LiLNet achieved 4.6% greater
accuracy for benign and malignant diagnosis, 4.1% greater accuracy
for middle-level radiologists, and 2.3% greater accuracy for senior-
level radiologists. The diagnostic accuracy of radiologists for diag-
nosing malignant tumors was similar. Notably, compared with radi-
ologists, LiLNet achieved a substantial 18% improvement in
diagnostic accuracy. Additionally, in diagnosing benign tumors,
LiLNet outperformed junior-level practitioners by 20%, middle-level
practitioners by 10%, and senior-level practitioners by 6.7%. More
information about the radiologists and their diagnostic results can be

found in the supplementary information (Supplementary Table 1 and
Table 2).

We calculated the Fleiss kappa coefficient between LiLNet and the
radiologists to assess consistency. The Fleiss kappa values are 0.806
for benign andmalignant cases and 0.848 for benign cases, surpassing
the 0.8 threshold, indicating a very high level of agreement among
evaluators in benign tumor diagnosis and 0.771 for malignant cases,
which falls within the range of 0.6 to 0.8. This indicates a high level of
agreement among the evaluators (details in Supplementary Table 3).

Figure 4e displays the comparison matrix of diagnoses between
the AI system and radiologists (we selected the optimal diagnosis from
the assessments provided by multiple radiologists) based on patho-
logical diagnostic labels. This result indicates that 4% of cases are
misdiagnosed by both the AI system and radiologists, while radi-
ologists accurately diagnose 8% of cases where the AI system errs. In

Benign or Malignant diagnosisa

Benign or Malignant diagnosisd

GZ CenterLS CenterCD  Centerg h i

e Malignant diagnosis Benign diagnosisf

Benign diagnosis
cMalignant diagnosisb

HCC=hepatocellular carcinoma; ICC=intrahepatic cholangiocarcinoma; MET=metastatic tumors; FNH=focal nodular hyperplasia; HEM=hemangioma; CYST=cysts.
LiLNet= Liver Lesion Network; IOU=Intersection over Union; AUC=Area Under the Curve; ACC=Accuracy F1=F1 Score TPR=True Positive Rate; FPR=False Positive Rate.

CD= The First Affiliated Hospital of Chengdu Medical College; LS=Leshan People’s Hospital; GZ=Guizhou Provincial People’s Hospital.
Statistical test = two-sided t-test.
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Fig. 3 | Generalization performance of the LiLNet model on the external
validation set. a–c display ROC curves for differentiating benign and malignant
tumors in the HN external validation set. d provides ACC, F1, Reacll and Precision
for this distinction. e presents ACC, F1, recall, and precision for identifying
malignant tumors, while f shows the same metrics for Benign tumors. g The

model’s ACC and AUC for HCC in the CD validation set. h The model’s ACC and
AUC for HCC and ICC in the LS validation sets. i The ACC and AUC for distin-
guishing HCC and ICC in the GZ validation sets. Source data are provided as a
Source Data file Source_data_Figure_3.xlsx.
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16% of cases, the AI systemwas correct when radiologists made errors.
Specifically, in the “benign” cases shown in Fig. 4e, the AI system and
radiologists agreed on 92 cases. Among these, 87 cases were con-
firmed to be correct by pathology, while 5 cases were incorrect.
Additionally, there were 12 cases of disagreement: 5 were incorrect AI
judgments (false-negatives), 7 were correct (true positives), and 7were
incorrect radiologist diagnoses (false-negatives), with 5 being correct
(true positives). Consequently, when the AI system and radiologists
differed, the AI system achieved a 58.34% true positive rate for benign
diagnoses, while the radiologists achieved a 41.67% true positive rate.
For the “malignant” cases, the AI system and radiologists agreed on 96
cases. Among these, 95 cases were confirmed to be correct by
pathology, while 1 case was incorrect. Additionally, therewere 21 cases
of disagreement: 9 were incorrect AI judgments (false negatives), 12
were correct (true positives), and 12 were incorrect radiologist diag-
noses (false negatives), with 9 being correct (true positives). Conse-
quently, when the AI system and radiologists differed, the AI achieved
a 57.14% true positive rate for benign diagnoses, whereas the radi-
ologists achieved a 42.85% true positive rate. Furthermore, additional
diagnostic information for HCC, ICC, METs, FNH, HEM, and cysts can
be found in Fig. 4e.

Figure 4e shows that AI and radiologists achieved congruent
outcomes in cyst diagnosis, accurately identifying 32 cases while
misdiagnosing 2 cases. Upon analyzing the misdiagnosed cyst images,
we discovered one patientwith amixed lesion, showing characteristics
of both HEM and a cyst. In this instance, the cyst was positioned near a
blood vessel, resulting in misdiagnosis as HEM. Another misdiagnosis
wasdue to the lesion size being less than 1 cm, presenting challenges in
identification. However, there are some differences in diagnosis
between AI and radiologists in other categories, indicating differences
in diagnostic approach or focus. These findings highlight the potential
for our AI-assisted software to collaboratewith radiologists to enhance
the diagnostic accuracy of liver lesions.

Real-world clinical evaluation
Our system (a simpleweb version is available in Supplementary Note 1)
is currently suitable for routine clinical diagnoses, encompassing
outpatient, emergency and inpatient scenarios with patients under-
going AP and PVP sequences. To authenticate the actual clinical effi-
cacy of the system, we seamlessly integrated the system into the
established clinical infrastructure and workflow at West China Tianfu
Hospital and Sanya People’s Hospital in China, where we conducted a
real-world clinical trial.

At West China Tianfu Hospital, we assessed outpatient and inpa-
tient data from February 29th to March 7th, comprising 117 cysts, 22

HEMs, and 16METs. To improve the evaluation of themodel’s ability to
diagnose malignancies, we included 24 HCC lesions and 5 ICC lesions
from January 2022 to February 2024. All malignant tumors were
pathologically confirmed, while benign tumors were diagnosed by
three senior radiologists. As shown in Fig. 4f, the results of our system
at the TianfuCenter indicated anAUCof 96.6% and anACCof91.9% for
the diagnosis of benign andmalignant lesions, respectively. For HEMs,
the AUC was 99.54%, with an ACC of 95.45%, while for cysts the AUC
was99.8%, with anACCof 98.3%. For HCCs, the AUCwas 87.1%, with an
ACCof 79.2%; for ICCs, theAUCwas95.0%,with anACCof 80%; and for
METs the AUC was 89.9%, with an ACC of 81.2%.

We assessed outpatient and inpatient data at Sanya People’s
Hospital from March 15th to March 29th, comprising 45 cysts, 23
HEMs, 121 normal lesions, 1 ICC, and 3 METs. Additionally, we retro-
spectively collected data for 34 HCCs, 3 ICCs, and 5 METs from April
2020 to February 2024. All malignant tumors were pathologically
confirmed, while benign tumors were diagnosed by three senior
radiologists. As shown in Fig. 4g, the results of our system at Sanya
Center indicated an AUC of 95.4% and an ACC of 90.5% for the diag-
nosis of benign andmalignant lesions, respectively. ForHEMs, theAUC
was 90.8%, with an ACC of 95.6%, while for cysts, the AUC was 91.4%
with an ACC of 80.0%. For HCCs, the AUC was 89.5%, with an ACC of
85.3%; for ICCs, the AUC was 97.6%, with an ACC of 75%; and for METs,
the AUC was 88.8%, with an ACC of 87.5%.

Deep learning analysis
To better explain the deep learning model, we conducted two
experiments: an analysis by professional radiologists on activation
maps and gradient analysis.

Class activation maps (CAMs) are generated by computing the
activation level of each pixel in the image by the model, revealing the
areas of focus within the image. Figure 5a shows that the model pays
more attention to lesion areas relative to normal liver tissue to dis-
tinguish between different subtypes. HCC typically exhibits hetero-
geneity in internal structure and cellular composition, resulting in
significant variation within the tumor. Rapid proliferation of tumor
cells leads to increased cell density and richer vascularity in the central
region, often manifested as arterial phase enhancement in imaging.
Conversely, the surrounding area may display lower density and vas-
cularity due to compression by normal hepatic tissue or the arrange-
ment of tumor cells in a nest-like pattern, presenting as low density in
imaging. Consequently, in this CAM image, the central region may
exhibit deep activation, while the surrounding area may show sec-
ondary activation. Additionally, the irregular spiculated margins
commonly observed in HCC are a critical feature, often encompassed

Table 2 | Accuracy of classifying tumors with different sizes

Size HCC ICC MET FNH HEM CYST Average

Accuracy of classifying tumors with different sizes on testing sets

Acc/Num <1 cm 100%/4 none/0 100%/7 0%/1 60.0%/5 100%/20 91.9%/37

1-3 cm 83.4%/429 92.8%/28 85.8%/106 89.7%/29 89.6%/48 89.7%/29 85.2%/669

3-5 cm 91.9%/349 76.2%/42 78.9%/19 80.0%/5 90.0%/10 50.0%/2 89.4%/427

>5 cm 97.5%/164 90.0%/10 100%/1 none/0 none/0 none/0 97.1%/175

Accuracy of classifying tumors with different sizes on HN validation sets

Acc/Num <1 cm none/0 none/0 66.6%/3 none/0 83.3%/6 100%/4 85.7%/13

1-3 cm 69.7%/132 87.5%/8 94.3%/53 73.3%/30 91.3%/46 81.8%/44 79.5%/313

3-5 cm 89.1%/129 80.7%/26 73.5%/34 62.5%/8 97.3%/37 66.7%/9 85.6%/243

>5 cm 92.5%/40 60%/10 28.6%/7 100%/1 100%/5 100%/3 81.8%/66

Note: ACC denotes accuracy, Num denotes number. HCC denotes Hepatocellular Carcinoma, ICC denotes Intrahepatic Cholangiocarcinoma, MET denotes Metastatic Cancer, FNH denotes Focal
Nodular Hyperplasia, HEM denotes Hemangioma, and CYST denotes Cyst. HN denotes Henan Provincial People’s Hospital.
The numerical values in each cell represent the accuracy of classifying tumor types within the corresponding size range, are presented as percentages, and are annotated with the total number of
samples. Source data are provided as a Source Data file Source_data_Table_2.xlsx.
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within activated regions. ICC is characterized by tumor cells primarily
distributed in peripheral regions, with fewer tumor cells and immune-
related lymphocytes in the central area. Imaging typically reveals
higher density and vascularity in the tumorperiphery, contrastingwith
lower density and vascularity in the central region. These imaging
features are reflected in the CAM image. Metastatic tumors, arising
from either intrahepatic primary tumors or extrahepatic malignancies,

often exhibit necrosis and uneven vascularity in tissue composition.
This results in the characteristic imaging appearance of indistinct
margins and multifocal lesions. CAM images frequently depict this
process by demonstrating areas of diffuse and poorly defined activa-
tion, with uneven depth and distribution of activation regions.

FNH typically arises from the abnormal arrangement of normal
hepatic cells and contains abundant vascular tissue with high density.
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HCC=hepatocellular carcinoma; ICC=intrahepatic cholangiocarcinoma; MET=metastatic tumors; FNH=focal nodular hyperplasia; HEM=hemangioma; CYST=cysts.
AP=Arterial Phase; PVP=Portal Venous Phase; AI=Artificial Intelligence(LiLNet); BM=Benign or Malignant diagnosis.
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On images, it typicallypresents ashomogeneous enhancement of focal
lesions, while surrounding normal hepatic tissue appears relatively
hypoenhanced due to compression. In CAM images, the lesion often
exhibits uniform overall activation, while the compressed normal
hepatic parenchyma demonstrates relatively lower activation. FNH is
characterized by richer vascularity than other lesions, resulting in
greater overall activation. HEM lesions usually contain abundant vas-
cular tissue andmanifest as focal lesions with significant enhancement
during the contrast-enhanced phase of imaging. In CAM images, they
typically appear as locally activated areas, exhibiting greater activation
than other nonvascular lesions, with a more uniform distribution.
Cysts typically consist of fluid or semisolid material, with uniform
internal tissue distribution and clear borders. On images, they appear
as circular or oval-shaped low-density areaswith clear borders. In CAM
images, cystic regions appear as circular areas with deep activation,
and the activation intensity within the cyst is usually uniform, without
significant differences. More class activation maps can be found in
Supplementary Fig. 2.

Model interpretability refers to the process of explaining the
outputs generated by a machine learning model, elucidating which
features and how they influence the actual output of the model. In
deep learning, particularly in computer vision classification tasks,
where features are essentially pixels, model interpretability aids in
identifying pixels that have either positive or negative impacts on
predicting categories. To achieve this goal, we employ the SHapley
Additive exPlanations (SHAP) library to interpret deep learning mod-
els. This process primarily involves analyzing the gradients within the

model to gain a deeper understanding of how decisions are made. By
inspecting gradients, we can determine which features contribute
most significantly to the model’s predictions. In Fig. 5b, we present
plots for HCC, ICC, MET, FNH, HEM, and CYST. Each SHAP plot com-
prises the original image alongside grayscale images corresponding to
the number of output classes predicted by the model. Each grayscale
image represents themodel’s contribution to the output class. In these
images, blue pixels indicate a negative effect, while red pixels indicate
a positive effect. Conversely, white pixels denote areas where the
model ignores input features. Below the images, there is a color scale
ranging from negative to positive, illustrating the intensity of SHAP
values assigned to each relevant pixel. For instance, in the case of
correct HCC category prediction, the SHAP plot for HCC reveals that
red activations are predominantly concentrated in the lesion area.
However, in SHAP plots for other categories such as ICC and MET,
although some red pixels are present, they are not concentrated in the
lesion area. This suggests that the appearance of red activations out-
side the lesion area in other categories may indicate a misjudgment or
confusion by the model during prediction. Meanwhile, the activation
in the lesion area remains one of the key factors for accurate
prediction.

Data Partitioning Strategy Experiments
We conducted a time-based data partitioning experiment to further
validate the model’s generalization ability on the test set. We sorted
the data used formodel development chronologically, using early data
for training and later data for testing (with the same test set size as
randompartitioning).We compared the results of randompartitioning
with those of time-based partitioning, as shown in Fig. 6. Using the
time-based partitioningmethod, we achieved an AUCof 98.7% (95%CI:
92.1–94.8) and an ACC of 93.5% (95% CI: 92.1–94.8) for benign and
malignant results. The diagnostic AUC for benign data was 98.0% (95%
CI: 96.1–99.2), with an ACC of 91.3% (95% CI: 86.6–95.3), while for
malignant diagnosis, the AUC was 97.5% (95% CI: 96.7–98.1) with an
ACC of 90.9% (95% CI: 89.2–92.5). In HN external validation, the AUC
for benign and malignant diagnosis was 94.6% (95% CI: 92.6–96.2),
with an ACC of 88.8% (95% CI: 86.5–91.2). The AUC for benign data
diagnosis was 88.3% (95% CI: 84.0-92.1), with an ACC of 82.4% (95%
CI:77.2–88.1), while for malignant diagnosis, the AUC was 87.9% (95%
CI: 84.6–91.0) with an ACC of 85.1% (95% CI: 81.9–88.3). In external
validation for CD, the accuracy of malignant diagnosis was 90.4% (95%
CI: 84.0–95.7). For GZ, the accuracy of malignant diagnosis was 80.1%
(95% CI: 74.2–85.5), and for LS, it was 82.8% (95% CI: 77.6–88.1).

We conducted a statistical analysis of the accuracy of random and
time-based data partitioning methods using a two-sided t-test. For the
binary classification of benign and malignant lesions, the p-value is
0.192 on the test set and 0.503 on the HN external validation set. For
the ternary classification of benign lesions, the p-value is 0.408 on the
test set and 0.695 on the HN external validation set. For the ternary

Fig. 4 | LiLNet performance under different conditions. a Comparison of the
AUC, F1, recall, and precision for the classification of the three types of malignant
lesions (HCC, ICC, andMETs) and classification of the three types of benign lesions
(FNH, HEM, and cysts) using different phases in the test set. “malignant AP&PVP”
indicates the simultaneous use of AP and PVP for diagnosing malignant lesions,
“malignant AP” indicates the use of only AP, and “Malignant PVP” indicates the use
of only PVP for diagnosing malignant lesions. Similarly, “benign AP&PVP” indicates
the simultaneous use of AP and PVP for diagnosing benign lesions, “benign AP”
indicates the use of only AP, and “benign PVP” indicates the use of only PVP for
diagnosingbenign lesions.bConfusionmatrices for classificationof the three types
of malignant lesions and classification of the three types of benign lesions using
different phases in the test set. c Comparison of the AUC, F1, recall, and precision
for classification of the three types of malignant lesions and classification of the
three types of benign lesions using different phases in the HN external validation

cohort. d Confusion matrices for classification of the three types of malignant
lesions and classification of the three types of benign lesions using different phases
in the validation set. e The confusionmatrix is employed to depict the classification
of lesions for patients, categorizing them into four groups based on the diagnoses
provided by AI systems and radiologists. ‘Radiologist Right’ and ‘AI Right’ indicate
instances where both the AI system and the doctor correctly diagnosed liver
tumors. ‘Radiologist Right’ and ‘AI Wrong’ refer to cases where the AI system
incorrectly diagnosed a liver tumor but the radiologist’s diagnosis was accurate.
‘RadiologistWrong’ and ‘AI Right’ pertain to situations inwhich the AI systemmade
a correct diagnosis of liver tumors but the radiologist’s diagnosis was incorrect.
‘RadiologistWrong’ and ‘AIWrong’ represent instanceswhere neither the AI system
nor the doctor diagnosed liver tumors correctly. f The results of clinical validation
at West China Tianfu Hospital. g The results of clinical validation at Sanya People’s
Hospital. Source data are provided as a Source Data file Source_data_Figure_4.xlsx.

Table 3 | Comparison of diagnostic results between LiLNet
and radiologists

Diagnosis Radiologist Accuracy (%) Recall (%) Precision (%)

Benign and
Malignant

LiLNet 91.0 91.5 90.4

Junior 86.4 88.9 83.6

Middle 86.9 88.0 85.6

Senior 88.7 88.9 88.5

HCC, ICC, MET LiLNet 82.9 83.0 83.3

Junior 65.8 65.8 65.4

Middle 64.1 63.9 64.1

Senior 63.2 63.2 63.2

FNH,
HEM, CYST

LiLNet 92.3 92.3 92.4

Junior 71.9 71.4 71.7

Middle 81.7 81.6 81.7

Senior 85.6 85.5 85.8

Note: HCC denotes Hepatocellular Carcinoma, ICC denotes Intrahepatic Cholangiocarcinoma,
MET denotes Metastatic Cancer, FNH denotes Focal Nodular Hyperplasia, HEM denotes
Hemangioma, and CYST denotes Cyst.
Source data are provided as a Source Data file Source_data_Table_3.xlsx.
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classification of malignant lesions, the p-values are 0.082 on the test
set, 0.08 on the HN external validation set, 0.136 on the CD external
validation set, 0.483 on the GZ external validation set, and 0.811 on the
LS external validation set. The statistical results indicate that all p-
values are greater than 0.05, suggesting no significant difference
between the two methods.

Discussion
Liver lesions, encompassing a diverse range of malignancies and
benign lesions, pose significant challenges in accurate diagnosis and
representation. The advent of deep learning techniques ushered in an
era in medical classification. We explored the potential of our pro-
posed deep learning model for precise and efficient liver lesion clas-
sification, along with the challenges and future prospects in this
evolving field.

Currently, there are several deep learning approaches for focal
liver lesion diagnosis. However, most of these approaches primarily
concentrate on HCC and ICC, often utilizing limited sample sizes from
single or multiple centers14,16,21 and lacking external validation22 to
confirm their general applicability. Furthermore, these approaches
predominantly rely on convolutional networks or transfer learning
techniques15,23,24. This study focused on developing a deep learning AI-
assisted system for clinical liver diagnosis. Previous studies have
indicated that deep learning algorithms outperform health care pro-
fessionals with respect to some clinical outcomes14,25,26. We proposed a
liver lesiondiagnosis systembasedondeep learning, LiLNet, which can
automate the analysis of radiation images and can rapidly screen and
identify suspicious regions for further examination by radiologists.
With the utilization of multicenter and large sample data, this system
offers a relatively comprehensive diagnostic approach.

Fig. 5 | The visualization process of model decisions. a The class activation map
generated by the last convolution layer. We presented activation maps for liver
lesions. The first line displays the original image, while the second line displays the
corresponding activationmap. Red denotes higher attention values, the color blue

denotes lower values, and the red circle represents the tumor area. b SHAP plots
revealing the influence of pixel on the model predictions for HCC, ICC, MET, FNH,
HEM, and cyst lesions.
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Our model exhibits robust performance in both the test set and
external validation set, primarily owing to the integration of exten-
sive datasets and advanced AI technology. The training data are
comprehensive, encompassing a wide array of patterns, which
include diverse imaging devices, variations in image window widths
and levels, and adjustments in target area sizes. These factors are
meticulously considered to accommodate differing background liver
conditions, such as cirrhosis, fibrosis, inflammation, fatty liver, and
abdominal fluid. Ourmodel has shown excellent performance on test
and external validation sets, primarily owing to the integration of big
data and AI technology. Our training dataset is extensive and diverse,
comprising images acquired from a variety of CT device models,
each with unique specifications for window width and level settings.
Additionally, the dataset includes samples representing a wide range
of background liver conditions, including cirrhosis, fibrosis, inflam-
mation, fatty liver, and the presence of abdominal fluid. Moreover, it
encompasses target areas of varying sizes for comprehensive cov-
erage. The richness of the data in our training set significantly con-
tributed to enhancing the generalizability of the model. We adopted
a two-stage approach, starting with detection-then-recognition
technology. Initially, through object detection methodologies, we
extracted ROIs to minimize irrelevant background information and
direct the model’s attention to the tumor. Subsequently, we seg-
mented the liver tumor classification task into benign and malignant
stages and then performed subtype classification. This strategic
classification approach not only reduces the complexity and diffi-
culty of subsequent classifiers but also enhances the overall accuracy
and stability of our classification system. Compared to the popular
deep learning classification algorithms ResNet50 and pretrained
ResNet50, our proposedmodel demonstrates better performance on
both the test set and external validation. This is primarily attributed
to several key enhancements. First, our model introduces an
enhanced supervised signal, which selectively discards irrelevant
regions in the feature maps and expands the original labels into joint

labels during training. This additional supervision signal enables the
model to better comprehend image content and learn more robust
feature representations. Given the challenging nature of the liver
tumor classification task, characterized by significant confusion or
overlap between categories, our approach provides clearer super-
visory signals to differentiate categories effectively, thereby redu-
cing confusion and enabling the model to focus on recognizing
detailed features. Additionally, leveraging self-distillation technology
empowers our model to learn from its own generated responses,
further improving its performance. This self-distillation process
allows the model to refine its understanding and generalization
ability over time, leading to enhanced performance in practical
applications.

The LiLNetmodel outperforms clinical radiologists in third-tier
cities due to its use of a vast dataset from a reputable comprehen-
sive hospital in China for training, offering broader coverage and
greater sample diversity. AI algorithms have undergone extensive
standardization and optimization, ensuring consistent and accu-
rate diagnoses. Conversely, radiologists in third-tier cities may face
challenges such as limited medical resources and variations in
personnel quality, hindering the level of professionalism and
standardization in diagnosis. While there is high consistency
between AI and radiologists in diagnosing straightforward cases
such as cysts, discrepancies arise in easily confused cases such as
HCC and ICC, HCC and FNH, and METs and HEM, suggesting dif-
fering diagnostic methods or focuses. The partnership between AI-
assisted software and radiologists holds promise for enhancing the
accuracy of liver disease diagnosis.

There are a few limitations. First, compared to other liver diseases,
the higher incidence of HCC results in data imbalance, which may
slightly affect the performance for diagnosing ICC. Comparative
studies with clinical doctors have shown that the most accurate
results are achieved when artificial intelligence collaborates with
doctors to diagnose HCC and ICC. cHCC-CCA refers to combined
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Statistical test = two-sided t-test.

Fig. 6 | Comparison of Results between randomly and time-divided data.
a displays ROC curves comparing the differentiation of benign and malignant
tumors in the Test and HN external validation sets. b shows ROC curves comparing
the differentiation of benign tumors in the Test and HN external validation sets.
cpresentsROCcurves comparing the identificationofmalignant tumors.ddisplays

ACC for distinguishing between benign and malignant tumors in the Test and HN
external validation sets. e demonstrates ACC for distinguishing benign tumors in
the Test and HN external validation sets. f provides ACC for identifying malignant
tumors in the HN, CD, GZ, and LS validation sets. Source data are provided as a
Source Data file Source_data_Figure_6.xlsx.
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hepatocellular-cholangiocarcinoma, a rare type of liver tumor that
exhibits both hepatocellular carcinoma and cholangiocarcinoma
characteristics. cHCC-CCA is a rare variant of liver cancer, with an
incidence rate ranging from 0.4% to 14.2% compared to other primary
liver cancers27–29. The performance of the LiLNet system in diagnosing
cHCC-CCA is currently unclear due to the rarity of this tumor and
limited research and data availability. Recognizing the importance of
cHCC-CCA in thefield of hepatocellular carcinoma,weplan to focus on
this topic as a key area of future research. We aim to collaborate with
pathology experts to collect relevant data and incorporate cHCC-CCA
into our future studies, thereby expanding the scope of our research
findings.

Methods
Ethical approval
Ethics committee approval was granted by the ethics review board of
West China Hospital of Sichuan University (Ethical Approval No. 2024-
424), and was carried out in adherence to the Declaration of Helsinki.
Additionally, this study is officially registered with the Chinese Clinical
Trial Registry, under the identifier ChiCTR2400081913 (accessible at
https://www.chictr.org.cn/showproj.html?proj=212137). Recognizing
the non-invasive nature of themethodology and the anonymization of
data, the institutional review board granted a waiver for the informed
consent requirement. Subject to data privacy and confidentiality,
ethical review, and institutional policies, we use patient imaging data
solely for system testing without requiring the patient to undergo
additional testing, visits, or any activities directly related to the system.
Under these conditions, generally, no additional compensation to the
patient is necessary.

Data acquisition
Between June 2012 and December 2022, a total of 4039 patients’
multiphase (arterial phase and portal venous phase) contrast-
enhanced CT images from six hospitals were included under the fol-
lowing inclusion criteria: Patients (1) were eighteen years or older; (2)
did not have a history of hepatectomy, transarterial chemotherapy
(TACE), or radiofrequency ablation (RFA) before CT imaging; (3) had
pathologically confirmed malignant tumors; and (4) had benign
tumors confirmed either by consensus among three radiologists or by
follow-up of at least six months using two imaging modalities. The
method used for retrospective data collection and basic patient
information including sex and age are depicted in Fig. 1a and Table 1,
respectively. Furthermore, clinical testing was conducted on two real-
world clinical evaluation queues (Fig. 1b): West China Tianfu Center
and Sanya People’s Hospital. At Tianfu Center, we examined 184 cases,
while at Sanya People’s Hospital, 235 cases were assessed. Gender and
Age assignment was based on government-issued IDs. No sex-based
analysis was conducted as gender was unrelated to the model imple-
mentation or deployment. The primary reason for this is that the focus
of our study was on evaluating the technical performance of the sys-
tem, rather than examining potential differences based on gender or
sex. Additionally, our primary objective was to ensure the system’s
accuracy and efficiency in processing imaging data, regardless of the
patient’s gender.

Triple-phase CT scans were performed on all participants,
including non-contrast, arterial, and portal venous phases. Precontrast
images were obtained before injecting the contrast agent (iodine
concentration: 300–370mg/mL; volume: 1.5–2.0mL/kg; contrast type:
iopromide injection, Bayer Pharma AG). The arterial phase and portal
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venous phase images were acquired at 25 s and 60–90 s after injection,
respectively. Slice thickness was 5mm for non-contrast images and
1–3mm for arterial and portal venous phases. Specific details of the CT
scanners used (GE Healthcare, Siemens Healthcare, Philips Healthcare,
United Imaging Healthcare) are provided in the Supplementary
Table 4.

We utilize the open-source libraries Pydicom (https://pydicom.
github.io/, Version 2.2.2) and SimpleITK (https://simpleitk.org/, Ver-
sion 2.0.2) to process the original DICOM files into BMP image format
for convenient model training. The lesion areas are delineated using
Jinglingbiaozhu (http://www.jinglingbiaozhu.com/, Version 2.0.4). All
code is written in custom Python (Version 3.9.7).

Development of the LiLNet system
The ability of deep learning models to establish robust tumor classi-
fication frameworks depends on the extraction of discriminative fea-
tures from input data. When excessive background information exists
in the training image, the background overwhelms the foreground or
hampers the visibility and identification of key features. To enhance
the diagnostic ACC, we preprocessed the original CT images to extract
regions of interest (ROIs) by removing redundant background infor-
mation. Initially, a professional physicianmanually delineated the ROIs
of the 500 patients used for training. Then, we developed a model
based on YOLOv830 (Fig. 7a) to automatically obtain the ROI. To miti-
gate false positives, we implemented postprocessing on the target
model using 3D liver segmentation technology31. This integration with
liver segmentation results allowed us to effectively filter out false
positives occurring outside the liver, leading to a notable enhance-
ment in both the accuracy and reliability of the model.

We established a classification model based on multiphase data
that integrates image information using self-supervised tasks and joint
labels, further improving diagnostic performance. Our model utilizes
ResNet5032 as the backbone network, along with a feature-based pre-
text task that transformsdifferent features for network recognition. To
generate a transformed feature map, we applied binary masks to
selectively remove spatially correlated information from a given fea-
ture map obtained from a random hidden representation layer. In this
study, we utilized four distinct binary masks, which correspond to the
covered regions of the upper left, upper right, lower left, and lower
right portions. Additionally, we introduced joint labels to expand the
original labels, facilitating the incorporation of the self-supervised
pretext task into the model. We augmented the original label by
including an additional self-supervised label that signifies the dropped
region. After generating the joint labels, the number of input labels
increased from the original N to 5 N. Subsequently, all feature maps
generated by the classifiers were combined through aggregation
inference for prediction.

We implemented multiclassifier techniques to enhance model
performance. A classifier and a fully connected layer were introduced
after the last two ResBlocks, specifically for training purposes, and
could be omitted during inference. Recognizing the computational
cost associatedwith the final convolutional layer, we also incorporated
an extra classifier for the penultimate layer, mitigating additional
convolutional computationswhilepreserving accuracy improvements.
In addition, we introduced a self-knowledge distillation module (SKD)
to facilitate the interaction between deep-shallow features from dif-
ferent layers, thereby enhancing network learning and enabling
adaptive information fusion. The SKD enhances the main network
structure by incorporating a classifier that extracts deep features as
teachers, which distills and learns the joint label layer of the source
network. The network structure, depicted in Fig. 7b, selects the last
feature layer from the residual network to build an additional classifier
consistingof a fully connected layer and softmaxactivation. During the
training process, these classifiers, as instructors, offer multi-
dimensional guidance to the residual network to improve valuable

information and enhance its efficiency. The tumor detection and
training details are provided in the training strategy section.

Calculating Prediction Results
We compute the prediction probability for each image for all indivi-
duals, encompassing both AP and PVP images. Subsequently, we cal-
culate the average prediction probability for each individual by
averaging the prediction probabilities of all their images. If a patient i
hasni images with corresponding prediction probabilities
pi1,pi1,:::,pini

, the average prediction probability is calculated as shown
in Eq. (1):

Average Probabilit yi =
i
ni

Xni

j = 1

pij ð1Þ

Then, we apply softmax processing to these average prediction
probabilities and determine the category with the highest probability
as the final result. The softmax function is calculated as shown in
Eq. (2):

softmaxðxiÞ=
exi

PN
j = 1e

xj
ð2Þ

where N is the total number of categories.
When different phase images of the same individual yield dis-

parate results, we address this by averaging the prediction prob-
abilities, thereby assigning higher weight to the image with the most
confident prediction. This approach allows us to maximize the utili-
zation of information from each image, rather than solely relying on
theoutcomesof a few images. Bybalancing the influenceof eachphase
image, this methodmitigates the impact of abnormal results from one
phase image, thereby reducing misjudgments.

Training strategy
We utilized patients’ name-ID as the unique identifier to prevent
duplicate IDs. Duplicate samples with the same name-ID were sys-
tematically removed, and patients were randomly assigned to either
the training set or testing set to prevent data overlap. As shown in
Fig. 1a, the training set comprised images from 1580 patients from
WestChinaHospital of SichuanUniversity andSanya People’sHospital.
The testing cohort consisted of 1308 patients from West China Hos-
pital of Sichuan University, while external validation cohorts included
1151 patients from Henan Provincial People’s Hospital, The First Affili-
ated Hospital of Chengdu Medical College, Leshan People’s Hospital,
and Guizhou Provincial People’s Hospital.

The model used for target detection is YOLOv8, and the code can
be found at: https://github.com/ultralytics/ultralytics. For post-pro-
cessing, we utilized 3D liver segmentation technology, which is avail-
able at: https://github.com/ellisdg/3DUnetCNN. Our classification
network model is based on ResNet50, and the code can be referenced
here: https://github.com/weiaicunzai/pytorch-cifar100/blob/master/
models/resnet.py.

For the training strategy of the classification model, the images
were cropped to 224 * 224, centered on the ROI. Data augmentation
techniques such as random flipping and rotation were applied to fur-
ther enhance the images for analysis. Additionally, to address sample
imbalance, we performed resampling with transformations such as
Gaussian noise and SaltPopperNoise. These techniques aimed to
generate larger, more complex, and diverse datasets, ultimately
improving the ACC and generalizability of the model. We initialized
our network parameters by loading pretrained network layer para-
meters from the ImageNet dataset. The network was trained using
random gradient descent and cross-entropy loss for weight adjust-
ment and algorithm optimization. The initial learning rate was set to
0.01, which decreased by one tenth every 10 epochs until a final
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learning rate of 0.0001 was reached. To mitigate overfitting, batch
normalization and a weight decay rate of 0.0001 were implemented
during training. A batch size of 128 and a rectified linear unit (RLU)
activation function were used. All codes were implemented using
Python 3.9.7. The packages or softwares comprised Pytorch 1.12.1 for
model training and testing, CUDA 11.4 and cuDNN 8.2.4 for GPU
acceleration.

Statistical analysis
We evaluated the predictionmodel using statistical measures such as
the ACC, sensitivity, specificity, precision, recall, F1-score (F1), area
under the curve (AUC), and receiver operating characteristic (ROC)
curve. For binary classification problems, we employed a default
threshold of 0.5, a widely accepted standard. For multiclassification
tasks, we chose the category with the highest probability as the
prediction based on the softmax classifier output. By analyzing the
ACC, AUC, F1, recall, and precision, we gained insights into the
model’s ability to accurately classify instances, handle imbalanced
datasets, and strike a balance between true positives, false-positives,
true negatives, and false-negatives, depending on the specific
requirements of the application. All statistical analyses employed
two-tailed tests, with p-values of 0.05 or lower deemed significant.
These analyses were conducted using Python, version 3.9.7 and
scikit-learn version 1.1.3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All the analytical data
underpinning the findings of this study are incorporated within this
paper in the designated source data files (Source_data_Figure_2.xlsx to
Source_data_Figure_6.xlsx and Source_data_Table_2.xlsx to Source_da-
ta_Table_3.xlsx). However, the original dataset used in this study is
subject to access control, requiring licenses from multiple central
institutions for access. The author of the article communicated with
several hospital departments, including the Information Technology
Department, Research Laboratory, and International Cooperation
Office. Although these data do not involve blood or other biological
samples, the hospital’s strict data management policy prohibits any
external sharing of research data. These regulations aim to ensure that
all data, regardless of its nature, are securely protected to prevent
unauthorized use or disclosure. To promote further international
cooperation and exchange, it is recommended to jointly apply for
international multicenter cooperation projects. This approach will
enable us to conduct further research within the hospital while
ensuring compliance with hospital policies, data security, and patient
privacy. For academic inquiries regarding the use and processing of
raw data, please contact the corresponding author via email at
cjr.songbin@vip.163.com or csmliu@uestc.edu.cn. Source data are
provided with this paper.

Code availability
Our code is available at GitHub31 (https://github.com/yangmeiyi/Liver/
tree/main). The trained model is available at Zenodo (https://zenodo.
org/records/12646854). The trained model parameters can be acces-
sed at Zenodo, including the detection model best.pt (https://zenodo.
org/records/12646854/files/best.pt?download=1), the benign-
malignant classification model Time_BM.pth.tar (https://zenodo.org/
records/12646854/files/Time_BM.pth.tar?download=1), the benign
classification model Time_B.pth.tar (https://zenodo.org/records/
12646854/files/Time_B.pth.tar?download=1), and the malignant classi-
ficationmodel Time_M.pth.tar (https://zenodo.org/records/12646854/
files/Time_M.pth.tar?download=1).
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