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Abstract
Background: Monoallelic germline pathogenic variants (GPVs) in five Fanconi 
anemia (FA) genes (BRCA1/FANCS, BRCA2/FANCD1, PALB2/FANCN, BRIP1/
FANCJ, and RAD51C/FANCO) confer an increased risk of breast (BC) and/or 
ovarian (OC) cancer, but the role of GPVs in 17 other FA genes remains unclear.
Methods: Here, we investigated the association of germline variants in FANCG/
XRCC9 with BC and OC risk.
Results: The frequency of truncating GPVs in FANCG did not differ between 
BC (20/10,204; 0.20%) and OC (8/2966; 0.27%) patients compared to controls 
(6/3250; 0.18%). In addition, only one out of five tumor samples showed loss- 
of- heterozygosity of the wild- type FANCG allele. Finally, none of the nine func-
tionally tested rare recurrent missense FANCG variants impaired DNA repair 

https://doi.org/10.1002/cam4.70103
www.wileyonlinelibrary.com/journal/cam4
mailto:
https://orcid.org/0000-0002-0987-1238
mailto:
https://orcid.org/0000-0003-2050-9667
http://creativecommons.org/licenses/by/4.0/
mailto:libor.macurek@img.cas.cz
mailto:zdekleje@lf1.cuni.cz


2 of 9 |   SOUKUPOVA et al.

1  |  BACKGROUND

The Fanconi anemia (FA) genes encode at least 22 pro-
teins that form multiprotein complexes involved in the 
resolution of interstrand DNA interstrand cross- links 
and the precise repair of DNA double- strand breaks via 
homologous recombination.1 While biallelic germline 
pathogenic variants (GPVs) in these genes cause FA (a 
syndrome characterized by morphologic abnormalities, 
bone marrow failure, and increased risk of malignancy 
development), monoallelic GPVs in five FA genes (includ-
ing BRCA1/FANCS, BRCA2/FANCD1, PALB2/FANCN, 
BRIP1/FANCJ, RAD51C/FANCO) confer an increased risk 
of breast (BC) and/or ovarian (OC) cancer. The role of 
monoallelic GPVs in other FA genes in BC/OC predisposi-
tion remains unclear.2,3

FANCG/XRCC9 encodes a protein of the FA core 
complex. The primary role of the FA core complex is to 
monoubiquitinate FANCD2, leading to FANCD2- FANCI 
heterodimerization (formation of ID2 complex) and the 
subsequent activation of downstream DNA repair effec-
tors.4 Notably, within the core complex, FANCG interacts 
with BRCA1 and BRCA2, the proteins encoded by two 
major hereditary BC/OC predisposition genes.4

Biallelic GPVs in FANCG cause FA complementation 
group G (FA- G; OMIM#614082). FANCG, with FANCA 
and FANCC, belongs to the most frequently mutated 
genes responsible for approximately 80% of FA patients 
worldwide.5 Heterozygous FANCG GPVs have been iden-
tified episodically in cancer patients and their association 
with cancer risk remains uncertain.6 Carriers have been 
described in patients with BC,7,8 OC,9 and pancreatic10–12 
cancers, a tumor spectrum characteristic for carriers of 
GPVs in established FA cancer predisposition genes (in-
cluding BRCA1, BRCA2). Moreover, our previous study 
identified 5/1333 (0.38%) FANCG GPVs in OC patients (in-
cluded in this dataset), suggesting a possible association 
of FANCG GPVs with OC.13 To clarify the role of FANCG 
GPVs in BC/OC predisposition, we performed a case–con-
trol analysis and the functional in vitro testing of selected 
germline FANCG variants.

2  |  MATERIALS AND METHODS

The frequencies of GPVs (truncating/spliceogenic) and 
rare missense FANCG variants (Table  1) were retrieved 
from the CZECANCA (CZEch CANcer panel for Clinical 
Application) database version 6 (May 20, 2023), a collec-
tion of anonymized phenotype/genotype data from the 
Czech national consortium (www. czeca nca. cz) for ger-
mline genetic testing, as we described previously.14 The 
datasets included 10,204 female BC patients (including 
6753 patients who met national germline genetic testing 
criteria based on NCCN guidelines15 and 3451 patients 
who did not meet testing criteria but were analyzed iden-
tically), 2966 unselected OC patients (1333 from previous 
study and 1633 newly added; all indicated for germline 
genetic testing in the Czech Republic), and 3250 female 
population- matched controls (adult volunteers who did 
not meet germline genetic testing criteria). All individuals 
provided written informed consent with genetic testing 
approved by the Ethics Committee of the First Faculty of 
Medicine and General University Hospital in Prague and 
were Czechs of Central European origin. A burden case–
control analysis was performed to determine the risk in 
FANCG GPVs carriers.

The selected germline FANCG variants were function-
ally evaluated in  vitro. Briefly, endogenous FANCG was 
knocked out in U2OS cells (FANCG- KO) by CRISPR/Cas9 
technology using the pX458 plasmid (Addgene #48138) 
expressing sgRNAs targeting exons 1 and 4. pEGFP- C1- 
FANCG- T2A- Puro plasmids for the expression of wild- 
type FANCG or its individual variants were generated 
by Gibson assembly and were stably transfected into 
FANCG- KO cells. FANCG variants were tested by treating 
the reconstituted cells with mitomycin (MMC) followed 
by evaluation of FANCD2 monoubiquitination by immu-
noblotting, localization of FANCD2 in nuclear DNA repair 
foci by high content ScanR microscopy, and by colony for-
mation and survival assay (Figure 1C–J, details available 
upon request). Four recurrent missense variants (Table 1; 
MAFgnomAD >0.002) and wild- type FANCG were consid-
ered positive, fully functional controls, while truncating 

activities (FANCD2 monoubiquitination and FANCD2 foci formation) upon 
DNA damage, in contrast to all tested FANCG truncations.
Conclusion: Our study suggests that heterozygous germline FANCG variants are 
unlikely to contribute to the development of BC or OC.
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GPVs and FANCG- KO cells served as negative, function-
ally dead controls.

Loss- of- heterozygosity (LOH) at the FANCG locus was 
evaluated in five FANCG GPV carriers using in- house 359 
genes NGS panel, analyzing DNA from formalin- fixed 
paraffin- embedded (FFPE) tumor samples. LOH was de-
tected using the Copy Number Variant Detection module 
(CLC Genomics Workbench v23.0.5) along with the fre-
quency of detected mutations of germline origin, consid-
ering the percentage of tumor fraction in the analyzed 
FFPE sample.

3  |  RESULTS

We identified 57 different, rare heterozygous, germline 
FANCG variants (Figure 1A; Table 1) including 13 frameshift, 
stop- gain, or spliceogenic variants considered as GPVs (lo-
calized before the most N- terminal GPV identified in FA- G 
patients, c.1795_1804del—ClinVar ID: 6718). However, the 
frequency of GPVs in patients with BC (20/10,204; 0.20%) 
or OC (8/2966; 0.27%) did not differ from that in controls 
(6/3250; 0.18%; Table 1). The frequency of FANCG GPV car-
riers in BC was insignificantly higher among patients who 



   | 7 of 9SOUKUPOVA et al.

were not indicated for germline genetic testing than among 
those who were indicated [10/3451 (0.29%) vs. 10/6753 
(0.15%); p = 0.19]. We found no evidence for the associa-
tion of FANCG GPVs and ER- negative BC identified in 4/17 
(23.5%) carriers and 2321/8383 (27.7%) all BC patients with 
known ER status, suggested by Nierenberg et al. recently.8 
In addition, the analysis of five available tumor samples 
from patients with FANCG GPVs revealed only one case of 
LOH at the FANCG locus (Figure 1B).

To test the pathogenicity of FANCG missense variants, 
we expressed selected variants in U2OS FANCG- KO cells 
and evaluated their overall DNA repair capacity following 
genotoxic treatment. Specifically, we assessed FANCD2 
monoubiquitination and its localization to nuclear foci as 
a readout of the FANCG- dependent FA core complex func-
tionality. Our assays confirmed a clear defect in the overall 
DNA repair and FA core complex activity in FANCG trun-
cations (Figure 1D–F) but we found no evidence of func-
tional impairment in any of the FANCG missense variants 
tested (Figure 1G–J).

4  |  DISCUSSION

Although heterozygous GPVs in five FA genes (BRCA1, 
BRCA2, PALB2, BRIP1, or RAD51C) confer high/moder-
ate BC/OC risk, we found no association between FANCG 
GPVs and BC/OC risk. Regarding the case–control evidence 
for OC predisposition, our results are in agreement with a 
previous study by Song et al. who also found no association 
between GPVs in other FA genes (including FANCG) and 
OC risk. Specifically, Song's et al. identified 11/6184 (0.17%) 
FANCG GPVs carriers in OC patients compared to 8/6089 
(0.13%) such carriers in controls (OR = 1.4; 95% CI 0.5–3.4).9 
In addition, we detected LOH, an important marker of al-
lelic imbalance indicating the presence of a driver mutation 
in a tumor suppressor gene, in only one of the five tumors 
analyzed. Finally, our in vitro functional assays showed that 
all rare missense variants analyzed did not affect the role of 
FANCG in DNA repair. Taken together, our study strongly 
suggests that heterozygous germline FANCG variants (in-
cluding GPVs) do not confer an increased risk of BC or OC.

F I G U R E  1  (A) Distribution of germline FANCG variants identified in patients and controls (created using https:// www. cbiop ortal. 
org/ ). Asterisks indicate variants included in functional testing (blue—missense variants with minor allele frequency (MAF) >0.002 in 
gnomAD database that were selected as fully- functional controls; red—truncations). All truncations and splicing alterations were considered 
pathogenic by OncoKB (www. oncokb. org). Exon structure corresponds to NM_004629.2 reference. (B) DNA sequencing from breast (BC) 
and ovarian (OC) cancer FFPE samples available from five patients carrying truncating FANCG variants. (C–J) Functional characterization 
of DNA damage response in FANCG variants expressed in U2OS- FANCG- KO cells lacking endogenous FANCG. (C) Immunoblot showing 
the level of endogenous FANCG in U2OS- parental and U2OS- FANCG- KO cells (Santa Cruz, sc- 393,382). As loading control was used 
protein Pan 14- 3- 3 (Santa Cruz, sc- 133,233). (D) Colony formation assay of parental U2OS, U2OS- FANCG- KO (FANCG- KO), and FANCG- 
KO stably transfected with truncated FANCG (red text) or fully- functional FANCG- S7F missense variant (blue text) after treatment with 
1 nM MMC for 14 days. Colonies were fixed with ethanol (70% v/v) and stained with crystal violet. Note that FANCG- KO cells and FANCG- 
KO cells expressing the most frequent truncating variant p.E105X fail to grow in MMC. (E) Survival assay of parental U2OS cells, FANCG- 
KO cells, and FANCG- KO stably transfected with FANCG variants demonstrates that all analyzed truncating variants fail to rescue survival 
following MMC treatment. Relative cell proliferation was determined by resazurin assay (n = 3; mean with SD displayed). (F) Parental 
U2OS, FANCG- KO cells, and FANCG- KO cells stably transfected with FANCG variants were treated with MMC (2 μM, 5 h) and analyzed 
by immunoblotting with FANCD2 antibody (Abcam, ab108928) to visualize FANCD2 monoubiquitination. A red asterisk indicates the 
lack of FANCD2 monoubiquitination in FANCG- KO cells and in all cells expressing analyzed truncating variants. Immunoblotting for 
GFP (Roche, 11,814,460,001), FANCG (Santa Cruz, sc- 393,382), and transcription factor TFIIH (sc- 293; Santa Cruz) were used as loading 
controls. (G) A colony formation assay indicates that all tested missense variants rescued cell growth following MMC treatment (1 nM, 
7 days). (H) Immunoblotting performed as in 1F demonstrated rescue of FANCD2 monoubiquitination in FANCD- KO cells expressing all 
analyzed missense variants in contrast to its loss in FANCG- KO controls and FANCG- KO cells expressing the C- terminal truncating variant 
p.R548X. (I) Quantitative analysis of FANCD2 nuclear foci formation. U2OS, FANCG- KO, and reconstituted FANCG- KO stables cell lines 
were treated with 2 μM MMC for 5 h, pre- extracted, fixed and stained with DAPI and FANCD2 antibody (Abcam, ab108928) and imaged 
using Olympus ScanR microscope equipped with 60×/1.42 OIL objective. The number of nuclear FANCD2 foci was determined using spot 
detection module in ScanR analysis software. Each dot represents one cell, red bar indicates mean, and bars are SDs. Representative out of 
two independent experiments. Note that FANCD2 foci do not form in FANCG- KO cells and all tested missense variants rescued FANCD2 
foci formation. FANCG- KO expressing p.R548X truncation (red text) served as negative control (at least 270 cells were analyzed per 
condition). (J) Representative microscopy images from (I) showing FANCD2 foci formation in nuclei stained with DAPI after 2 μM MMC 
treatment (5 h) in U2OS cells, reduced foci formation in FANCG- KO cells and FANCG- KO cells expressing p.R548X and rescued FANCD2 
foci formation in FANCG- KO cells expressing wild- type FANCG and all missense variants (scale bars 10 μm). VAF, variant allele frequency; 
cov., coverage; TC, percentage of tumor cells in sequenced sample; LOH/no LOH, presence/absence of loss of heterozygosity.

https://www.cbioportal.org/
https://www.cbioportal.org/
http://www.oncokb.org
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