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Abstract: The fastest way to significantly change the composition of a population is through ad-
mixture, an evolutionary mechanism. In animal breeding history, genetic admixture has provided
both short-term and long-term advantages by utilizing the phenomenon of complementarity and
heterosis in several traits and genetic diversity, respectively. The traditional method of admixture
analysis by pedigree records has now been replaced greatly by genome-wide marker data that en-
ables more precise estimations. Among these markers, SNPs have been the popular choice since
they are cost-effective, not so laborious, and automation of genotyping is easy. Certain markers
can suggest the possibility of a population's origin from a sample of DNA where the source indivi-
dual  is  unknown or unwilling to disclose their  lineage,  which are called Ancestry-Informative
Markers (AIMs). Revealing admixture level at the locus-specific level is termed as local ancestry
and can be exploited to identify signs of recent selective response and can account for genetic
drift. Considering the importance of genetic admixture and local ancestry, in this mini-review,
both concepts are illustrated, encompassing basics, their estimation/identification methods, tools/-
software used and their applications.

Keywords: Admixture, AIMs, ARG, local ancestry, post admixture selection signatures.

1. INTRODUCTION
One of the foremost critical experiences from the period

of cutting-edge genomics is the ubiquity of migration and ad-
mixture throughout animal history. As individuals migrate
on a moderate to large scale, this allows the interchange of
genes between at least two previously isolated groups. As a
result, admixed populations are produced, giving rise to pop-
ulations with ancestors from different origins, and the contin-
uous portions of the genome inherited from a population are
known as admixture segments or migrant tracts. Admixture
segments are invisible, and the only way to determine their
existence  is  through  genomic  information;  this  process  is
known as admixture deconvolution or ancestry painting [1].
Admixture is the quickest evolutionary mechanism to signifi-
cantly  alter  the  makeup  of  a  population,  and  the  admixed
groups are still understudied in population genetics despite
their  prevalence and significance [2].  In order to illustrate
the  extremes of  the  process  by which admixed groups  are
generated, two admixture dynamics models have been giv-
en. First is the Hybrid Isolation (HI) model, and second is
the Continuous Gene Flow (CGF) model [3, 4]. According
to the HI model, admixing happens instantly in just
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one  generation  without  further  input  from  either  parental
population; as a result, Admixture Linkage Disequilibrium
(ALD) order of 10 to 20 cM is formed in a single generation
and gradually degrades over time through independent as-
sortment  and  locus  recombination.  The  CGF model  infers
that the admixture happens at a stable pace in each genera-
tion from the contributions of one or all parental populations
to the admixed population, and ALD rises with each genera-
tion. However, once the admixture fraction reaches 0.5, fur-
ther mixing will actually cause the ALD to fall since more
gene flow will  turn the admixed population into the intro-
gressing  parental  population.  Over  the  history  of  animal
breeding, admixing of different breeds has short-term bene-
fits  i.e.,  exploiting  the  notions  of  complementarity  and
heterosis of various traits resulting in the increased frequen-
cy of heterozygotes, which can hide harmful mutations or al-
low  expression  of  overdominance,  thereby  lessening  the
detrimental impacts of genetic bottlenecks [5]. Also, an intro-
duction of novel genotypes that are not present in parental
populations could be crucial in some situations; these new
genotypic combinations can yield transgression phenotypes
that are far outside of parental norms. Long-term benefits of
admixture  influence contemporary genetic  and phenotypic
diversity, which may cause differences in adaptability to the
environment  and  the  development  of  diseases  among  the
populations  [6].  In  fact,  the  increased  genetic  diversity
brought  about  by  admixture  serves  as  the  basis  for  local
adaptation in recently settled ecosystems. Generally, admix-
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ture  levels  and  ancestry  are  estimated  using  pedigree  re-
cords; however, with the addition of genomic data, these esti-
mations can be done with greater accuracy than with pedi-
gree information alone [7]. Genetic admixture analysis in a
population enables geneticists to divide individuals in a com-
munity into discrete groups based on specific genome-wide
markers that are subsequently linked to biological entities.
These admixing rates can be explored at several levels, rang-
ing from the individual to the population, i.e., at the popula-
tion, individual, or specific chromosomal areas (locus level).
By utilizing  genomic  methods,  the  genetic  mix  of  distinct
breeds and whether they are purebred, graded, or crossbred
can be determined [8]. It is also feasible to establish the his-
torical and geographical origins of these breeds by recogniz-
ing  their  recent  or  distant  mixing  [9].  Genomic  investiga-
tions can also be used to determine their divergence and mix-
ing. In humans, genetic admixture has been widely explored
during the preceding decades [10, 11]. However, admixture
investigations  of  other  species  have  only  recently  begun
[12].

2. USE OF MARKERS IN ADMIXTURE STUDIES
Mostly in populations maintained at different locations,

the breed composition and population structure are estimat-
ed  on  the  basis  of  pedigree  records,  assuming  strictly  the
halving nature of inheritance across various progeny genera-
tions or more remotely on the basis of farmer’s assessments
and assumptions. The four grandparents of an individual are
considered  to  have  contributed  a  quarter  each  of  the
genomes of an animal, great grand-parents contribute one-
eighth each, and so on, according to this method of calcula-
tion. However, across various farms and mainly in develop-
ing countries, human errors in recording, calculation and ap-
plying  of  various  statistical  procedures  project  major  hin-
drances to the accurate pedigree and parentage/ancestry esti-
mation.  In  most  of  the  instances,  the  pedigree  records  re-
main unreliable and/or unavailable as well. The Mendelian
and other genetic principles along with the genetic recombi-
nation phenomenon also pose a major threat to accurate inter-
pretations of parentage and population structures. The pro-
cess of recombination occurring across generations results in
chunks of genomes being present as a mosaic in the genome,
emanating from various ancestral populations [13]. The F1
generation, resultant of the admixture of two lineages, initial-
ly contains huge chunks of chromosomes evolving from the
parental population, maintaining their individual identity at
the genomic level. However, with further inter-breeding, the
intact chromosomal chunks get mixed by the process of re-
combination and become mosaics in terms of chromosomal
segments  from  input  populations.  It  is  the  undisturbed
chunks of chromosomes that,  if exploited, are sure to pro-
vide a definite idea of admixture and the constituent of popu-
lations on a comparable basis.

The pedigree-based analysis is unable to depict the true
inbreeding levels in each animal as the true allele frequen-
cies in the base population remain unknown. Variation or ge-
netic diversity is termed the lifeline of genetic studies and
raw material of evolution. It provides the base material on

which geneticists can work, and the same is needed for adap-
tation  and  speciation  of  livestock  populations  across  the
globe. Genetic structure, diversity and individual admixture
analysis have helped in improving breeding tools for lives-
tock improvement in developed countries. At the molecular
level, there are several sources of variation and genetic diver-
sity that are prevalent within a breeding group, ranging from
recombination and mutation to others. The meticulous, ana-
lytical  studies  on  closely  linked  markers  will  provide  in-
sights into how the parental haplotypes present themselves
after several generations of crossbreeding. With routine and
galloping progress in next generation sequencing and allied
techniques,  a  huge  help  is  promised  to  researchers  as
genome-wide assays have become a practice now. This al-
lows for cost-effective and genome-wide characterization of
various species for genetic diversity and population structure
studies. A huge amount of data can now be generated for the
characterization  of  population  genetic  diversity  in  various
livestock species. Genomic markers have already been used
to assess the depth of genetic variation among various lives-
tock breeds across multiple species [14, 15]. These genetic
markers notably include microsatellite and SNP variants.

3. MICROSATELLITE
Microsatellites  are  direct  tandem  repeating  DNA  se-

quences  that  range  from  one  to  six  base  pairs(bp)  long.
Hence, microsatellite markers are additionally known as sim-
ple sequence repeats (SSR). The genetic basis for these re-
peats could be faults in DNA replication or unequal crossing
over during meiosis, and information from microsatellites is
often related to repeat length [16-18]. Microsatellite-based
genotyping is the method of choice for genetic characteriza-
tion because of its high mutation rate, high polymorphism,
codominance,  and uniform dispersal  at  the  genomic  level,
which aid in (i) the explanation of the total scale of genetic
diversity within species. and (ii) the development of objec-
tive standards for conservation and a genetic enhancement
scheme [19].

4. SINGLE NUCLEOTIDE POLYMORPHISM
A single nucleotide polymorphism (SNP) is a minor ge-

netic  change  or  variant  that  can  arise  within  the  DNA se-
quence of an individual. These are binary markers (biallelic)
with less variability than multiple allele loci but are the most
abundant as they occur once every 300 nucleotides on aver-
age in different species. This characteristic has allowed us to
forecast the correlations of SNP markers to several critical
economic variables in different animals. Myostatin (MSTN)
has been related to animal double muscling, Bovine Leuko-
cyte Adhesion Deficiency (BLAD), Complicated Vertebral
Malformation  (CVM),  and  Congenital  Muscular  Dystonia
(CMD) [20,  21].  During the past  few decades,  SNPs have
been  explored  singly  or  in  groups  of  10-15  in  substantial
numbers to develop some characteristic connections with an
important trait prevalent in different animals.

SNP markers are robust tools in population genetics to
assess selection signatures for breed classification purposes



Global and Local Ancestry and its Importance Current Genomics, 2024, Vol. 25, No. 4   239

and for understanding various other diversity measures due
to  their  genomic  abundance  and  accessibility  and  include
more  than  90%  of  all  differences  between  individuals
[22-24]. SNP testing can reveal genetic ancestry by compar-
ing DNA with reference populations from around the world
[24].  It  can  provide  information  about  your  ethnic  back-
ground and the regions where your ancestors likely originat-
ed from [25]. SNPs are used as genetic markers in a number
of applications, such as genomic selection, quantitative trait
loci (QTL) mapping, and marker-assisted selection (MAS)
[26-28]. They contribute to the creation of breeding methods
for desirable traits by offering insights into genetic diversity
both within and between populations [29]. SNPs play a cru-
cial role in deciphering the genetic underpinnings of intri-
cate characteristics and diseases, facilitating the identifica-
tion of genes linked to resistance to disease and other impor-
tant traits [30].

5.  USAGE   OF    MICROSATELLITE    MARKERS
VERSUS SNPS IN POPULATION STUDIES

Traditionally,  microsatellite  markers  have  been  em-
ployed to measure breed variety, differentiation, introgres-
sion, and level of admixing [31]. Throughout the last few de-
cades,  microsatellite markers have been used across lives-
tock species, and reliable results have been produced in the
same context. After the dominance of microsatellite markers
in genome-wide studies, SNPs have now emerged as impor-
tant third-generation markers and act as a substitute for mi-
crosatellites in studies on different aspects of population ge-
netics [32]. With the advent of density-based SNP panels, it
has become extremely easy to conduct genome-wide studies
on  livestock  species.  On  the  basis  of  SNP,  one  requires
much smaller sample sizes to obtain comparatively accurate
allele frequency estimates. One study by Shi et al. revealed
that samples as small as four individuals were enough to pro-
vide reliable genome-wide data based on SNP panels [33].
Another study by Frkonja et al. reported similar results with
profound accuracy even with subsets of 10 animals for pre-
dictions  of  admixed  individuals  (correlations  of
0.997–0.999)  [34].  On  the  other  hand,  the  same  studies
based on microsatellite markers require considerably larger
sample sizes than SNPs to get better results. Among various
species, the number of studies regarding the population struc-
ture and admixture analysis using microsatellite markers has
been significantly high [24]. According to FAO, a restricted
set  of  microsatellite  loci,  typically  thirty  (30)  in  number,
should be targeted [35].  McKay et  al.  stressed the signifi-
cance of abundant SNP markers in genetic diversity studies
in  order  to  accurately  complement  the  standardized  thirty
(30) microsatellite markers [36]. This is reported as a conse-
quence  of  the  decreasing  information  content  of  specific
SNP loci, however, due to the additional properties of SNP
markers, they are being preferred nowadays. These proper-
ties include their robustness, cost-effectiveness, automatic al-
lele calling, minimal mutations, prevalence across a genome
and biallelic nature, that enable them to be detected by em-
ploying computerized methods [37]. These properties make
them the markers of choice for genome-wide studies on dif-

ferent aspects of population genetics. SNPs are also thought
to  be  the  better  candidates  for  the  purpose  of  diversity
studies; they are more abundant, genetically stable and easi-
ly responsive to complex analytical procedures when applica-
ble  [38].  Regarding  the  number  of  SNPs  to  be  covered,
about 500,000 SNPs may need to be established on genome-
wide SNP maps for humans and up to 300,000 significant as
well as effectively spaced SNP loci for cattle [39, 40]. De
Roos  et  al.  determined  that  50,000  SNPs  are  required  for
studies on one breed, and about 300,000 SNP markers are re-
quired if the study is conducted across diverged breeds. Still,
genome-wide studies on association mapping using a rela-
tively lower number of SNP markers have produced success-
ful results [41, 42]. This has eventually led us to a trend of
SNP panels being designed and validated from 10K (10,000
SNP variant markers) to 777K (777,000 SNP variant marker-
s) for several species. The rapid development of these panels
aided in the acquisition of new information about the popula-
tion structure and genetic diversity among the cattle popula-
tion. On increasing the density from 50k to 777k, Gunia et
al. reported that no significant effect was found on the accu-
racy of genome-based results [43]. The establishment of two
large assemblies comprising a bovine genome would likely
accelerate research on population structure and genetic diver-
sity in cattle species [44]. The Bovine HapMap consortium
has established itself as a launch pad for further studies on
genetic diversity and population structure. The consortium
data, based on a survey of 501 animals from 19 worldwide
taurine (Bos taurus), indicine (Bos indicus), and crossbreds
(taurine X indicine) populations, has just been released, and
this assay covered approximately 30,000 SNP markers from
the whole bovine genome [45].

6. ANCESTRY INFORMATIVE MARKERS
The fraction of genetic material passed down from each

pioneer group is referred to as ancestry. Ancestry Informa-
tive Markers (AIMs) are DNA markers that can indicate the
probable origin of a population from a DNA sample if the
original individual is unknown or unwilling to reveal their
ancestry [46].  Any marker (STRs, SNPs) can be used, but
biallelic SNPs are the most commonly used as they are nu-
merous, regularly spread across the genome, and easily geno-
typed (Fig.  1).  AIMs are mostly utilized for admixture re-
search and determining individual biogeographical ancestry
(I-BGA) [47]. According to one study, while investigating
admixture, a higher proportion of biallelic markers (SNPs)
(4-10X) are necessary to obtain the same results with regard
to effectiveness and precision as multi-allelic markers (mi-
crosatellites) and this issue can be solved by employing prin-
cipal component approach by minimizing the dimension of
variables [48]. Lewis et al. revealed that in most cases, the
number of genetic markers necessary for ancestry interpreta-
tion may be reduced to 1.5% of the initial number of SNPs
with an accuracy of 92% [49]. Admixture panels are made
up of ancestry markers having significant information con-
tent that is evenly distributed across the genome, and the op-
timal density of the panel is dictated by the size of the ALD
blocks, which are determined by the number of generations
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following the admixing event. As generations increase, ALD
decays and linkage equilibrium is restored, resulting in small-
er  ALD  blocks.  Smaller  ALD  blocks  necessitate  higher
marker intensity to differentiate chromosome ancestry transi-
tions  caused  by  meiotic  crossover  occurrences  [50].  The
most critical prerequisite for the admixture mapping panels
is a group of genetic markers that offers information about
the ancestry origin of each allele at each locus. Furthermore,
markers must be distributed throughout the genome, autono-
mous, and sufficiently numerous to resolve ancestral transi-
tion from one ancestral chromosomal state to the next [50].

There are several approaches for determining the mark-
er’s information content. There are two distinct and basical-
ly different methods. One method is to assess the mapping
power of individual loci or a group of loci using available
software [51, 52]. This software has its own set of benefits
and drawbacks, but the most critical constraint is the compu-
tational constraint, although there are no restrictions on the
number of loci or individuals to be studied [53]. The second
approach is to rank loci solely based on their accuracy, i.e.,
the  Marker’s  information  content,  which  refers  to  the
amount of information a locus possesses about an individu-
al's lineage. The introduction of informative markers mini-
mizes the number of markers required for proper allocation
[54]. Several measures/criteria of marker’s informativeness
are proposed, such as Shannon information content, Delta,

Pairwise  Wright's  FST  by  Wright,  Global  Wright's  FST  by
Wright,  Pairwise  Weir  and  Cockerham  FST  by  Weir  and
Cockerham,  Global  Pairwise  Weir  and  Cockerham  FST  by
Weir and Cockerham, and Informativeness for assignment
(In) [54-58]. In recent years, a fresh data mining approach
known as FIFS - Frequent Item Feature Selection was devel-
oped based on the identification of the most relevant mark-
ers from population genomic data using frequent items [59].
It  is  a  modular  approach  that  consists  of  two  key  compo-
nents.  The  first  identifies  the  most  common  and  distinct
genotypes in each community examined. The second one se-
lects the best of them to provide useful SNP subsets.

7.  APPROACHES FOR ADMIXTURE ESTIMATION
THROUGH  THE  USE  OF  BIOINFORMATICS  AND
STATISTICAL TOOLS

There are two primary categories of methodologies used
to determine the ancestry of an admixed population namely,
global ancestry and local ancestry-based methods. The goal
of global ancestry is to calculate the ancestral contributions
made  by  each  constituent  population  to  crossbred  popula-
tions.  These  estimations  are  based  on  an  examination  of
marker variation distributed across the entire genome. The
detection of global ancestry in any admixed population can
be done using either a model-based approach or a non-para-
metric approach [60, 61].

Fig. (1). Inference of Ancestry informative markers (AIMs) panel. a,b,c,d are genotypes/marker set derived from different genotyping plat-
forms and common SNPs are extracted to get AIMs. AIMs indicate population origin from DNA samples, aiding admixture research and indi-
vidual biogeographical ancestry determination. Biallelic SNPs, prevalent for their abundance and ease of genotyping, are commonly used
AIMs, requiring optimization in marker density to resolve ancestral transitions accurately. (A higher resolution / colour version of this figure
is available in the electronic copy of the article).
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8. MODEL-BASED APPROACH
The  model-based  technique  finds  chromosomal  seg-

ments and chunks that are still intact throughout the ancestry
after coming from the base population. The proportions of
various  breeds  in  the  current  population can be quantified
with  the  aid  of  the  identification  of  these  chunks  [62].
STRUCTURE and ADMIXTURE are the two most widely
used bioinformatics  tools  for  model-based global  ancestry
analysis  [63,  64].  Both  of  these  programs  operate  using  a
model  that  assumes  that  Hardy-Weinberg  equilibrium and
Linkage equilibrium exist across these loci and utilize ances-
try portions and population allele frequencies derived from
genotypic  data  [65,  66].  When  admixture  takes  place,  the
contributing parental populations’ allele frequencies are com-
bined  linearly  to  create  the  population's  allele  frequencies
[67].  The  STRUCTURE  program  employs  a  model-based
methodology that mostly adheres to the Bayesian technique
of  probabilistic  statistics  and  processes  data  using  the
Markov Chain Monte Carlo (MCMC) algorithm. The identi-
fication of the relevant subpopulations and probabilistic as-
signment of individuals to these populations is one approach
to study population structure, the other way is the likelihood
approach. A model with K populations (split statistically or
biologically)  and  a  list  of  allele  frequencies  at  each  locus
serves  as  the  foundation  for  the  Bayesian  clustering  ap-
proach [68]. This model simultaneously calculates the popu-
lation's  allele  frequencies  and  divides  the  population  into
various subpopulations depending on allele frequencies and
variations. To be more specific, the precise allele frequen-
cies  at  each  of  the  K populations  and  admixing  levels  for
each  individual  animal  are  determined  using  the  MCMC
method of Bayesian statistics. This technique/software can
be used with other kinds of markers, such as microsatellites,
SNPs, etc. [69].

9. NON-PARAMETRIC APPROACHES
Non-parametric tests do not need the data modality to in-

fer population structure. A variety of multivariate statistical
analysis features are used in non-parametric tests. The two
primary approaches employed in these tactics are Principal
Component Analysis (PCA) and Cluster Analysis [70, 71].
These  methods  aim to  categorize  the  population  based  on
how  the  multidimensional  diversity  in  genotypic  data  be-
haves  linearly.  These  methods  aid  in  assessing  whether
groupings of genotypic data represent different populations
or breeds [52]. PCA seeks to minimize the number of dimen-
sions in complicated datasets linearly. The initial vector of
correlated variables is transformed into a vector of uncorre-
lated  principal  components  using  this  dimensionality
change.  The  primary  portion  of  variance  between  popula-
tions and among individuals is determined by these funda-
mental components [72]. PCA aids in the analysis of various
principal components for a group of markers in various lives-
tock populations in population genetics investigations. PCA
also aids in identifying populations with various components
that account for the majority of the observed changes. PCA
is  a  popular  statistical  method  for  analyzing  the  genetic
makeup of populations. One of the key components of non-

parametric approaches performed is the clustering of mem-
bers of the population into different clusters based on their
respective  allele  frequencies  at  various  SNP  variant  sites.
Overall, in genetics and breeding, PCA can be used to study
genetic  diversity,  population  structure,  and  relationships
among individuals. It can also assist in identifying outlier in-
dividuals, detecting genetic anomalies, and informing breed-
ing  decisions.  Finding  populations  that  represent  various
population groups in the dataset is the ultimate goal of clus-
ter analysis [73].

Non-parametric tests do not make assumptions about the
distribution of the data and are used when the data are not
normally distributed or when dealing with categorical or ord-
inal data [74]. These methods, like rank-based tests or per-
mutation tests, can help in analyzing genetic associations, as-
sessing genetic  diversity,  and identifying markers  or  traits
under selection [75, 76]. On the contrary, parametric tests as-
sume that the data follow a specific distribution (usually nor-
mal) and involve estimating the parameters of this distribu-
tion [77]. Parametric methods, like linear models or mixed
models,  are  used to  estimate  genetic  parameters,  calculate
breeding values, and predict genetic responses to selection
[78]. These approaches provide valuable insights into the ge-
netic  architecture  of  traits  and  help  in  making  informed
breeding  decisions.

10. DIFFERENTIATION OF RECENT AND DISTANT
ADMIXTURE

Migration is an extremely potent evolutionary force. Indi-
viduals  that  have  been  admixed  are  the  outcome  of  gene
flow  between  populations.  Knowing  the  patterns  of  gene
flow is critical for understanding population evolution. With
the elimination of mutation, the chunks provided from each
parental  population  are  assumed  to  be  directly  associated
and traceable to one of the ancestors in the near hybrid gener-
ations. When two populations interbreed, a mosaic of these
chunks is formed, but the chunks from the parental popula-
tions remain intricate, even if their size is altered [79]. Re-
cent hybrids are likely to have mostly unworn ancestral ha-
plotypes,  whereas  distant  admixture  is  expected  to  have
mostly torn-out haplotypes. This worn-out process of chro-
mosomal chunks/haplotypes is due to genetic processes like
recombination, reciprocal recombination, genetic drift, and
mutation. Genetic features, for example, changes in recombi-
nation rates among chromosomal regions, create challenges
for estimating time empirically from admixture data. Infer-
encing  the  recent  and  distant  admixture  may  differentiate
among  various  phylogeographic  concepts  [80].  Several
methodologies in order to know the time of admixture are
ROLLOFF, which looks at pairs of SNPs to see how admix-
ture-related LD reduces with genetic distance, calculates the
association  between  a  (signed)  LD  statistic  between  two
markers and a weight that reflects their allele frequency dif-
ferential in ancestral populations and estimates the date by
evaluating the correlation between pairs of markers as their
genetic distance increases and fitting an exponential distribu-
tion using least squares [81]. Wavelet-based approach works
in  two  parts  [82].  The  first  is  a  PCA  extension  known  as
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StepPCO, which extracts admixture from the genome, and
the second is based on wavelet decomposition of admixture
to infer the date of the mixing event. In accordance with link-
age disequilibrium, a study computed the rate of LD decay
at 10% frequency at places in the genome that carry derived
alleles in both the ancestral and tested populations, and this
approach expands the number of locations that provide infor-
mation regarding timing of the admixing [83]. MALDER ap-
proach evaluates the rapid decay of admixture-induced LD
in the target population while accounting for repeated admix-
ture events in populations with relatively small sample size
and  the  same  level  of  admixing  [84].  Scaled  Block  Size
works by considering the ancestral population and alternate
ancestry as the parental and introgressed genome, respective-
ly [85]. The introgressed genome is used to calculate SBS
by  estimating  the  median  block  size  of  the  introgressed
genome as a percentage of each individual's  chromosome,
and the size of introgressed genome blocks is expected to be
significantly linked with the period since introgression when
the median introgressed block size is divided by the total per-
centage  of  the  introgressed  ancestor’s  genome.  GLOBE-
TROTTER employs PCA as it yields (K-1) significant eigen-
vectors  from admixture  between  K unique  source  popula-
tions and tested for three or more admixing populations by
looking at two or more such eigenvectors (p<0.05) [86]. It
can reverse the admixture process to enhance the precision
of  results.  Parental  Admixture  Proportion  Inference  ex-
amines unphased local ancestry tracts and is made up of two
parts: A model that employs genome-wide ancestry portions
to  predict  parental  admixture  proportions  and  a  Hidden
Markov  model  (HMM)  that  determines  admixture  time
frame  by  considering  tract  lengths  [87].  The  below  table
shows some of the work done using different software.

11. ADMIXTURE MAPPING
Admixture  mapping  is  a  sort  of  statistical  analysis  in

which genes are mapped using admixed populations (those
created via gene transfer between more than one genetically
diverse individual) (Fig. 2). The strength of AM arises from
the fact that linkage disequilibrium is produced between all
linked and unlinked loci.  According to Chakraborty et al.,
the degree of Admixture Linkage Disequilibrium (ALD) in
an admixing population is influenced by the allele frequency
differences  between  parental  populations,  admixing  level,
dynamics of admixing, the time elapsed since admixing, and
the  rate  of  recombination  between  the  loci  [88].  ALD be-
tween linked markers degenerates more slowly than between
unlinked markers, which decays more quickly (within two to
four generations).  The ability to distinguish between ALD
produced at loci with no genetic connection and ALD gener-
ated at markers is made possible by the exponential decline
in ALD with genetic distance. As a result, admixture map-
ping should be able to pinpoint the loci containing these alle-
les if the parental populations differ in a characteristic or dis-
ease  due  to  variable  frequencies  of  risk  alleles.  There  are
two main factors on which admixture mapping studies de-

pend: the extent of the magnitude associated with locus an-
cestry, which could be assessed based on ancestry-risk ratio
(proportion of risk in individuals who have two copies of a
gene  compared  to  the  risk  in  individuals  having  no  gene
copies)  and  the  number  of  generations  that  have  passed
since admixing, which could be evaluated using marker in-
formation from admixed populations [89, 90]. The key bene-
fits of admixture mapping are that it only needs 2000–3000
ancestry-informative markers for the complete genome, and
it is less prone to allelic diversity. Admixture mapping can
be carried out using the Bayesian methodology and Classic
Likelihood Based method [91, 92]. The prior one relies on a
probabilistic  framework  in  which  K  subpopulations  con-
tribute to the admixed population's gene pool, and ancestry
variation on every gamete is produced via K distinct poisson
arrival processes, whereas the second does not account for
model parameter uncertainty such as allele frequencies or hi-
erarchical  reliance  of  individual-level  factors  on  popula-
tion-level parameters. So, the Bayesian approach is a com-
monly used approach for admixture mapping, and some of
the  Bayesian  programs  are  ANCESTRYMAP,  AD-
MIXMAP,  and  STRUCTURE  [63,  93,  94].

12. LOCAL ANCESTRY
The global estimation of genetic ancestry relies upon the

assumption that each unique individual shares identical ge-
netic ancestry ratios at each genomic locus [3]. However, it
is worth noting that the potential ancestral configurations are
notably constrained at a single locus, taking into account the
two  alleles  present,  resulting  in  limited  variation,  ranging
from 0 to 1,  irrespective of an individual's  ancestral  back-
ground.  As  a  consequence,  these  restricted  possibilities  at
the locus level contribute to variations in admixture propor-
tions across different loci, leading to a divergence between
the local ancestry and the overall global ancestry of admixed
individuals (Fig. 3) [95]. These variations in admixture pre-
dictions primarily arise from biological factors, including ge-
netic drift, gene flow, and selection [3, 96-99]. It is essential
to acknowledge that selection exclusively targets functional
elements within specific gene regions, in contrast to genetic
drift and gene flow, which impact the entire genome [100,
101]. Therefore, after a few generations of admixture, alleles
favored by selection are expected to exhibit higher frequen-
cies,  leading  to  deviations  in  local  ancestry  from  the
genome-wide average [102]. These variations, whether in ex-
cess or deficiency, within the genomes of admixed individu-
als can be employed to identify indications of contemporary
selective pressures. As the effects of specific genomic loca-
tions accumulate over multiple generations, they can be inter-
preted as markers of selection following the process of ad-
mixture  [96].  Genetic  drift,  often  referred  to  as  'noise',
should be acknowledged as a factor influencing local ances-
try because it can introduce significant disparities in local an-
cestry following admixture [103, 104]. The subsequent sec-
tion will elaborate on various tools and methodologies em-
ployed for the inference of local ancestry in admixed popula-
tions.
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Fig. (2). Admixture mapping of disease alleles in admixed individuals, assuming that population (red) carrying predisposed allele for the dis-
ease. Admixture mapping utilizes genetic analysis in mixed populations to identify disease-associated alleles, leveraging the linkage dise-
quilibrium between loci. It relies on factors such as ancestral locus magnitude and time since admixture, offering a robust method with bene-
fits including lower marker requirements and reduced susceptibility to allelic diversity. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).

Fig. (3). Schematic representation of local ancestry inference from admixed populations. The estimation of global genetic ancestry assumes
uniform ancestry ratios across genomic loci, but limited variation at individual loci leads to divergence between local and overall ancestry.
Admixture variations, influenced by genetic drift, gene flow, and selection, shape local ancestry discrepancies, provides insights into contem-
porary selective pressures in admixed populations. (A higher resolution / colour version of this figure is available in the electronic copy of
the article).
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13. LAMP
This approach was based on finding the Hidden Markov

Model, or its expansions, that can be used to infer a broad
range of parameters, including the precise location of recom-
bination events. This approach uses sliding windows of adja-
cent SNPs and starts by figuring out the ideal window size.
Then, it employs a clustering technique that uses these win-
dows to determine each individual lineage. The most likely
ancestral populations at each SNP are then determined by a
majority  vote  across  all  windows  that  coincide  with  the
SNP. This straightforward strategy offers several benefits. In
the beginning, it demonstrates analytically that the algorith-
m's estimates are asymptotically accurate across the entire
genome. Second, it  optimizes fewer parameters than other
techniques, making the optimization quicker and more reli-
able. Thirdly, it also takes the advantage of not requiring an-
cestral genotypes to infer locus-specific ancestries, in con-
trast to other approaches. Fourthly, its accuracy improves by
increasing the quantity of the reference data due to its effi-
ciency in handling big reference sets. Finally, its algorithm
successfully converts the larger reference set and reduces di-
vergence  between  the  reference  and  ancestor  populations
with  superior  accuracy  [105].  The  major  drawback  of
LAMP is that it necessitates the usage of a physical map as
well as statistical characteristics, such as the Hidden Markov
model's hidden state count and window size that is utilized
for assuming constant local ancestry [106]. Yougbaré et al.
analyzed local ancestry deviations from the average for each
SNP across 29 autosomes to detect potential regions under
selection  in  trypanotolerant  Baoulé  cattle  and  their  cross-
breds using LAMP [101]. Significant deviations were found
on chromosomes 8 and 19 in positive animals, while nega-
tive animals showed higher deviations on chromosomes 6,
19, 21, and 22, with candidate genes like PDGFRA on chro-
mosome 6 and CDC6 on chromosome 19 associated with try-
panotolerance in West African taurine cattle.

14. WINPOP
It is the locus-specific ancestry method that starts with

the LAMP framework and counts for a single recent recom-
bination per window. It employs a dynamic programming ap-
proach to loop through the positions of the window and de-
termines the possibility of each point having an ancestor ei-
ther  upstream  or  downstream.  Furthermore,  it  selects  the
window length individually at each point based on the local
genetic  difference  between  the  two  ancestral  populations
within that window, and in each window, it anticipates exact-
ly one recent recombination event. This differs from LAM-
P's window length calculation, which is based solely on the
number of iterations and recombination frequencies.  It  as-
sumes that the SNPs in the data are uncorrelated and less in-
formative SNPs are removed [107]. To quote an exemplary
study using WINPOP, Yang et al. interrogated genome-wide
germline  SNP  genotypes  in  random  samples  of  children
with acute lymphoblastic leukemia (ALL) and observed that
the genomic variations associated with Native American an-
cestry were responsible for the risk of relapse of ALL [108].

15. HAPMIX
This methodology uses phased data from unadmixed ref-

erence populations, which are genetically identical to the ac-
tual ancestral populations. HAPMIX posits that the admixed
population under study resulted from the mixing of two an-
cestral populations. Although mistakes could theoretically re-
sult from differences between the reference populations and
the true ancestral  populations,  in practice,  HAPMIX is re-
silient  to  this  problem  in  a  number  of  realistic  scenarios
[109]. The main idea behind this method is to view each of
the  admixed  individual  haplotypes  as  samples  taken  from
the reference populations. HAPMIX calculates the probabili-
ty that a haplotype from an admixed person will be a better
statistical match to one or both reference populations at each
location  in  the  genome.  These  likelihoods  are  combined
with  data  from  nearby  loci  using  HMM,  which  yields  a
stochastic prediction of ancestry at every locus. Two-scales
transition can take place using this method. Small-scale tran-
sitions often occur every few tens of thousands of bases be-
tween haplotypes from a reference population, and for a new-
ly  admixed  population,  the  large-scale  transitions  can  in-
volve up to tens of millions of bases between the reference
populations. The primary flaw of this methodology is that it
requires specifications of various biological characteristics
such  as  genomic  maps,  rate  of  mutations  and  recombina-
tions, average ancestry coefficients, and an average number
of iterations since admixing, a lot of time for processing and
only takes into account  two ancestral  populations at  once.
HAPMIX is employed to detect ancestral chromosomal seg-
ments in Romani population genomes. Interestingly, various
Romani  populations  from Central  Europe  (Slovakia,  Hun-
gary,  and  Romania)  and  the  Balkan  region  (Bulgaria  and
Croatia)  exhibit  low  mean  values  of  genetic  admixture,
suggesting that the European dispersion of the Romani peo-
ple  occurred  predominantly  through  the  Balkans  after  a
swift migration with moderate gene flow from the Near or
Middle East [111].

16. PCAadmix
PCA  is  a  quick,  nonparametric  technique  for  finding

structure in data. It distinguishes the main axes of ancestry
when applied to genetic data and divides samples according
to population genetic structure. It is easier to deconvolve an-
cestry tracts in admixed individuals since the admixed indivi-
duals are displayed between the ancestral populations. Since
the positions of admixed people in relation to groups of an-
cestral  individuals  provide  interpretation  rather  than  the
PCs, it may not be as interpretable as admixture models. So
in order to avoid this flaw, PCs are expanded to PCAadmix,
which uses PCA to assign higher weights to variation, which
provides more ancestry-related information. This approach
utilizes phased data, shorter windows of SNPs and an HMM
to probabilistically represent each window's ancestry and in-
fer  the  ancestry  proportions  of  individual  parents  on  each
chromosome [112]. In a notable study utilizing PCAdmix,
Spangenberg  et  al.  identified  chromosomal  segments  of
Amerindian descent, indicating the existence of indigenous
genetic ancestry in present-day descendants [113]. The Char-
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rúas, an Amerindian group that lived in Uruguay during the
period of European colonial contact, were found to possess
specific haplotypes that were abundant among them but rare
in other studied Amerindian groups.

17. SupportMix
It is a machine-learning technique that has a two-stage

approach in which the initial stage employs support vector
machines  (SVM),  a  subcategory  of  supervised  machine
learning algorithms, that determines putative ancestors of ge-
nomic regions. SVM was acknowledged as one of the most
effective approaches for generic classification tasks in order
to  detect  transitions  between  parental  sources  in  admixed
genomes.  The  second  level  adopts  a  refining  technique
based on the Hidden Markov Model (HMM). It is a reliable
strategy that could be scaled to a genome-wide analysis by
taking into account more than fifty parental populations. It
can undertake analysis by looking at numerous populations
from around the world simultaneously as potential ancestors
without  being  worried  about  how they  relate  to  the  target
group  and  will  return  to  the  population  that  is  genetically
closest to the ancestral population. The major advantage is
that it is more precise but also resilient to changes in the pa-
rameter [114]. To quote an example, SupportMix analyzed
the ancestry of the Qatar population using 55 world popula-
tions from the Human Genome Diversity Panel, revealing de-
tailed insights into the region's genetic history. It confirmed
the presence of  three  major  sub-populations  in  Qatar  with
mainly Arabic, Persian, and African ancestry. Additionally,
SupportMix  identified  that  the  Persian  group's  ancestry  is
more  closely  related  to  populations  from  Greater  Persia
rather than China and the African group's ancestry is of sub-
-Saharan origin rather than Southern African Bantu origin,
as previously believed [115].

18. ChromoPainter
It  is  the  best  way  to  infer  ancestry  when  there  is  a

problem or a lack of data for the admixed population, as it
uses information from huge panel data that is even unrelated
to the targeted admixed population. Both current and histori-
cal populations’ worldwide ancestry can be reconstructed us-
ing this technique, and simulation-based comparisons have
demonstrated that it has high accuracy at the genome-wide
level, even when just a few reference samples are available.
Later,  it  utilizes  Nonnegative Least  Squares  to  deduce the
painting  information  [116].  As  an  example  study to  quote
for this tool, Kumar et al. conducted a study on 110 Roman
Catholics from three different locations on the West Coast
of India to investigate their genetic history [117]. They dis-
covered that Roman Catholics exhibit a strong genetic affini-
ty  with  Indo-European  linguistic  groups,  especially  Brah-
mins. The study also detected genetic signals of Jewish an-
cestry  in  Roman  Catholics  through  linkage  disequilibri-
um-based admixture analysis, a signal not found in other In-
do-European populations in the same geographical regions.
Additionally,  the  analysis  indicated  that  Roman  Catholics
have a distinct South Asian-specific ancestry and have under-
gone significant genetic drift.

19. RFMix
It  is  a  discriminatory  strategy  for  modeling  ancestry

across  a  haplotype  sequence  of  admixed  individuals  of
known  or  assumed  ancestry.  Such  strategies  directly  de-
scribe the reliance of unseen factors (such as ancestries) on
observable factors (such as alleles). In this technique, a Con-
ditional  Random Field  (CRF)  generated  by  random forest
models learned on reference panels are used to estimate lo-
cal ancestry inside every window of each chromosome. Fol-
lowing the assignment of ancestries to windows in admixed
chromosomes, it utilizes them to increase inference accuracy
by employing an expectation-maximization (EM) step to bet-
ter understand haplotype trends in parental populations. Esti-
mation  of  ancestry  based  on  RFMix  is  more  precise  and
faster compared to various techniques, such as LAMP (ap-
proximately 33-fold faster) and SupportMix (about 1.7-fold
faster) [118]. Daya et al.  conducted admixture mapping in
the South African Coloured population using RFMix to iden-
tify novel tuberculosis susceptibility genomic regions [119].
They  identified  several  promising  regions  associated  with
San ancestry and African ancestry, notably on chromosomes
15q15 and 17q22, which are near genomic regions previous-
ly  linked  to  tuberculosis.  The  study  also  highlighted  im-
mune-related  susceptibility  genes  like  GADD45A,  OSM,
and B7-H5 in these identified regions.

20. EILA
Efficient Inference of Local Ancestry in admixed individ-

uals is based on three phases to address the methodological
issues. In the initial stage, genotypes in admixed individuals
are given a number score (with a range of 0-1) to better quan-
tify how closely related the SNPs are to a particular ances-
tral group. In the second stage, the breakpoints of the ances-
tral haplotypes are determined using fused quantile regres-
sion,  and  in  the  third  stage,  the  k-means  classifier  is  em-
ployed to infer ancestry at each site. The main advantage of
EILA is that it relaxes the requirement of linkage equilibri-
um  and  employs  all  genotyped  SNPs  rather  than  just  un-
linked loci to boost the power of inference [115]. In an analy-
sis  of  the  Singaporean  chicken  population  using  EILA,  it
was revealed to be highly diverse, with red junglefowl-intro-
gressed alleles ranging from 5% to 97%. The study inferred
that genes selected for domestication in this population, such
as SLTM, CFAP97, CAPS2, C2CD5, and DYNC2H1, origi-
nated from red junglefowl ancestry [120].

21. ASPCA
The purpose of the Ancestry-Specific PCA approach is

to determine the subcontinental origin of haplotypes across
the  entire  genome,  offering an improved understanding of
the ancestors.  It  also examines tract  length patterns of  ge-
nomic regions related to different origins to analyze biologi-
cal models of modern demographic evolution since the ad-
vent  of  intercontinental  mingling  [116].  Lucas-Sánchez  et
al. used ASPCA to examine the genetic impact of trans-Sa-
haran migrations in North Africa, revealing heterogeneous
and generally low-frequency genomic segments of sub-Sa-
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haran origin among North Africans [121]. Two significant
admixture events were identified: one around the thirteenth
to fourteenth centuries CE involving North Africans and a
Western-sub-Saharan-like  source,  and  another  around  the
seventeenth century CE involving Tunisians and an Eastern--
sub-Saharan-like  source.  These  events  coincide  with  the
peak of the trans-Saharan slave trade. The findings suggest
ongoing  genetic  interactions  between  sub-Saharan  and
North African populations, contributing to the complex ge-
nomic composition of North Africa.

22. LOTER
Loter program was developed to infer local ancestry for

a wide range of taxa for those whose biological parameters,
such as admixing timeframes and recombination rates,  are
unknown.  It  relies  on the  mimicking approach established
by Li and Stephens, which assumes that admixed individual
haplotypes are viewed as a matrix of preexisting ancestral ha-
plotypes in a given set of ancestral haplotypes from a poten-
tial source parental population. It involves a smoothing con-
trol value called regularization parameter (λ), and this value
is dependent on a complex set of analytical and biological
variables,  involving  rates  of  mutation  and  recombination
and  implements  a  process  where  it  averages  solutions  for
various regularization parameter (λ) values to avoid the chal-
lenging  regularization  parameter  selection.  It  requires
phased haplotypic information for both reference and target
population and accounts for phase errors. This package de-
pends on parameterized optimization problems that have a
single  regularization  factor,  which  penalizes  switching
among ancestral haplotypes and is used to find solutions to
the optimization issue, and its computing complexity scales
linearly  with  the  number  of  markers  and  individuals  from
the initial populations. It estimates the time of admixture us-
ing restored ancestry sequences, and the results are accurate
in  terms  of  the  length  of  time  frame  since  admixing  hap-
pened. This method's key benefits for determining local an-
cestry are that no genetic maps are needed, there are no re-
strictions on the number of SNPs, and admixture time is not
necessary [118]. The analysis using LOTER by Wedger et
al.  revealed  significant  insights  into  the  genomic  conse-
quences of crop-weed hybridization and selection for herbi-
cide resistance in contemporary weedy rice populations. The
results  showed  a  clear  bias  toward  evolving  back  to  their
weedy ancestor, with most contemporary weeds being crop-
weed hybrid derivatives. The genomes of these hybrids have
evolved to be more like their weedy ancestors, indicating a
shift in population dynamics. Haplotype analysis demonstrat-
ed extensive adaptive introgression of  cultivated alleles  at
the resistance gene ALS, suggesting that selection pressure
favored these alleles [122].

23. FLARE
Fast local ancestry estimation uses an enhanced model to

achieve  high  accuracy,  and  it  incorporates  computational
methods created for genotype imputation to obtain remark-
able computing performance and the usage of composite ref-
erence haplotypes speeds up computation [107]. It can be uti-

lized for datasets containing tens of thousands of sequenced
individuals and deliver higher accuracy on massive amounts
of data [123]. In one of the studies using FLARE software,
the  Andean  cohort's  ancestry  was  analyzed,  revealing  a
small fraction resembling the component identified in an Ibe-
rian population from Spain (IBS) and a large non-IBS, likely
Native  American  component.  Additionally,  FLARE  was
used to determine local ancestry at the EPAS1 gene region
plus 100 kb up- and downstream of the EPAS1 gene using
the Thousand Genome Project phase 3 as the reference popu-
lation. The results showed no significant admixture at this lo-
cus.  These  findings  suggest  that  the  Andean  cohort  has  a
unique genetic ancestry, with a mixture of Iberian and Na-
tive American components, and that the EPAS1 gene region
has not experienced significant admixture, indicating a po-
tential role for the EPAS1 gene in high-altitude adaptation in
Andean highlanders [124].

24. SALAI-Net
The  Species-Agnostic  Local  Ancestry  Inference  Net-

work is a two-stage method that begins with a source com-
paring layer, which offers window-level first estimations, fol-
lowed by a smoother layer that improves the initial projec-
tions by leveraging adjacent window data as well as minimiz-
ing  the  shortcomings.  After  being  familiar  with  particular
conditions, SALAI-Net can be utilized for local ancestry in-
ference across any other species or for any group of ances-
tries without the requirement for further tuning or retraining
[125]. The SALAI-Net method was applied to three differ-
ent  datasets  by  Sabat  et  al.:  whole-genome  human  se-
quences,  human  genotyping  array  samples,  and  whole-
genome  sequences  from  dogs  [125].  The  method  outper-
formed previous approaches in terms of balanced accuracy
and demonstrated the ability to generalize between different
species, chromosomes, and datasets. When tested on human
data, SALAI-Net showed improved performance and speed
compared to existing methods, even when trained on human
data  and  applied  to  dog  breeds.  The  results  suggest  that
SALAI-Net is a versatile and efficient method for local an-
cestry inference, applicable to a wide range of species and
ancestry groups without the need for retraining or biological
parameters.

25. BCSYS (LOCAL ANCESTRY CLASSIFIER)
It is more computationally efficient and enables us to use

a larger breed DNA reference panel. Large reference panels,
in turn, allow for more breeds to be called and for increased
accuracy due to the inclusion of more reference samples per
breed. Furthermore, the BCSYS algorithm was specifically
tuned to improve accuracy for mixed-breed samples. Final-
ly, unlike our legacy algorithm, BCSYS is a local ancestry
classifier, which means that in addition to calling the total
proportion of breeds throughout an animal’s genome, it also
assigns  ancestry  labels  to  very  specific  small  segments  of
chromosomes. One new feature is that the local ancestry re-
sults are now used to train a machine learning model that pre-
dicts the purebred status of an animal. However, the local an-
cestry classifier will also drive future product development,
detailing how an animal’s physical traits relate to their indivi-
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dual ancestry [126]. The BCSYS Local Ancestry Classifier
algorithm was used in the study to determine breed assign-
ment  based  on  comparison  to  a  reference  panel  of  over
21,000 dogs of known ancestry from more than 50 countries
[127]. The algorithm classified dogs as purebred if they had
90% or greater single-origin ancestry, and for breed-specific
analyses, the threshold was lowered to 80% or greater sin-
gle-origin ancestry to obtain larger cohorts for analysis. This
approach allowed for the identification of breed-specific risk
factors  for  cherry  eye.  The  analysis  revealed  that  certain
breeds  were  at  higher  risk  for  cherry  eye,  including  the
Neapolitan Mastiff, English and French Bulldogs, Cane Cor-
so, Lhasa Apso, and American Cocker Spaniel. These find-
ings suggested the importance of breed-specific genetic fac-
tors in the development of cherry eye and hence highlight
the importance of the BCSYS tool in population genetics.

26. AFA (ANCESTRY-SPECIFIC ALLELE FREQUEN-
CY)

It  estimates  the  frequencies  of  biallelic  variants  in  ad-
mixed populations with an unlimited number of ancestries.
It uses maximum-likelihood estimation by modeling the con-
ditional probability of having an allele given the proportions
of genetic ancestries. It is applied using either local ancestry
interval proportions encompassing the variant (local-ances-
try-specific allele frequency estimations in admixed popula-
tions)  or  global  proportions  of  genetic  ancestries  (glob-
al-ancestry-specific allele frequency estimations in admixed
populations),  which  are  easier  to  compute  and  are  more
widely available [128]. The AFA tool was used in the study
to estimate the frequencies of bi-allelic variants in the ad-
mixed Hispanic/Latino population based on global propor-
tions of genetic ancestries [128]. The tool identified Amerin-
dian-enriched  variants  with  frequencies  of  at  least  5%  in
Amerindian ancestry and less than 1% in African and Euro-
pean  ancestries.  Similarly,  African-enriched  variants  were
identified with frequencies meeting specific criteria. Upon
annotation of ancestry-enriched variants, the APOE-ɛ4 gene,
having a mild cognitive impairment (MCI), was identified.
This highlights the importance of the AFA tool in eugenic-
s-related studies (Tables 1 and 2).

27. APPLICATION OF ADMIXTURE ANALYSIS

27.1.  Implications  of  Admixture  Analysis  in  Pigmenta-
tion

Recent genetic studies have delved into both normal and
pathological variations in pigmentation [129]. Some of these

inquiries have showcased the ability to predict color pheno-
types based on genotype data, demonstrating varying levels
of  accuracy.  This  emphasizes  the  significance  of  such
studies,  especially  in  the  case  of  forensic  practices  [130].
Furthermore,  it  has  been  suggested  that  specific  genetic
variants linked to pigmentation might influence susceptibili-
ty or resistance to skin cancer [131]. This association is at-
tributed to the adaptation of different skin tones to diverse
environments following the migration of anatomically mod-
ern  Homo  sapiens  from  Africa  to  other  continents  [132].
While  the  effectiveness  of  utilizing  admixed  subjects  for
gene detection has been recognized for several decades [88].
It  is  only  in  recent  years,  aided  by  high-throughput  SNP
genotyping, that the full potential of this approach has been
revealed [22, 133]. The extensive human diaspora resulting
from historical events, such as the European colonization of
the Americas during the age of exploration, has given rise to
the establishment of admixed populations that have persisted
for centuries and are now available for research. For exam-
ple,  a  comprehensive  genome-wide  investigation  of  Afri-
can–American patients with chronic kidney/end-stage kid-
ney disease has presented compelling evidence linking the
MHY9 gene to an increased predisposition to the condition
associated  with  African  ancestry  [134].  Moreover,  these
studies have documented the extensive diversity in the geno-
type-phenotype architecture of pigmentation across various
human populations. For instance, a study demonstrated that
in  addition to  the  classical  genes  SLC24A5  and SLC45A2,
others, such as OPRM1 and EGFR, have also played a role
in  the  differences  in  pigmentation  between Native  Ameri-
cans  and  Europeans  [129].  Furthermore,  Norton  et  al.
suggested that polymorphisms in SLC24A5, SLC45A2, and
TYR  predominantly  contribute  to  the  evolution  of  lighter
skin color in Europeans but not in East Asians [135]. This in-
dicates the recent convergent evolution of lighter pigmenta-
tion phenotypes and emphasizes the importance of natural se-
lection in this process. In an admixed population, the influ-
ence of individual loci on a quantitative trait can be identi-
fied by observing either a correlation between genotype and
phenotype or a correlation between local ancestry and pheno-
type  [24].  Genotype-based  approaches  are  expected  to  be
more effective for traits where the causative allele exists at
similar  frequencies  in  ancestral  populations.  On  the  other
hand, ancestry-based approaches are likely to be more pow-
erful for traits where the causative allele displays significant
frequency differences across ancestral populations [136].

Table 1. Brief description of several methods for local ancestry estimation.

Software Algorithm Number of Ancestral
Population Phasing of Data Genetic Map   Limitation of the

Number of SNPs
  Admixture Time

Required References

LAMP Clustering and HMM 2,3,5 NO NO NO NO [104]

HAPMIX HMM 2 NO YES NO YES [110]

RFMix CRF ≥ 2 YES YES NO YES [118]

LOTER Single Layer HMM ≥ 2 YES NO NO NO [107]

PCAdmix HMM and Local PCA ≥ 2 YES YES/NO NO NO [112]

WINPOP Clustering and HMM 2,3,5 NO NO NO NO [107]

(Table �) contd…. 
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Software Algorithm Number of Ancestral
Population Phasing of Data Genetic Map   Limitation of the

Number of SNPs
  Admixture Time

Required References

Support Mix SVM ≥ 2 YES YES NO YES [114]

Chromopainter HMM ≥ 2 YES YES/NO NO NO [116]

EILA k-means 2 or 3 NO NO NO NO [115]

ASPCA ssPCA ≥ 2 YES NO NO YES [116]

FLARE HMM 2 or 3 YES NO NO NO [123]

BCSYS HMM ≥ 2 YES YES NO YES [126]

AFA HMM ≥ 2 NO NO NO NO [128]

Table 2. Scope and limitations of different methods for local ancestry estimation.

S.
No.

Name of the
Software Scope Limitations

1. LAMP
[104]

Analytical Accuracy: Accurate across the entire genome.
Parameter Optimization: LAMP optimizes fewer parameters than
other techniques, leading to less computational time
No Need for Ancestral Genotypes: LAMP does not require ancestral
genotypes to infer locus-specific ancestries, unlike other approaches.
Scalability: The accuracy improves with larger reference data sets,
making it efficient for handling big reference sets.
Reduced Divergence: LAMP can reduce divergence between refer-
ence and ancestor populations with superior accuracy.

Physical Map Requirement: LAMP necessitates the use of a
physical map.
Statistical Characteristics: It requires statistical characteris-
tics such as the hidden state count and window size from the
Hidden Markov model for assuming constant local ancestry.

2. WINPOP
[107]

Single Recombination Events: WINPOP is designed to identify and
account for single recent recombination events per window, providing
a more detailed analysis of local ancestry.
Dynamic Window Length Selection: WINPOP dynamically selects
the window length at each point based on the local genetic differences,
allowing for more accurate inference in regions with varying levels of
admixture.
Efficient Handling of SNP Data: By assuming uncorrelated SNPs and
removing less informative ones, WINPOP can effectively handle large
SNP datasets, making it suitable for analyzing genetic data from di-
verse populations.
Extension of LAMP Framework: WINPOP builds upon the LAMP
framework, which has been shown to be effective in inferring local an-
cestry, providing a solid foundation for its methodology.

Assumption of Uncorrelated SNPs: WINPOP assumes that
SNPs in the dataset are uncorrelated, which may not always
hold true in practice and could affect the accuracy of the infer-
ence.
Limited to Single Recombination Events: While WINPOP's
focus on single recombination events per window provides de-
tailed analysis, it may not be suitable for detecting multiple or
complex recombination events within a window.

3. HAPMIX
[110]

Phased Data Usage: HAPMIX utilizes phased data from unadmixed
reference populations that closely resemble the true ancestral popula-
tions of the admixed group, allowing for accurate ancestry inference.
Admixture Modeling: The methodology assumes that the admixed
population under study is a result of mixing between two ancestral pop-
ulations, enabling it to model admixture scenarios effectively.
Haplotype Matching: By treating each haplotype of an admixed indivi-
dual as a sample from the reference populations, HAPMIX can calcu-
late the probability of each haplotype being a better match to one or
both reference populations at each genomic location.
Hidden Markov Model (HMM): HAPMIX combines these probabili-
ties with data from nearby loci using an HMM, providing a stochastic
prediction of ancestry at every locus.
Transition Modeling: It can model both small-scale and large-scale
transitions between haplotypes from reference populations, capturing
the complex admixture patterns that may occur in the population.

Biological Characteristic Requirements: HAPMIX requires
accurate specifications of various biological characteristics
such as genomic maps, rates of mutations and recombinations,
average ancestry coefficients, and an average number of itera-
tions since admixing, which can be challenging to determine
and may introduce errors.
Two Ancestral Populations Limitation: HAPMIX only con-
siders two ancestral populations at a time, which may not fully
capture the complexity of admixture in some populations that
have more than two ancestral components.

4. PCAadmix
[112]

PCA Extension: It extends Principal Component Analysis (PCA) to im-
prove the interpretability of results and enhance the resolution of ances-
try inference, particularly in regions with complex admixture patterns.
Utilization of Phased Data: By using phased data, PCAadmix can bet-
ter capture the haplotype structure.
Short SNP Windows: The use of shorter windows of SNPs allows for
a more detailed analysis of genetic variation and ancestry.
Probabilistic Ancestry Representation: PCAadmix utilizes a Hidden
Markov Model (HMM) to probabilistically represent ancestry at each
window, providing a more nuanced understanding of ancestry propor-
tions.

Genetic Map Requirements: Genetic maps for most of the
livestock are not available.
Admixture Modeling Limitations: PCAadmix, like other
methods, assumes a specific model of admixture (mixing of
two ancestral populations), which may not fully capture the
complexity of admixture patterns in all population.

(Table �) contd…. 
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S.
No.

Name of the
Software Scope Limitations

5. SupportMix
[114]

Machine Learning Approach: It uses a two-stage approach, with the
initial stage employing Support Vector Machines (SVM), a type of su-
pervised machine learning algorithm, to detect transitions between
parental sources in admixed genomes.
Refining Technique: The second stage of SupportMix uses a Hidden
Markov Model (HMM) as a refining technique to further improve the
accuracy of ancestry inference.
Scalability: SupportMix is scalable to genome-wide analysis, as it
can consider more than fifty parental populations simultaneously as
potential ancestors.
Genetic Distance Consideration: It considers genetic distances to de-
termine the population genetically closest to the ancestral population,
providing more precise ancestry inference.
Parameter Resilience: SupportMix is resilient to changes in parame-
ters, which can improve its robustness across different datasets and
populations.
 

Computational Complexity: The use of SVM and HMM algo-
rithms, especially for genome-wide analysis, may require signif-
icant computational resources and time.
Population Representativeness: The accuracy of SupportMix
depends on the representativeness of the parental populations
used in the analysis, and biases or inaccuracies in the representa-
tion may affect the results.

6. ChromoPainter
[116]

Utilization of Panel Data: It utilizes information from large panel da-
tasets that may be unrelated to the targeted admixed population, allow-
ing for the reconstruction of ancestry patterns.
Worldwide Ancestry Reconstruction: ChromoPainter can recon-
struct both current and historical worldwide population ancestries, pro-
viding a broad perspective on genetic ancestry.
Accuracy with Few Reference Samples: Simulation-based compari-
sons have shown that ChromoPainter has high accuracy at the
genome-wide level, even when only a few reference samples are avail-
able.
Nonnegative Least Squares: ChromoPainter utilizes Nonnegative
Least Squares (NNLS) to deduce the painting information, which
helps in inferring the ancestral components in the admixed population.
 

Dependence on Panel Data: ChromoPainter relies heavily on
panel data, and the accuracy of the inference may be affected
by the representativeness and quality of the panel datasets used.
Assumptions about Admixture: Like any ancestry inference
method, ChromoPainter relies on certain assumptions about the
admixture process and the genetic similarity between popula-
tions, which may not always hold true in all cases.

7. RFMix
[118]

Dependency Modeling: The technique directly models the depen-
dence of unseen factors (such as ancestries) on observable factors
(such as alleles), allowing for a more accurate inference of local ances-
try.
CRF Generated by Random Forest Models: RFMix uses a Conditio-
nal Random Field (CRF) generated by random forest models learned
on reference panels to estimate local ancestry within every window of
each chromosome.
Improvement in Inference Accuracy: After assigning ancestries to
windows in admixed chromosomes, RFMix employs an expectation-
maximization (EM) step to improve inference accuracy by better un-
derstanding haplotype trends in parental populations.
Precision and Speed: Estimation of ancestry based on RFMix is re-
ported to be more precise and faster compared to other techniques,
such as LAMP (approximately 33 fold faster) and SupportMix (about
1.7 fold faster).
 

Assumption of Known or Assumed Ancestry: RFMix re-
quires the ancestry of admixed individuals to be known or as-
sumed, which may not always be the case in practical applica-
tions.
Population Representativeness: The accuracy of RFMix de-
pends on the representativeness of the reference panels used,
and biases or inaccuracies in the representation may affect the
results.

8. EILA
[115]

Quantification of Ancestral Relatedness: The method quantifies the
relatedness of SNPs in admixed individuals to particular ancestral
groups, providing a more nuanced understanding of local ancestry.
Breakpoint Determination: EILA uses fused quantile regression to
determine the breakpoints of ancestral haplotypes, which can improve
the accuracy of ancestry inference.
Ancestry Inference at Each Site: The k-means classifier is employed
to infer ancestry at each site, allowing for detailed ancestry analysis at
the individual SNP level.
Utilization of All Genotyped SNPs: EILA relaxes the requirement of
linkage equilibrium and uses all genotyped SNPs, rather than just un-
linked loci, to enhance the power of inference.
 

Computational Complexity: EILA's three-phase approach, es-
pecially the use of fused quantile regression and k-means classi-
fier, may introduce computational complexity, particularly for
large datasets.
Accuracy and Sensitivity: The accuracy of EILA may be sensi-
tive to the choice of parameters and the assumptions made
about the admixture process, which could impact the reliability
of the inference.

9. ASPCA
[116]

Tract Length Pattern Analysis: ASPCA examines the tract length
pattern of genomic regions related to different origins, which can help
analyze biological models of modern demographic evolution.
 

Model Assumptions: The accuracy of ASPCA may depend on
the assumptions made about the demographic models of mod-
ern human evolution, which may not always accurately reflect
historical realities.

(Table 2) contd…. 
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S.
No.

Name of the
Software Scope Limitations

10. LOTER
[107]

Wide Taxa Coverage: LOTER is designed to infer local ancestry for a
wide range of taxa, making it applicable to diverse species where bio-
logical parameters such as admixing timeframes and recombination
rates are unknown.
Mimicking Approach: LOTER utilizes the mimicking approach pro-
posed by Li and Stephens (2003), which treats admixed individual ha-
plotypes as a matrix of preexisting ancestral haplotypes from potential
source parental populations.
Regularization Parameter: It involves a smoothing control value
called the regularization parameter (λ), which is dependent on a com-
plex set of analytical and biological variables, including rates of muta-
tion and recombination. LOTER averages solutions for various λ values
to avoid the challenging selection of this parameter.
Phased Haplotypic Information: LOTER requires phased haplotypic
information for both reference and target populations and accounts for
phase errors in the data.
Admixture Time Estimation: The method estimates the time of admix-
ture using restored ancestry sequences, providing insights into the time-
frame since admixing occurred.
No Dependency on Genetic Maps: LOTER does not require genetic
maps, and there are no restrictions on the number of SNPs used, mak-
ing it more flexible and applicable to a wide range

Complex Parameter Selection: The choice of the regulariza-
tion parameter (λ) in LOTER is complex and involves a trade-
off between penalizing switching among ancestral haplotypes
and achieving accurate ancestry inference. This can make the
method challenging to implement and interpret.
Accuracy in Admixture Time Estimation: While LOTER
provides estimates of the time of admixture, the accuracy of th-
ese estimates may depend on the specific parameters and as-
sumptions used in the analysis.
Limited Applicability to Specific Scenarios: LOTER may
be more suitable for scenarios where biological parameters
such as admixing timeframes and recombination rates are un-
known or difficult to determine, limiting its applicability in
other contexts where such parameters are well-defined.

11. FLARE
[123]

Computational Efficiency: FLARE incorporates computational meth-
ods originally developed for genotype imputation, allowing for remark-
able computing performance even with large datasets containing tens of
thousands of sequenced individuals.
Usage of Composite Reference Haplotypes: FLARE utilizes com-
posite reference haplotypes, which can speed up computation and im-
prove accuracy in ancestry estimation.
Scalability: FLARE can be utilized for datasets containing tens of thou-
sands of sequenced individuals, indicating its scalability to large da-
tasets.

Dependency on Reference Haplotypes: FLARE relies on
composite reference haplotypes, which may need to be careful-
ly constructed and curated to ensure accurate ancestry estima-
tion. Biases or inaccuracies in the reference haplotypes could
affect the results.

12. SALAI-Net
[125]

Species Agnostic: SALAI-Net is designed to be species-agnostic,
which means it can be used for local ancestry inference in any species
without the need for specific tuning or retraining.
Two-Stage Method: SALAI-Net consists of two stages: a source com-
paring layer that provides initial estimations at the window level, fol-
lowed by a smoother layer that improves these estimations by leverag-
ing adjacent window data and reducing shortcomings.
Flexible Application: Once SALAI-Net is trained on specific condi-
tions, it can be applied to infer local ancestry across any species or
group of ancestries without the need for further tuning or retraining,
making it versatile and adaptable.

Generalizability: While SALAI-Net is designed to be flexible
in its application, its performance may vary across different
species or groups of ancestries, and its generalizability to all
scenarios may not be guaranteed.

13.

BCSYS
(local ancestry

classifier)
[126]

Utilization of Large Reference Panels: The use of large reference pan-
els in BCSYS enables the calling of more breeds and increases accura-
cy by including more reference samples per breed.
Improved Accuracy for Mixed Breed Samples: The BCSYS algo-
rithm is specifically tuned to improve accuracy for samples with
mixed-breed ancestry, enhancing its applicability to diverse popula-
tions.
Local Ancestry Classifier: Unlike previous algorithms, BCSYS is a lo-
cal ancestry classifier, meaning it not only calls the total proportion of
breeds throughout an animal's genome but also assigns ancestry labels
to specific small segments of chromosomes.
Machine Learning Model for Purebred Status Prediction: BCSYS
uses the local ancestry results to train a machine learning model that
predicts the purebred status of an animal, providing additional insights
into genetic ancestry.
Future Product Development: The local ancestry classifier in BCSYS
will drive future product development, detailing how an animal's physi-
cal traits relate to their individual ancestry, potentially leading to new
applications in animal breeding and genetics.

Model Complexity: The use of machine learning models and
the local ancestry classifier in BCSYS may introduce complex-
ity, which could make it challenging to interpret and imple-
ment.

14.

AFA (Ancestry-
specific allele

frequency)
[128]

Estimation of Allele Frequencies: AFA is designed to estimate the fre-
quencies of biallelic variants in admixed populations with an unlimited
number of ancestries, providing insights into the genetic composition
of these populations.
Maximum-Likelihood Estimation: AFA uses maximum-likelihood es-
timation by modeling the conditional probability of having an allele giv-
en proportions of genetic ancestries, allowing for a more accurate esti-
mation of allele frequencies.

-
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27.2. Population Admixture in Forensics
Population admixture is a prevailing feature of popula-

tions on continental margins and has been a recurring pheno-
menon  since  the  initial  migration  of  small  human  groups.
Over the course of 2500 years, populations have increasing-
ly interacted through trade, conquest, and slavery [137]. The
past two centuries of urbanization and mass movement have
dismantled cultural and social barriers that previously substi-
tuted for geographical separation. Consequently, forensic an-
cestry analyses are likely to reveal a significant proportion
of admixture patterns among tested individuals.  Investiga-
tors are particularly intrigued by admixture as it hints at the
possibility of unique combinations of physical characteris-
tics  in  a  suspect.  In  a  specific  case,  the  MC1R  gene  in  a
DNA sample, indicating predominantly African co-ancestry
along  with  an  MC1R  V60L  ‘r’  variant  (rs1805005-T),
suggests a potential combination of red hair and dark skin
[138]. Therefore, it is valuable to evaluate how the three out-
lined  analytical  approaches  (Bayes,  PCA  and  STRUC-
TURE)  to  forensic  ancestry  inference  handle  admixture.
Establishing a suitable detection framework can prompt sub-
sequent tests to enhance the genetic differentiation of con-
tributor populations, thereby improving the estimation of co-
ancestry components, especially with the addition of Y and
mtDNA data [139, 140]. In the realm of biogeographic an-
cestry (BGA) inference from forensic DNA, there have been
notable  advancements.  Here,  recently  introduced  forensic
BGA tools  are  discussed,  encompassing  marker  selection,
genotyping multiplex design, and the statistical analysis of
resultant data. The selection of Ancestry-Informative DNA
markers  (AIMs)  involves  assembling  a  suitable  panel
tailored for a specific set of population differentiations. The
subsequent statistical approach applied to the genotype data
should not only predict BGA using reference population da-
tasets but also possess the capability to discern co-ancestry
in individuals with mixed backgrounds. As the precision of
BGA inferences from DNA largely hinges on the number of
AIMs employed and targeted Massively Parallel Sequencing
(MPS) holds the most extensive multiplex capacity among
current forensic DNA technologies, the focus here is specifi-
cally on forensic BGA tools relying exclusively on targeted
MPS. Recent developments in these tools have predominant-
ly  centered around autosomal  Single  Nucleotide Polymor-
phisms (SNPs) as the preferred AIMs [141]. However, there
is a growing interest in the ancestry informativeness of auto-
somal micro haplotypes (MHs), which involve combinations
of closely situated SNPs in short sequences easily detected
through single-strand sequencing with MPS.

Given our focus on bi-parental BGA inferred with auto-
somal AIMs, mention of autosomal Short Tandem Repeats
(STRs), commonly used in forensic DNA profiling for indi-
vidual genetic identification, will be made only if they are
part of MPS tools concentrating on autosomal AIMs [142].
While autosomal STRs can contribute to viable population
differentiations, their power is generally less than that of au-
tosomal AIM SNPs, and STR tests have not been specifical-
ly adapted for BGA [141].

27.3.  Post-admixture  Signals  of  Selection  (PASS)  or
Adaptive Admixtures

Admixed populations offer unique chances to look into
recent selections. The original populations were geographi-
cally isolated before admixture, and different environments
played a crucial role in the evolution of their genomes. The
movement of formerly isolated groups or populations might
have exposed the members of parental populations to novel
environments, which may have led to changes in their adap-
tation or the infections to which they have been subjected.
This  sort  of  selection  might  be  different  from that  experi-
enced by static populations,  where minor modifications to
the environment may occur progressively, enabling the fre-
quency  of  rare  advantageous  alleles  to  rise  [95].  This
method is used to find out ancestral or parental signatures of
selection by investigating genomic areas in an admixed pop-
ulation that show exceptionally substantial variances within
ancestry proportions relative to how it is typically observed
throughout the genome. In order to find post-admixture sig-
nals of selection, it is required to compute delta ancestry (Δ
ancestry), which is excess or deficiency in terms of ancestry
at each SNP by utilizing admixture components as the base
[95].

This methodology has been effectively utilized to identi-
fy recent selection in mixed Swiss Fleckvieh cattle and selec-
tion for Zebu-introgressed regions in Colombian creole tau-
rine cattle [13, 134]. Yougbaré et al.  applied a similar ap-
proach to detect significantly different local admixture lev-
els,  identifying  five  chromosomes  with  higher  deviation
from average ancestries, showing an excess of Baoulé ances-
try potentially associated with higher tolerance to trypanoso-
miasis [101]. They identified regions deviating from average
ancestry  with  a  higher  amount  of  Baoulé  proportions  on
chromosomes 6, 8, and 19 in trypanosome-negative individu-
als  and  found  higher  Baoulé  ancestry  in  chromosome  8
(35–50 Mb) also in trypanosome-positive cattle, suggesting
these regions may contain beneficial Baoulé haplotypes unre-
lated to trypanosomosis tolerance. Noyes et al.identified sev-
eral  genes  on  chromosome  8,  including  VAV1,  PIK3R5,
RAC1, VAV2, GAB2, and INPP5D, to be under selection in
Muturu and N’Dama cattle  breeds in  response to  trypano-
some infection [143, 144]. Ward et al. detected evidence for
mitonuclear coevolution across hybrid African cattle popula-
tions, showing a significant increase of taurine ancestry at
mitochondrially targeted nuclear genes [145].

Based on the degree of LD in admixed populations, it is
necessary  to  calculate  the  thresholds  of  selection  signals
across the entire genome using numerous tests of hypotheses
for correction (employing Bonferroni correction) and consid-
ering five thousand and one thousand distinct segments. Fol-
lowing research on human admixing by Tang et al., local an-
cestry variations equivalent to five thousand hypotheses and
concerning a thousand hypotheses were investigated. To de-
termine the degree of importance level for the excess or defi-
ciency of SNPs across the entire genome of admixed individ-
uals for every pristine ancestry, permutation tests were done.
Then, the local ancestry estimates from all the chromosomes
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for  each  individual  were  combined.  Later  on,  the  genome
was cut twice at random locations, and then the two portions
of the genome were rearranged for each individual separate-
ly.  Assuming  LD  was  spread  uniformly  throughout  the
genome, this kind of permutation retains the amount of LD.
Then, a percentage quantile transformation step was includ-
ed  after  implementing  20,000  permutations.  In  order  to
match corresponding spotted distributions in each permuta-
tion test, the SD of the permuted data distribution (trimmed
at the conclusion of each test by 0.05) was multiplied by a
scaling  factor,  and  also,  each  permutation's  minimum and
maximum values were calculated. The maximum and mini-
mum permutation values were utilized to define one and five
percent threshold levels, which showed considerable depar-
ture of the observed local ancestries from the genome-wide
average ancestry [95]. Several statistics within and between
the populations can be employed to identify the signals of se-
lection in admixed animals. The dataset initially undergoes
phasing, after which overlapping selection signatures in the
delta ancestry regions are discovered. The scores represent
the regions of the genome that exhibit surprisingly high per-
centages of haplotype homozygosity among or between pop-
ulations. Finally, the structural annotation and the functional
annotation are used in the genomic research to identify ge-
nomic differences between the populations. In order to dis-
cover potential locations of substantial-high delta ancestry af-
ter admixing and to determine if these locations are likewise
highly differentiated in the parental breeds, allele frequency

differentiation values on each chromosome were calculated
and averaged [13].

27.4. Ancestral Recombinant Graphs
ARG can fully  represent  the  association framework of

an ensemble of collinear identical sequences of DNA [146].
It  records  all  coalescence  and  recombination  events  that
have occurred since differentiation and describes a compre-
hensive genealogy at each genomic location, which makes it
different from that of the phylogeny inference as it does not
account for recombination [147]. The standard approach for
inferring an ARG consists of detecting breakpoints in recom-
bination, then reconstructing the evolutionary tree for each
recombinant fragment, and lastly, combining all reconstruct-
ed trees  (Fig.  4)  [148].  As one traverses  from left  to  right
along a chromosome, the local tree remains stable until a re-
combination breakpoint is found. At that point, it is updated
to  build  a  new tree  in  the  way indicated  by  the  change  in
route at the corresponding recombination node in the ARG.
As a result, it can be considered interchangeable with a suc-
cession of local trees and the recombination events that con-
nect  each  tree  to  the  next  [149].  It  provides  an  optimal
amount  of  information  regarding  trapped  genetic  material
that  exists  between  two  linked  ancestral  loci  but  is  not
passed on to any modern sample for mapping the ages and
haplotypic background of mutations and also imputes miss-
ing data optimally. It is additionally feasible to calculate the
TMRCA (time to the most recent common ancestor) of ad-
mixed and admixing haplotypes [150, 151].

Fig. (4). Digrammatic representation of ancestral recombination graph (ARG) construct. ARG represent the comprehensive genealogy of
DNA sequences, capturing all coalescence and recombination events. Inferring ARG involves detecting recombination breakpoints, recon-
structing evolutionary trees for recombinant fragments, and combining them, providing insights into genetic material transmission and facili-
tating mapping and imputation. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
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Table 3. Brief description of different ARG software that are commonly used in genetics.

Software Algorithm Data Used Inference References

ARGweaver MCMC 54 Human genome sequence

Distinctive signs of natural selection are evident, such as re-
gions with notably ancient ancestry linked to balancing selec-

tion and decreases in allele age at sites subject to directional se-
lection

[156]

TARGet TDA(Topological Data
Analysis)

Genetic sequences of 112 Darwin’s
finches

Lateral evolution observed in finches residing on the Galápagos
Islands [163, 164]

IRis DSR(Dominant, Subdomi-
nant or Recombinant)

Genomic scale for hundreds of Hu-
man population data Identified recombinations and local topological information [154]

ACG Bayesian MCMC
Ten sequences of length 10,000 sites
under the standard neutral coalescent

model

Identified the specific locations of individual recombination
breakpoints not only across the sequence's length but also over

time
[155]

KwARG Heuristic-based parsimony
Binary matrix, or a multiple align-

ment in nucleotide or amino acid for-
mat

Discovered credible genealogical histories, often in the form of
ancestral recombination graphs, characterized by minimal or

near-minimal occurrences of posited recombination and muta-
tion events

[163]

ARG-Needle HMM
Genotype data of 337,464 UK

Biobank individuals and to detect as-
sociations in 7 complex traits

Showed that utilizing large-scale inference of gene genealogies
can be advantageous in the examination of complex traits [162]

SARGE Heuristic-based parsimony

279 modern human genomes,
two high-coverage Neanderthal

genomes, and one high-coverage
Denisovan genome

Discovered that a mere 1.5 to 7% of the contemporary human
genome is distinctive to humans, providing evidence of multi-
ple episodes of adaptive changes specific to the modern human

lineage

[151]

The format is a fundamental aspect of ARG, and there
have been very few ARG formats established [152]. There's
a requirement for an approved format that will enable easy
communication with various ARG applications. Some tools
are utilized to infer ARG. ArgML is an XML-based standard
for storing precise information on the ARG, even if numer-
ous  recombinations  take  place  at  the  same  inter-site  link
[153]. IRiS discovers recombination events with high confi-
dence in their shared ancestry and combines these recombi-
nations  into  an  ancestral  recombination  network  [154].;
ACG  utilizes  the  Bayesian  MCMC approach  to  determine
posterior distribution parameters like population size, transi-
tion to transversion ratio, recombination rate and the modi-
fied Felsenstein pruning approach to infer ARG [155] ARG-
weaver is based on the partitioning of time (in which all re-
combination and coalescence processes are permitted to take
place  at  a  particular  set  of  time  periods)  and  the  Hidden
Markov Model to compute ARG [156] Rent + uses more in-
formation  (singletons)  contained  in  the  data,  builds  guide
trees from haplotypes, and uses them to infer local genealo-
gies [157-159]. DeCoSTAR reconstructs the organization of
ancestral  genomes or genes as a set  of neighborhood rela-
tions  between  pairs  of  ancestral  genes  or  gene  domains
[160]. Relate employs a haplotype-mimicking model to de-
termine pairwise distances between samples [161]. Follow-
ing that, it employs MCMC with a coalescence antecedent
to deduce coalescence time on these trees. SARGE operates
on  phased  data,  does  not  require  any  previous  hypotheses
other than symmetry, heuristically calculates branch lengths,
and minimizes inferring regarding unseen linkages by retain-
ing  polytomies  in  outcome  [151].  ARG-Needle  works  on
genotype or sequence data by threading one haploid sample
at a time to an existing ARG iteratively [162]. KwARG is
based on parsimony that finds credible genealogical histo-

ries with a minimum or near-minimum number of hypothe-
sized recombination and mutation events (Table 3) [163].

27.5. Increasing Heterosis
This application is a novel application of local ancestry

analysis. Heterosis, also known as hybrid vigor, is a pheno-
menon where the offspring of two different purebred lines
have superior characteristics to their parents [165]. Utiliza-
tion of heterosis is the exclusive goal of crossbreeding. The
heterosis  in  the  crossbred  population  is  explained  by  the
dominance theory,  which postulates that  the parental  lines
are homozygous dominant for different loci – when crossed,
produce progeny with the dominant gene at  all  loci  [166].
Overdominance theory postulates that the heterozygote is su-
perior to either homozygote (parents), and epistasis theory
postulates that gene interactions are responsible for heterosis
[165, 166]. Since epistasis of the gene is also cited as one of
the reasons for heterosis, we propose that a cross with a bet-
ter combination of genes/polymorphisms can be identified
with the local ancestry and retained in the herd, and a cross
carrying the inferior combinations of the genes can be culled
in the early age [134, 136]. Since heterosis is measured as
“Heterosis (H) = [ (Mean of F1 offspring) - (Mean of parent-
s) /Mean of Parents ] x 100”, retaining better crosses will in-
crease the mean of F1 offspring, and hence it will increase
the overall heterosis.

However, it is crucial to note that while local ancestry es-
timation can indeed aid in identifying favorable gene combi-
nations,  the practical  implementation may encounter  com-
plexities.  Factors  like  environmental  interactions,  genetic
drift, and the multifaceted nature of traits can influence out-
comes. Additionally, rigorous validation and accurate estima-
tion methods are essential to ensure the reliability of local an-
cestry estimates.
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CONCLUSION
Admixture analysis can be used to estimate inheritance

levels from different source populations in an admixed popu-
lation, and based on that,  better breeding decisions can be
made. Local ancestry can be exploited in tracking the inheri-
tance of particular chunks of haplotype, and thus better com-
binations of haplotypes can be retained, and post-admixture
selection signatures frequencies can be increased or  trans-
ferred to the population of choice to improve overall fitness
in a specified production system.

AUTHORS' CONTRIBUTIONS
All authors contributed to the study's conception and de-

sign.  Material  preparation  and  data  collection  were  per-
formed by RCG, KGC, PR, NS, KKK, CSC, and OML. The
first draft of the manuscript was written by RCG, KKK, IG,
SS,  and  SPD,  and  all  authors  commented  on  the  previous
versions of the manuscript.  All authors read and approved
the final manuscript.

LIST OF ABBREVIATIONS

AIMs = Ancestry-Informative Markers

ALD = Admixture Linkage Disequilibrium

ALL = Acute Lymphoblastic Leukemia

BGA = Biogeographic Ancestry

BLAD = Bovine Leukocyte Adhesion Deficiency

CGF = Continuous Gene Flow

CMD = Congenital Muscular Dystonia

CRF = Conditional Random Field

CVM = Complicated Vertebral Malformation

HI = Hybrid Isolation

HMM = Hidden Markov Model

I-BGA = Individual Biogeographical Ancestry

MAS = Marker-assisted Selection

MCI = Mild Cognitive Impairment

MCMC = Markov Chain Monte Carlo

MHs = Micro Haplotypes

MPS = Massively Parallel Sequencing

MSTN = Myostatin

PCA = Principal Component Analysis

QTL = Quantitative Trait Loci

SNP = Single Nucleotide Polymorphism

SSR = Simple Sequence Repeats

STRs = Short Tandem Repeats

SVM = Support Vector Machines

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
None.

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or

otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES

Tang, H.; Coram, M.; Wang, P.; Zhu, X.; Risch, N. Reconstruct-[1]
ing genetic ancestry blocks in admixed individuals. Am. J. Hum.
Genet., 2006, 79(1), 1-12.
http://dx.doi.org/10.1086/504302 PMID: 16773560
Popejoy,  A.B.;  Ritter,  D.I.;  Crooks,  K.;  Currey,  E.;  Fullerton,[2]
S.M.;  Hindorff,  L.A.;  Koenig,  B.;  Ramos,  E.M.;  Sorokin,  E.P.;
Wand, H.; Wright, M.W.; Zou, J.; Gignoux, C.R.; Bonham, V.L.;
Plon, S.E.; Bustamante, C.D. The clinical imperative for inclusivi-
ty: Race, ethnicity, and ancestry (REA) in genomics. Hum. Mutat.,
2018, 39(11), 1713-1720.
http://dx.doi.org/10.1002/humu.23644 PMID: 30311373
Long,  J.C.  The  genetic  structure  of  admixed  populations.[3]
Genetics, 1991, 127(2), 417-428.
http://dx.doi.org/10.1093/genetics/127.2.417 PMID: 2004712
Pfaff, C.L.; Parra, E.J.; Bonilla, C.; Hiester, K.; McKeigue, P.M.;[4]
Kamboh, M.I.; Hutchinson, R.G.; Ferrell, R.E.; Boerwinkle, E.;
Shriver, M.D. Population structure in admixed populations: Effect
of admixture dynamics on the pattern of linkage disequilibrium.
Am. J. Hum. Genet., 2001, 68(1), 198-207.
http://dx.doi.org/10.1086/316935 PMID: 11112661
Facon, B.; Jarne, P.; Pointier, J.P.; David, P. Hybridization and in-[5]
vasiveness in the freshwater snail Melanoides tuberculata : Hy-
brid vigour is more important than increase in genetic variance. J.
Evol. Biol., 2005, 18(3), 524-535.
http://dx.doi.org/10.1111/j.1420-9101.2005.00887.x  PMID:
15842482
Martin, A.R.; Gignoux, C.R.; Walters, R.K.; Wojcik, G.L.; Neale,[6]
B.M.; Gravel, S.; Daly, M.J.; Bustamante, C.D.; Kenny, E.E. Hu-
man demographic history impacts genetic risk prediction across di-
verse populations. Am. J. Hum. Genet., 2017, 100(4), 635-649.
http://dx.doi.org/10.1016/j.ajhg.2017.03.004 PMID: 28366442
Solkner, J.; Frkonja, A.; Raadsma, H.W.; Jonas, E.; Thaller, G.;[7]
Gootwine, E.; Seroussi, C.; Fuerst, C.; Danner, E.C.; Gredler, B.
Estimation of individual levels of admixture in crossbred popula-
tions from SNP chip data: Examples with sheep and cattle popula-
tions. Interbull Bull., 2010, 42, 62-66.
Anderson, E.C. Bayesian inference of species hybrids using multi-[8]
locus dominant genetic markers. Philos. Trans. R. Soc. Lond. B Bi-
ol. Sci., 2008, 363(1505), 2841-2850.
http://dx.doi.org/10.1098/rstb.2008.0043 PMID: 18508754
Larmer,  S.;  Ventura,  R.;  Buzanskas,  M.E.;  Sargolzaei,  M.;[9]
Schenkel, F.S. Assessing admixture by quantifying breed composi-
tion to gain historical perspective on dairy cattle in Canada. 10th
World Congress on Genetics Applied to Livestock Production, Au-
gust 17 - 22, 2014Vancouver, Canada2014, pp. 1-3.
Chakraborty, R. Gene admixture in human populations: Models[10]
and predictions. Am. J. Phys. Anthropol., 1986, 29(S7), 1-43.
http://dx.doi.org/10.1002/ajpa.1330290502
Bryc, K.; Auton, A.; Nelson, M.R.; Oksenberg, J.R.; Hauser, S.L.;[11]
Williams, S.; Froment, A.; Bodo, J.M.; Wambebe, C.; Tishkoff,
S.A.; Bustamante, C.D. Genome-wide patterns of population struc-
ture  and  admixture  in  West  Africans  and  African  Americans.
Proc. Natl. Acad. Sci., 2010, 107(2), 786-791.



Global and Local Ancestry and its Importance Current Genomics, 2024, Vol. 25, No. 4   255

http://dx.doi.org/10.1073/pnas.0909559107 PMID: 20080753
Makina,  S.O.;  Muchadeyi,  F.C.;  van  Köster,  M.E.;  MacNeil,[12]
M.D.;  Maiwashe,  A.  Genetic  diversity  and population  structure
among six  cattle  breeds  in  South Africa  using a  whole  genome
SNP panel. Front. Genet., 2014, 5, 333.
http://dx.doi.org/10.3389/fgene.2014.00333 PMID: 25295053
Khayatzadeh, N.; Mészáros, G.; Gredler, B.; Schnyder, U.; Curik,[13]
I.; Sölkner, J. Prediction of global and local simmental and red hol-
stein  friesian  admixture  levels  in  swiss  fleckvieh  cattle.  Poljo-
privreda, 2015, 21(1 sup), 63-67.
http://dx.doi.org/10.18047/poljo.21.1.sup.14
Kumar,  P.;  Freeman,  A.R.;  Loftus,  R.T.;  Gaillard,  C.;  Fuller,[14]
D.Q.;  Bradley,  D.G.  Admixture  analysis  of  South  Asian  cattle.
Heredity, 2003, 91(1), 43-50.
http://dx.doi.org/10.1038/sj.hdy.6800277 PMID: 12815452
Dadi,  H.;  Tibbo,  M.;  Takahashi,  Y.;  Nomura,  K.;  Hanada,  H.;[15]
Amano, T. Microsatellite analysis reveals high genetic diversity
but low genetic structure in Ethiopian indigenous cattle popula-
tions. Anim. Genet., 2008, 39(4), 425-431.
http://dx.doi.org/10.1111/j.1365-2052.2008.01748.x  PMID:
18565163
Schlötterer, C.; Tautz, D. Slippage synthesis of simple sequence[16]
DNA. Nucleic Acids Res., 1992, 20(2), 211-215.
http://dx.doi.org/10.1093/nar/20.2.211 PMID: 1741246
Innan, H.; Terauchi, R.; Miyashita, N.T. Microsatellite polymor-[17]
phism in natural populations of the wild plant Arabidopsis thalia-
na. Genetics, 1997, 146(4), 1441-1452.
http://dx.doi.org/10.1093/genetics/146.4.1441 PMID: 9258686
McConnell,  R.;  Middlemist,  S.;  Scala,  C.;  Strassmann,  J.E.;[18]
Queller,  D.C.  An  unusually  low  microsatellite  mutation  rate  in
Dictyostelium discoideum, an organism with unusually abundant
microsatellites. Genetics, 2007, 177(3), 1499-1507.
http://dx.doi.org/10.1534/genetics.107.076067 PMID: 17947436
Mukesh, M.; Sodhi, M.; Bhatia, S. Microsatellite-based diversity[19]
analysis and genetic relationships of three Indian sheep breeds. J.
Anim. Breed. Genet., 2006, 123(4), 258-264.
http://dx.doi.org/10.1111/j.1439-0388.2006.00599.x  PMID:
16882092
Hill, E.W.; Gu, J.; Eivers, S.S.; Fonseca, R.G.; McGivney, B.A.;[20]
Govindarajan, P.; Orr, N.; Katz, L.M.; MacHugh, D. A sequence
polymorphism in MSTN predicts sprinting ability and racing stam-
ina in thoroughbred horses. PLoS One, 2010, 5(1), e8645.
http://dx.doi.org/10.1371/journal.pone.0008645 PMID: 20098749
Charlier, C.; Coppieters, W.; Rollin, F.; Desmecht, D.; Agerholm,[21]
J.S.; Cambisano, N.; Carta, E.; Dardano, S.; Dive, M.; Fasquelle,
C.; Frennet, J.C.; Hanset, R.; Hubin, X.; Jorgensen, C.; Karim, L.;
Kent, M.; Harvey, K.; Pearce, B.R.; Simon, P.; Tama, N.; Nie, H.;
Vandeputte,  S.;  Lien,  S.;  Longeri,  M.;  Fredholm,  M.;  Harvey,
R.J.; Georges, M. Highly effective SNP-based association map-
ping  and  management  of  recessive  defects  in  livestock.  Nat.
Genet., 2008, 40(4), 449-454.
http://dx.doi.org/10.1038/ng.96 PMID: 18344998
Sukhija, N.; Malik, A.A.; Devadasan, J.M.; Dash, A.; Bidyalaxmi,[22]
K.; Kumar, R.D. Genome-wide selection signatures address trait
specific candidate genes in cattle indigenous to arid regions of In-
dia. Anim. Biotechnol., 2023, 35, 1-15.
PMID: 38088885
Goli, R.C.; Sukhija, N.; Rathi, P.; Chishi, K.G.; Koloi, S.; Malik,[23]
A.A.; Sree C, C.; Purohit, P.B.; Shetkar, M.; K K, K. Unraveling
the genetic tapestry of Indian chicken: A comprehensive study of
molecular  variations  and  diversity.  Ecol.  Genet.  Genom.,  2024,
30, 100220.
http://dx.doi.org/10.1016/j.egg.2024.100220
Kanaka, K.K.; Sukhija, N.; Goli, R.C.; Singh, S.; Ganguly, I.; Dix-[24]
it, S.P.; Dash, A.; Malik, A.A. On the concepts and measures of di-
versity in the genomics era. Curr. Plant Biol., 2023, 33, 100278.
http://dx.doi.org/10.1016/j.cpb.2023.100278
Nievergelt,  C.M.;  Maihofer,  A.X.;  Shekhtman,  T.;  Libiger,  O.;[25]
Wang, X.; Kidd, K.K.; Kidd, J.R. Inference of human continental
origin and admixture proportions using a highly discriminative an-
cestry informative 41-SNP panel. Investig. Genet., 2013, 4(1), 13.
http://dx.doi.org/10.1186/2041-2223-4-13 PMID: 23815888
Goddard, M.E.; Hayes, B.J. Genomic selection. J. Anim. Breed.[26]

Genet., 2007, 124(6), 323-330.
http://dx.doi.org/10.1111/j.1439-0388.2007.00702.x  PMID:
18076469
Zhang, K.; Sun, F. Assessing the power of tag SNPs in the map-[27]
ping  of  quantitative  trait  loci  (QTL)  with  extremal  and random
samples. BMC Genet., 2005, 6(1), 51.
http://dx.doi.org/10.1186/1471-2156-6-51 PMID: 16236175
Hayes, B.J.; Chamberlain, A.J.; McPARTLAN, H.; MacLeod, I.;[28]
Sethuraman, L.; Goddard, M.E. Accuracy of marker-assisted selec-
tion with single markers and marker haplotypes in cattle. Genet.
Res., 2007, 89(4), 215-220.
http://dx.doi.org/10.1017/S0016672307008865 PMID: 18208627
Eusebi, P.G.; Martinez, A.; Cortes, O. Genomic tools for effective[29]
conservation of livestock breed diversity. Diversity, 2019, 12(1),
8.
http://dx.doi.org/10.3390/d12010008
Price, A.L.; Spencer, C.C.; Donnelly, P. Progress and promise in[30]
understanding the genetic basis of common diseases. Proc. Royal.
Soc. B, 2015, 282(1821)
http://dx.doi.org/10.1098/rspb.2015.1684
Freeman, A.R.; Bradley, D.G.; Nagda, S.; Gibson, J.P.; Hanotte,[31]
O. Combination of multiple microsatellite data sets to investigate
genetic diversity and admixture of domestic cattle. Anim. Genet.,
2006, 37(1), 1-9.
http://dx.doi.org/10.1111/j.1365-2052.2005.01363.x  PMID:
16441289
Behar, D.M.; Yunusbayev, B.; Metspalu, M.; Metspalu, E.; Ros-[32]
set, S.; Parik, J.; Rootsi, S.; Chaubey, G.; Kutuev, I.; Yudkovsky,
G.;  Khusnutdinova,  E.K.;  Balanovsky,  O.;  Semino,  O.;  Pereira,
L.;  Comas,  D.;  Gurwitz,  D.;  Tamir,  B.B.;  Parfitt,  T.;  Hammer,
M.F.; Skorecki, K.; Villems, R. The genome-wide structure of the
Jewish people. Nature, 2010, 466(7303), 238-242.
http://dx.doi.org/10.1038/nature09103 PMID: 20531471
Shi, W.; Ayub, Q.; Vermeulen, M.; Shao, R.; Zuniga, S.; van der[33]
Gaag, K.; de Knijff, P.; Kayser, M.; Xue, Y.; Tyler-Smith, C. A
worldwide survey of human male demographic history based on
Y-SNP and Y-STR data from the HGDP-CEPH populations. Mol.
Biol. Evol., 2010, 27(2), 385-393.
http://dx.doi.org/10.1093/molbev/msp243 PMID: 19822636
Frkonja, A.; Gredler, B.; Schnyder, U.; Curik, I.; Sölkner, J. Pre-[34]
diction of breed composition in an admixed cattle population. An-
im. Genet., 2012, 43(6), 696-703.
http://dx.doi.org/10.1111/j.1365-2052.2012.02345.x  PMID:
23061480
Lenstra,  J.A.;  Groeneveld,  L.F.;  Eding, H.;  Kantanen, J.;  Willi-[35]
ams, J.L.; Taberlet, P.; Nicolazzi, E.L.; Sölkner, J.; Simianer, H.;
Ciani, E.; Garcia, J.F.; Bruford, M.W.; Ajmone-Marsan, P.; Wei-
gend, S. Molecular tools and analytical approaches for the charac-
terization of farm animal genetic diversity. Anim. Genet.,  2012,
43(5), 483-502.
http://dx.doi.org/10.1111/j.1365-2052.2011.02309.x  PMID:
22497351
McKay,  S.D.;  Schnabel,  R.D.;  Murdoch,  B.M.;  Matukumalli,[36]
L.K.; Aerts, J.; Coppieters, W.; Crews, D.; Neto, E.D.; Gill, C.A.;
Gao, C.; Mannen, H.; Wang, Z.; Van Tassell, C.P.; Williams, J.L.;
Taylor, J.F.; Moore, S.S. An assessment of population structure in
eight  breeds  of  cattle  using  a  whole  genome  SNP  panel.  BMC
Genet., 2008, 9(1), 37.
http://dx.doi.org/10.1186/1471-2156-9-37 PMID: 18492244
Dawson, E. SNP maps: More markers needed? Mol. Med. Today,[37]
1999, 5(10), 419-420.
http://dx.doi.org/10.1016/S1357-4310(99)01564-6  PMID:
10498908
Vignal, A.; Milan, D.; SanCristobal, M.; Eggen, A. A review on[38]
SNP and other types of molecular markers and their use in animal
genetics. Genet. Sel. Evol., 2002, 34(3), 275-305.
http://dx.doi.org/10.1186/1297-9686-34-3-275 PMID: 12081799
Hong, E.P.; Park, J.W. Sample size and statistical power calcula-[39]
tion in genetic association studies. Genomics Inform., 2012, 10(2),
117-122.
http://dx.doi.org/10.5808/GI.2012.10.2.117 PMID: 23105939
Prasad, A.; Schnabel, R.D.; McKay, S.D.; Murdoch, B.; Stothard,[40]
P.; Kolbehdari, D.; Wang, Z.; Taylor, J.F.; Moore, S.S. Linkage



256   Current Genomics, 2024, Vol. 25, No. 4 Goli et al.

disequilibrium  and  signatures  of  selection  on  chromosomes  19
and  29  in  beef  and  dairy  cattle.  Anim.  Genet.,  2008,  39(6),
597-605.
http://dx.doi.org/10.1111/j.1365-2052.2008.01772.x  PMID:
18717667
de Roos, A.P.W.; Hayes, B.J.; Spelman, R.J.; Goddard, M.E. Link-[41]
age disequilibrium and persistence of phase in Holstein-Friesian,
Jersey and Angus cattle. Genetics, 2008, 179(3), 1503-1512.
http://dx.doi.org/10.1534/genetics.107.084301 PMID: 18622038
Ishii,  A.;  Yamaji,  K.;  Uemoto,  Y.;  Sasago,  N.;  Kobayashi,  E.;[42]
Kobayashi,  N.;  Matsuhashi,  T.;  Maruyama,  S.;  Matsumoto,  H.;
Sasazaki, S.; Mannen, H. Genome-wide association study for fatty
acid composition in J apanese B lack cattle. Anim. Sci. J., 2013,
84(10), 675-682.
http://dx.doi.org/10.1111/asj.12063 PMID: 23607548
Gunia, M.; Saintilan, R.; Venot, E.; Hozé, C.; Fouilloux, M.N.;[43]
Phocas, F. Genomic prediction in French charolais beef cattle us-
ing high-density single nucleotide polymorphism markers1. J. An-
im. Sci., 2014, 92(8), 3258-3269.
http://dx.doi.org/10.2527/jas.2013-7478 PMID: 24948648
Elsik,  C.G.;  Tellam,  R.L.;  Worley,  K.C.;  Gibbs,  R.A.;  Muzny,[44]
D.M.; Weinstock, G.M.; Adelson, D.L.; Eichler, E.E.; Elnitski, L.;
Guigó,  R.;  Hamernik,  D.L.;  Kappes,  S.M.;  Lewin,  H.A.;  Lynn,
D.J.;  Nicholas,  F.W.;  Reymond,  A.;  Rijnkels,  M.;  Skow,  L.C.;
Zdobnov, E.M.; Schook, L.; Womack, J.; Alioto, T.; Antonarakis,
S.E.;  Astashyn,  A.;  Chapple,  C.E.;  Chen,  H.C.;  Chrast,  J.;  Câ-
mara,  F.;  Ermolaeva,  O.;  Henrichsen,  C.N.;  Hlavina,  W.;  Ka-
pustin, Y.; Kiryutin, B.; Kitts, P.; Kokocinski, F.; Landrum, M.;
Maglott, D.; Pruitt, K.; Sapojnikov, V.; Searle, S.M.; Solovyev,
V.; Souvorov, A.; Ucla, C.; Wyss, C.; Anzola, J.M.; Gerlach, D.;
Elhaik,  E.;  Graur,  D.;  Reese,  J.T.;  Edgar,  R.C.;  McEwan,  J.C.;
Payne, G.M.; Raison, J.M.; Junier, T.; Kriventseva, E.V.; Eyras,
E.; Plass, M.; Donthu, R.; Larkin, D.M.; Reecy, J.; Yang, M.Q.;
Chen, L.; Cheng, Z.; Chitko-McKown, C.G.; Liu, G.E.; Matuku-
malli, L.K.; Song, J.; Zhu, B.; Bradley, D.G.; Brinkman, F.S.L.;
Lau, L.P.L.; Whiteside, M.D.; Walker, A.; Wheeler, T.T.; Casey,
T.; German, J.B.; Lemay, D.G.; Maqbool, N.J.; Molenaar, A.J.;
Seo, S.; Stothard, P.; Baldwin, C.L.; Baxter, R.; Brinkmeyer-Lang-
ford,  C.L.;  Brown,  W.C.;  Childers,  C.P.;  Connelley,  T.;  Ellis,
S.A.; Fritz, K.; Glass, E.J.; Herzig, C.T.A.; Iivanainen, A.; Lah-
mers, K.K.; Bennett, A.K.; Dickens, C.M.; Gilbert, J.G.R.; Hagen,
D.E.; Salih, H.; Aerts, J.; Caetano, A.R.; Dalrymple, B.; Garcia,
J.F.; Gill, C.A.; Hiendleder, S.G.; Memili, E.; Spurlock, D.; Willi-
ams, J.L.; Alexander, L.; Brownstein, M.J.; Guan, L.; Holt, R.A.;
Jones, S.J.M.; Marra, M.A.; Moore, R.; Moore, S.S.; Roberts, A.;
Taniguchi, M.; Waterman, R.C.; Chacko, J.; Chandrabose, M.M.;
Cree, A.; Dao, M.D.; Dinh, H.H.; Gabisi, R.A.; Hines, S.; Hume,
J.; Jhangiani, S.N.; Joshi, V.; Kovar, C.L.; Lewis, L.R.; Liu, Y.;
Lopez, J.; Morgan, M.B.; Nguyen, N.B.; Okwuonu, G.O.; Ruiz,
S.J.;  Santibanez,  J.;  Wright,  R.A.;  Buhay,  C.;  Ding,  Y.;  Du-
gan-Rocha,  S.;  Herdandez,  J.;  Holder,  M.;  Sabo,  A.;  Egan,  A.;
Goodell,  J.;  Wilczek-Boney,  K.;  Fowler,  G.R.;  Hitchens,  M.E.;
Lozado, R.J.; Moen, C.; Steffen, D.; Warren, J.T.; Zhang, J.; Chiu,
R.; Schein, J.E.; Durbin, K.J.; Havlak, P.; Jiang, H.; Liu, Y.; Qin,
X.; Ren, Y.; Shen, Y.; Song, H.; Bell, S.N.; Davis, C.; Johnson,
A.J.; Lee, S.; Nazareth, L.V.; Patel, B.M.; Pu, L.L.; Vattathil, S.;
Williams, R.L., Jr; Curry, S.; Hamilton, C.; Sodergren, E.; Wheel-
er,  D.A.;  Barris,  W.;  Bennett,  G.L.;  Eggen,  A.;  Green,  R.D.;
Harhay, G.P.; Hobbs, M.; Jann, O.; Keele, J.W.; Kent, M.P.; Lien,
S.;  McKay,  S.D.;  McWilliam,  S.;  Ratnakumar,  A.;  Schnabel,
R.D.; Smith, T.; Snelling, W.M.; Sonstegard, T.S.; Stone, R.T.;
Sugimoto, Y.; Takasuga, A.; Taylor, J.F.; Van Tassell, C.P.; Mac-
Neil, M.D.; Abatepaulo, A.R.R.; Abbey, C.A.; Ahola, V.; Almei-
da,  I.G.;  Amadio,  A.F.;  Anatriello,  E.;  Bahadue,  S.M.;  Biase,
F.H.; Boldt, C.R.; Carroll, J.A.; Carvalho, W.A.; Cervelatti, E.P.;
Chacko,  E.;  Chapin,  J.E.;  Cheng,  Y.;  Choi,  J.;  Colley,  A.J.;  de
Campos,  T.A.;  De  Donato,  M.;  Santos,  I.K.F.M.;  de  Oliveira,
C.J.F.; Deobald, H.; Devinoy, E.; Donohue, K.E.; Dovc, P.; Eber-
lein, A.; Fitzsimmons, C.J.; Franzin, A.M.; Garcia, G.R.; Genini,
S.; Gladney, C.J.; Grant, J.R.; Greaser, M.L.; Green, J.A.; Hadsell,
D.L.; Hakimov, H.A.; Halgren, R.; Harrow, J.L.; Hart, E.A.; Hast-
ings,  N.;  Hernandez,  M.;  Hu,  Z.L.;  Ingham,  A.;  Iso-Touru,  T.;
Jamis, C.; Jensen, K.; Kapetis, D.; Kerr, T.; Khalil, S.S.; Khatib,

H.;  Kolbehdari,  D.;  Kumar,  C.G.;  Kumar,  D.;  Leach,  R.;  Lee,
J.C.M.; Li, C.; Logan, K.M.; Malinverni, R.; Marques, E.; Martin,
W.F.; Martins, N.F.; Maruyama, S.R.; Mazza, R.; McLean, K.L.;
Medrano, J.F.; Moreno, B.T.; Moré, D.D.; Muntean, C.T.; Nan-
dakumar, H.P.; Nogueira, M.F.G.; Olsaker, I.; Pant, S.D.; Panzit-
ta,  F.;  Pastor,  R.C.P.;  Poli,  M.A.;  Poslusny,  N.;  Rachagani,  S.;
Ranganathan,  S.;  Razpet,  A.;  Riggs,  P.K.;  Rincon,  G.;  Osorio,
R.N.; Zas, R.S.L.; Romero, N.E.; Rosenwald, A.; Sando, L.; Sch-
mutz, S.M.; Shen, L.; Sherman, L.; Southey, B.R.; Lutzow, Y.S.;
Sweedler, J.V.; Tammen, I.; Telugu, B.P.V.L.; Urbanski, J.M.; Ut-
sunomiya, Y.T.; Verschoor, C.P.; Waardenberg, A.J.; Wang, Z.;
Ward, R.;  Weikard,  R.;  Welsh,  T.H.,  Jr;  White,  S.N.;  Wilming,
L.G.;  Wunderlich,  K.R.;  Yang,  J.;  Zhao,  F.Q.  The  genome  se-
quence of taurine cattle: A window to ruminant biology and evolu-
tion. Science, 2009, 324(5926), 522-528.
http://dx.doi.org/10.1126/science.1169588 PMID: 19390049
Gibbs, R.A.; Taylor, J.F.; Van Tassell, C.P.; Barendse, W.; Ever-[45]
sole,  K.A.;  Gill,  C.A.;  Green,  R.D.;  Hamernik,  D.L.;  Kappes,
S.M.; Lien, S.; Matukumalli, L.K.; McEwan, J.C.; Nazareth, L.V.;
Schnabel, R.D.; Weinstock, G.M.; Wheeler, D.A.; Ajmone-Mar-
san, P.; Boettcher, P.J.; Caetano, A.R.; Garcia, J.F.; Hanotte, O.;
Mariani, P.; Skow, L.C.; Sonstegard, T.S.; Williams, J.L.; Diallo,
B.; Hailemariam, L.; Martinez, M.L.; Morris, C.A.; Silva, L.O.C.;
Spelman, R.J.; Mulatu, W.; Zhao, K.; Abbey, C.A.; Agaba, M.;
Araujo, F.R.; Bunch, R.J.; Burton, J.; Gorni, C.; Olivier, H.; Harri-
son, B.E.; Luff,  B.; Machado, M.A.; Mwakaya, J.;  Plastow, G.;
Sim, W.; Smith, T.; Thomas, M.B.; Valentini, A.; Williams, P.;
Womack,  J.;  Woolliams,  J.A.;  Liu,  Y.;  Qin,  X.;  Worley,  K.C.;
Gao, C.; Jiang, H.; Moore, S.S.; Ren, Y.; Song, X.Z.; Bustamante,
C.D.;  Hernandez,  R.D.;  Muzny,  D.M.;  Patil,  S.;  San Lucas,  A.;
Fu, Q.; Kent, M.P.; Vega, R.; Matukumalli, A.; McWilliam, S.;
Sclep, G.; Bryc, K.; Choi, J.; Gao, H.; Grefenstette, J.J.; Murdoch,
B.; Stella, A.; Villa-Angulo, R.; Wright, M.; Aerts, J.; Jann, O.;
Negrini, R.; Goddard, M.E.; Hayes, B.J.; Bradley, D.G.; Barbosa
da  Silva,  M.;  Lau,  L.P.L.;  Liu,  G.E.;  Lynn,  D.J.;  Panzitta,  F.;
Dodds, K.G. Genome-wide survey of SNP variation uncovers the
genetic  structure  of  cattle  breeds.  Science,  2009,  324(5926),
528-532.
http://dx.doi.org/10.1126/science.1167936 PMID: 19390050
Phillips, C.; Salas, A.; Sánchez, J.J.; Fondevila, M.; Tato, G.A.;[46]
Dios, A.J.; Calaza, M.; de Cal, M.C.; Ballard, D.; Lareu, M.V.;
Carracedo, Á. Inferring ancestral origin using a single multiplex
assay  of  ancestry-informative  marker  SNPs.  Forensic  Sci.  Int.
Genet., 2007, 1(3-4), 273-280.
http://dx.doi.org/10.1016/j.fsigen.2007.06.008 PMID: 19083773
Halder, I.; Shriver, M.; Thomas, M.; Fernandez, J.R.; Frudakis, T.[47]
A panel of ancestry informative markers for estimating individual
biogeographical ancestry and admixture from four continents: Util-
ity and applications. Hum. Mutat., 2008, 29(5), 648-658.
http://dx.doi.org/10.1002/humu.20695 PMID: 18286470
Morin, P.A.; Luikart, G.; Wayne, R.K. SNPs in ecology, evolution[48]
and conservation. Trends Ecol. Evol., 2004, 19(4), 208-216.
http://dx.doi.org/10.1016/j.tree.2004.01.009
Lewis,  J.;  Abas,  Z.;  Dadousis,  C.;  Lykidis,  D.;  Paschou,  P.;[49]
Drineas, P. Tracing cattle breeds with principal components analy-
sis ancestry informative SNPs. PLoS One, 2011, 6(4), e18007.
http://dx.doi.org/10.1371/journal.pone.0018007 PMID: 21490966
Winkler, C.A.; Nelson, G.W.; Smith, M.W. Admixture mapping[50]
comes of  age.  Annu.  Rev.  Genomics  Hum.  Genet.,  2010,  11(1),
65-89.
http://dx.doi.org/10.1146/annurev-genom-082509-141523  PMID:
20594047
Banks,  M.A.;  Eichert,  W.;  Olsen,  J.B.  Which  genetic  loci  have[51]
greater  population  assignment  power?  Bioinformatics,  2003,
19(11),  1436-1438.
http://dx.doi.org/10.1093/bioinformatics/btg172 PMID: 12874058
Bromaghin, J.F. BELS : Backward elimination locus selection for[52]
studies  of  mixture  composition  or  individual  assignment.  Mol.
Ecol. Resour., 2008, 8(3), 568-571.
http://dx.doi.org/10.1111/j.1471-8286.2007.02010.x  PMID:
21585834
Helyar, S.J.; Hemmer-Hansen, J.; Bekkevold, D.; Taylor, M.I.; Og-[53]
den, R.; Limborg, M.T.; Cariani, A.; Maes, G.E.; Diopere, E.; Car-



Global and Local Ancestry and its Importance Current Genomics, 2024, Vol. 25, No. 4   257

valho, G.R.; Nielsen, E.E. Application of SNPs for population ge-
netics of nonmodel organisms: new opportunities and challenges.
Mol. Ecol. Resour., 2011, 11(S1), 123-136.
http://dx.doi.org/10.1111/j.1755-0998.2010.02943.x  PMID:
21429169
Rosenberg, N.A.; Li, L.M.; Ward, R.; Pritchard, J.K. Informative-[54]
ness  of  genetic  markers  for  inference  of  ancestry.  Am.  J.  Hum.
Genet., 2003, 73(6), 1402-1422.
http://dx.doi.org/10.1086/380416 PMID: 14631557
Shannon,  C.E.  A  mathematical  theory  of  communication.  Bell[55]
Syst. Tech. J., 1948, 27(3), 379-423.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shriver, M.D.; Smith, M.W.; Jin, L.; Marcini, A.; Akey, J.M.; De-[56]
ka, R.; Ferrell, R.E. Ethnic-affiliation estimation by use of popula-
tion-specific  DNA  markers.  Am.  J.  Hum.  Genet.,  1997,  60(4),
957-964.
PMID: 9106543
Wright,  S.  The genetical  structure  of  populations.  Ann.  Eugen.,[57]
1951, 15(4), 323-354.
PMID: 24540312
Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analy-[58]
sis of population structure. Evolution, 1984, 38(6), 1358-1370.
PMID: 28563791
Kavakiotis, I.; Samaras, P.; Triantafyllidis, A.; Vlahavas, I. FIFS:[59]
A data mining method for informative marker selection in high di-
mensional  population genomic data.  Comput.  Biol.  Med.,  2017,
90, 146-154.
http://dx.doi.org/10.1016/j.compbiomed.2017.09.020  PMID:
28992453
Shriner, D. Overview of admixture mapping. Curr. Protoc. Hum.[60]
Genet., 2013, 2013, 23.
PMID: 23315925
Padhukasahasram, B. Inferring ancestry from population genomic[61]
data and its applications. Front. Genet., 2014, 5, 204.
http://dx.doi.org/10.3389/fgene.2014.00204 PMID: 25071832
Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population[62]
structure using multilocus genotype data: Linked loci and correlat-
ed allele frequencies. Genetics, 2003, 164(4), 1567-1587.
http://dx.doi.org/10.1093/genetics/164.4.1567 PMID: 12930761
Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of popula-[63]
tion  structure  using  multilocus  genotype  data.  Genetics,  2000,
155(2), 945-959.
http://dx.doi.org/10.1093/genetics/155.2.945 PMID: 10835412
Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based esti-[64]
mation of ancestry in unrelated individuals. Genome Res., 2009,
19(9), 1655-1664.
http://dx.doi.org/10.1101/gr.094052.109 PMID: 19648217
Liu,  Y.;  Nyunoya,  T.;  Leng,  S.;  Belinsky,  S.A.;  Tesfaigzi,  Y.;[65]
Bruse, S. Softwares and methods for estimating genetic ancestry
in human populations. Hum. Genomics, 2013, 7(1), 1.
http://dx.doi.org/10.1186/1479-7364-7-1 PMID: 23289408
Skotte, L.; Korneliussen, T.S.; Albrechtsen, A. Estimating individ-[66]
ual admixture proportions from next generation sequencing data.
Genetics, 2013, 195(3), 693-702.
http://dx.doi.org/10.1534/genetics.113.154138 PMID: 24026093
Bertorelle, G.; Excoffier, L. Inferring admixture proportions from[67]
molecular data. Mol. Biol. Evol., 1998, 15(10), 1298-1311.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025858  PMID:
9787436
Rosenberg, N.A.; Pritchard, J.K.; Weber, J.L.; Cann, H.M.; Kidd,[68]
K.K.; Zhivotovsky, L.A.; Feldman, M.W. Genetic structure of hu-
man populations. Science, 2002, 298(5602), 2381-2385.
http://dx.doi.org/10.1126/science.1078311 PMID: 12493913
Edea, Z.; Dadi, H.; Kim, S.W.; Dessie, T.; Lee, T.; Kim, H.; Kim,[69]
J.J.; Kim, K.S. Genetic diversity, population structure and relation-
ships in indigenous cattle populations of Ethiopia and Korean Han-
woo breeds using SNP markers. Front. Genet., 2013, 4, 35.
http://dx.doi.org/10.3389/fgene.2013.00035 PMID: 23518904
Patterson, N.; Price, A.L.; Reich, D. Population structure and eige-[70]
nanalysis. PLoS Genet., 2006, 2(12), e190.
http://dx.doi.org/10.1371/journal.pgen.0020190 PMID: 17194218
Gao, X.; Starmer, J. Human population structure detection via mul-[71]
tilocus genotype clustering. BMC Genet., 2007, 8(1), 34.

http://dx.doi.org/10.1186/1471-2156-8-34 PMID: 17592628
Menozzi, P.; Piazza, A.; Cavalli-Sforza, L. Synthetic maps of hu-[72]
man  gene  frequencies  in  Europeans.  Science,  1978,  201(4358),
786-792.
http://dx.doi.org/10.1126/science.356262 PMID: 356262
Bouaziz, M.; Ambroise, C.; Guedj, M. Accounting for population[73]
stratification in practice: A comparison of the main strategies dedi-
cated to genome-wide association studies. PLoS One, 2011, 6(12),
e28845.
http://dx.doi.org/10.1371/journal.pone.0028845 PMID: 22216125
Siegel, S. Nonparametric Statistics. Am. Stat., 1957, 11(3), 13-19.[74]
http://dx.doi.org/10.1080/00031305.1957.10501091
Beasley, T.M.; Erickson, S.; Allison, D.B. Rank-based inverse nor-[75]
mal transformations are increasingly used, but are they merited?
Behav. Genet., 2009, 39(5), 580-595.
http://dx.doi.org/10.1007/s10519-009-9281-0 PMID: 19526352
Girma, M.; Banerjee, S.; Birhanu, T. Breeding practice and pheno-[76]
typic characteristics of indigenous Woyito-Guji goat breeds reared
in Nyangatom and Malle pastoral and agro-pastoral districts of SN-
NPR, Ethiopia. Int. J. Animal Sci., 2020, 4(8)
Potvin, C.; Roff, D.A. Distribution-free and robust statistical meth-[77]
ods:  viable  alternatives  to  parametric  statistics.  Ecology,  1993,
74(6), 1617-1628.
http://dx.doi.org/10.2307/1939920
Gianola, D.; Fernando, R.L.; Stella, A. Genomic-assisted predic-[78]
tion of genetic value with semiparametric procedures. Genetics,
2006, 173(3), 1761-1776.
http://dx.doi.org/10.1534/genetics.105.049510 PMID: 16648593
Nordborg, M.; Tavaré, S. Linkage disequilibrium: What history[79]
has to tell us. Trends Genet., 2002, 18(2), 83-90.
http://dx.doi.org/10.1016/S0168-9525(02)02557-X  PMID:
11818140
Vila, M.; Romaní, V.J.R.; Björklund, M. The importance of time[80]
scale and multiple refugia: Incipient speciation and admixture of
lineages in the butterfly Erebia triaria (Nymphalidae). Mol. Phylo-
genet. Evol., 2005, 36(2), 249-260.
http://dx.doi.org/10.1016/j.ympev.2005.02.019 PMID: 15955508
Moorjani, P.; Patterson, N.; Hirschhorn, J.N.; Keinan, A.; Hao, L.;[81]
Atzmon, G.; Burns, E.; Ostrer, H.; Price, A.L.; Reich, D. The his-
tory of African gene flow into Southern Europeans, Levantines,
and Jews. PLoS Genet., 2011, 7(4), e1001373.
http://dx.doi.org/10.1371/journal.pgen.1001373 PMID: 21533020
Pugach, I.; Matveyev, R.; Wollstein, A.; Kayser, M.; Stoneking,[82]
M. Dating the age of admixture via wavelet transform analysis of
genome-wide data. Genome Biol., 2011, 12(2), R19.
http://dx.doi.org/10.1186/gb-2011-12-2-r19 PMID: 21352535
Sankararaman, S.; Patterson, N.; Li, H.; Pääbo, S.; Reich, D. The[83]
date of interbreeding between Neandertals and modern humans.
PLoS Genet, 2012, 8(10), e1002947.
http://dx.doi.org/10.1371/journal.pgen.1002947
Loh, P.R.; Lipson, M.; Patterson, N.; Moorjani, P.; Pickrell, J.K.;[84]
Reich, D.; Berger, B. Inferring admixture histories of human popu-
lations  using  linkage  disequilibrium.  Genetics,  2013,  193(4),
1233-1254.
http://dx.doi.org/10.1534/genetics.112.147330 PMID: 23410830
McTavish, E.J.; Hillis, D.M. A genomic approach for distinguish-[85]
ing between recent and ancient admixture as applied to cattle. J.
Hered., 2014, 105(4), 445-456.
http://dx.doi.org/10.1093/jhered/esu001 PMID: 24510946
Hellenthal, G.; Busby, G.B.; Band, G.; Wilson, J.F.; Capelli, C.;[86]
Falush, D.; Myers, S. A genetic atlas of human admixture history.
science, 2014, 343(6172), 747-751.
Avadhanam, S.; Williams, A.L. Simultaneous inference of paren-[87]
tal admixture proportions and admixture times from unphased lo-
cal ancestry calls. Am. J. Hum. Genet., 2022, 109(8), 1405-1420.
http://dx.doi.org/10.1016/j.ajhg.2022.06.016 PMID: 35908549
Chakraborty,  R.;  Weiss,  K.M.  Admixture  as  a  tool  for  finding[88]
linked genes and detecting that difference from allelic association
between loci. Proc. Natl. Acad. Sci., 1988, 85(23), 9119-9123.
http://dx.doi.org/10.1073/pnas.85.23.9119 PMID: 3194414
McKeigue, P.M. Mapping genes that underlie ethnic differences[89]
in disease risk: methods for detecting linkage in admixed popula-
tions, by conditioning on parental admixture. Am. J. Hum. Genet.,



258   Current Genomics, 2024, Vol. 25, No. 4 Goli et al.

1998, 63(1), 241-251.
http://dx.doi.org/10.1086/301908 PMID: 9634509
Hoggart, C.J.; Shriver, M.D.; Kittles, R.A.; Clayton, D.G.; McK-[90]
eigue,  P.M. Design and analysis  of  admixture mapping studies.
Am. J. Hum. Genet., 2004, 74(5), 965-978.
http://dx.doi.org/10.1086/420855 PMID: 15088268
Zhang, C.; Chen, K.; Seldin, M.F.; Li, H. A hidden Markov model-[91]
ing approach for admixture mapping based on case-control data.
Genet. Epidemiol., 2004, 27(3), 225-239.
http://dx.doi.org/10.1002/gepi.20021 PMID: 15389926
Zhu, X.; Zhang, S.; Tang, H.; Cooper, R. A classical likelihood[92]
based approach for admixture mapping using EM algorithm. Hum.
Genet., 2006, 120(3), 431-445.
http://dx.doi.org/10.1007/s00439-006-0224-z PMID: 16896924
Patterson, N.; Hattangadi, N.; Lane, B.; Lohmueller, K.E.; Hafler,[93]
D.A.; Oksenberg, J.R.; Hauser, S.L.; Smith, M.W.; O’Brien, S.J.;
Altshuler, D.; Daly, M.J.; Reich, D. Methods for high-density ad-
mixture  mapping  of  disease  genes.  Am.  J.  Hum.  Genet.,  2004,
74(5), 979-1000.
http://dx.doi.org/10.1086/420871 PMID: 15088269
Hoggart,  C.J.;  Parra,  E.J.;  Shriver,  M.D.;  Bonilla,  C.;  Kittles,[94]
R.A.; Clayton, D.G.; McKeigue, P.M. Control of confounding of
genetic associations in stratified populations. Am. J. Hum. Genet.,
2003, 72(6), 1492-1504.
http://dx.doi.org/10.1086/375613 PMID: 12817591
Tang, H.; Choudhry, S.; Mei, R.; Morgan, M.; Rodriguez-Cintron,[95]
W.; Burchard, E.G.; Risch, N.J. Recent genetic selection in the an-
cestral  admixture  of  Puerto  Ricans.  Am.  J.  Hum.  Genet.,  2007,
81(3), 626-633. a
http://dx.doi.org/10.1086/520769 PMID: 17701908
Jin,  W.;  Xu,  S.;  Wang,  H.;  Yu,  Y.;  Shen,  Y.;  Wu,  B.;  Jin,  L.[96]
Genome-wide detection of natural selection in African Americans
pre- and post-admixture. Genome Res., 2012, 22(3), 519-527.
http://dx.doi.org/10.1101/gr.124784.111 PMID: 22128132
Jones, O.R.; Wang, J. A comparison of four methods for detecting[97]
weak genetic structure from marker data. Ecol. Evol., 2012, 2(5),
1048-1055.
http://dx.doi.org/10.1002/ece3.237 PMID: 22837848
Bertorelle, G.; Raffini, F.; Bosse, M.; Bortoluzzi, C.; Iannucci, A.;[98]
Trucchi, E.; Morales, H.E.; van Oosterhout, C. Genetic load: ge-
nomic estimates and applications in non-model animals. Nat. Rev.
Genet., 2022, 23(8), 492-503.
http://dx.doi.org/10.1038/s41576-022-00448-x PMID: 35136196
Oleksyk, T.K.; Smith, M.W.; O’Brien, S.J. Genome-wide scans[99]
for footprints of natural selection. Philos. Trans. R. Soc. Lond. B
Biol. Sci., 2010, 365(1537), 185-205.
http://dx.doi.org/10.1098/rstb.2009.0219 PMID: 20008396
Payseur,  B.A.;  Rieseberg,  L.H.  A  genomic  perspective  on  hy-[100]
bridization and speciation. Mol. Ecol., 2016, 25(11), 2337-2360.
http://dx.doi.org/10.1111/mec.13557 PMID: 26836441
Yougbaré, B.; Ouédraogo, D.; Tapsoba, A.S.R.; Soudré, A.; Zo-[101]
ma,  B.L.;  terWengel,  O.P.;  Moumouni,  S.;  Koné,  O.S.;
Wurzinger, M.; Tamboura, H.H.; Traoré, A.; Mwai, O.A.; Sölkn-
er, J.; Khayatzadeh, N.; Mészáros, G.; Burger, P.A. Local ancestry
to  identify  selection  in  response  to  trypanosome  infection  in
Baoulé  x  zebu  crossbred  cattle  in  Burkina  Faso.  Front.  Genet.,
2021, 12, 670390.
http://dx.doi.org/10.3389/fgene.2021.670390 PMID: 34646296
Gautier, M.; Naves, M. Footprints of selection in the ancestral ad-[102]
mixture of  a  New World Creole  cattle  breed.  Mol.  Ecol.,  2011,
20(15), 3128-3143.
http://dx.doi.org/10.1111/j.1365-294X.2011.05163.x  PMID:
21689193
Detig, C.R.; Nielsen, R. A hidden Markov model approach for si-[103]
multaneously estimating local ancestry and admixture time using
next  generation  sequence  data  in  samples  of  arbitrary  ploidy.
PLoS Genet., 2017, 13(1), e1006529.
http://dx.doi.org/10.1371/journal.pgen.1006529 PMID: 28045893
Sankararaman, S.; Sridhar, S.; Kimmel, G.; Halperin, E. Estimat-[104]
ing local ancestry in admixed populations. Am. J. Hum. Genet.,
2008, 82(2), 290-303.
http://dx.doi.org/10.1016/j.ajhg.2007.09.022 PMID: 18252211
Baran, Y.; Pasaniuc, B.; Sankararaman, S.; Torgerson, D.G.; Gig-[105]

noux, C.; Eng, C.; Cintron, R.W.; Chapela, R.; Ford, J.G.; Avila,
P.C.; Santana, R.J.; Burchard, E.G.; Halperin, E. Fast and accurate
inference of local ancestry in Latino populations. Bioinformatics,
2012, 28(10), 1359-1367.
http://dx.doi.org/10.1093/bioinformatics/bts144 PMID: 22495753
Paşaniuc, B.; Sankararaman, S.; Kimmel, G.; Halperin, E. Infer-[106]
ence  of  locus-specific  ancestry  in  closely  related  populations.
Bioinformatics, 2009, 25(12), i213-i221.
http://dx.doi.org/10.1093/bioinformatics/btp197 PMID: 19477991
Li, N.; Stephens, M. Modeling linkage disequilibrium and identify-[107]
ing recombination hotspots using single-nucleotide polymorphism
data. Genetics, 2003, 165(4), 2213-2233.
http://dx.doi.org/10.1093/genetics/165.4.2213 PMID: 14704198
Yang, J.J.; Cheng, C.; Devidas, M.; Cao, X.; Fan, Y.; Campana,[108]
D.; Yang, W.; Neale, G.; Cox, N.J.; Scheet, P.; Borowitz, M.J.;
Winick, N.J.; Martin, P.L.; Willman, C.L.; Bowman, W.P.; Camit-
ta,  B.M.;  Carroll,  A.;  Reaman,  G.H.;  Carroll,  W.L.;  Loh,  M.;
Hunger, S.P.; Pui, C.H.; Evans, W.E.; Relling, M.V. Ancestry and
pharmacogenomics  of  relapse  in  acute  lymphoblastic  leukemia.
Nat. Genet., 2011, 43(3), 237-241.
http://dx.doi.org/10.1038/ng.763 PMID: 21297632
Brisbin, A.; Bryc, K.; Byrnes, J.; Zakharia, F.; Omberg, L.; Degen-[109]
hardt, J.; Reynolds, A.; Ostrer, H.; Mezey, J.G.; Bustamante, C.D.
PCAdmix:  Principal  components-based  assignment  of  ancestry
along  each  chromosome  in  individuals  with  admixed  ancestry
from two or more populations. Hum. Biol., 2012, 84(4), 343-364.
http://dx.doi.org/10.1353/hub.2012.a493568 PMID: 23249312
Omberg,  L.;  Salit,  J.;  Hackett,  N.;  Fuller,  J.;  Matthew,  R.;[110]
Chouchane, L.; Rodriguez-Flores, J.L.; Bustamante, C.; Crystal,
R.G.; Mezey, J.G. Inferring genome-wide patterns of admixture in
Qataris using fifty-five ancestral populations. BMC Genet., 2012,
13(1), 49.
http://dx.doi.org/10.1186/1471-2156-13-49 PMID: 22734698
Mendizabal, I.; Lao, O.; Marigorta, U.M.; Wollstein, A.; Gusmão,[111]
L.; Ferak, V.; Ioana, M.; Jordanova, A.; Kaneva, R.; Kouvatsi, A.;
Kučinskas, V.; Makukh, H.; Metspalu, A.; Netea, M.G.; de Pablo,
R.;  Pamjav,  H.;  Radojkovic,  D.;  Rolleston,  S.J.H.;  Sertic,  J.;
Macek, M., Jr; Comas, D.; Kayser, M. Reconstructing the popula-
tion history of European Romani from genome-wide data. Curr.
Biol., 2012, 22(24), 2342-2349.
http://dx.doi.org/10.1016/j.cub.2012.10.039 PMID: 23219723
Lawson, D.J.; Hellenthal, G.; Myers, S.; Falush, D. Inference of[112]
population  structure  using  dense  haplotype  data.  PLoS  Genet.,
2012, 8(1), e1002453.
http://dx.doi.org/10.1371/journal.pgen.1002453 PMID: 22291602
Spangenberg, L.; Fariello, M.I.; Arce, D.; Illanes, G.; Greif, G.;[113]
Shin, J.Y.; Yoo, S.K.; Seo, J.S.; Robello, C.; Kim, C.; Novembre,
J.; Sans, M.; Naya, H. Indigenous ancestry and admixture in the
Uruguayan population. Front. Genet., 2021, 12, 733195.
http://dx.doi.org/10.3389/fgene.2021.733195 PMID: 34630523
Maples, B.K.; Gravel, S.; Kenny, E.E.; Bustamante, C.D. RFMix:[114]
A  discriminative  modeling  approach  for  rapid  and  robust  lo-
cal-ancestry inference. Am. J. Hum. Genet., 2013, 93(2), 278-288.
http://dx.doi.org/10.1016/j.ajhg.2013.06.020 PMID: 23910464
Yang, J. J.; Li, J.; Buu, A.; Williams, L. K.; Yang, M. J. J. Effi-[115]
cient  inference  of  local  ancestry.  Bioinformatics,  2013,  29,
2750-2756.
Moreno-Estrada,  A.;  Gravel,  S.;  Zakharia,  F.;  McCauley,  J.L.;[116]
Byrnes,  J.K.;  Gignoux,  C.R.;  Tello,  O.P.A.;  Martínez,  R.J.;
Hedges,  D.J.;  Morris,  R.W.;  Eng,  C.;  Sandoval,  K.;  Acevedo,
A.S.; Norman, P.J.; Layrisse, Z.; Parham, P.; Martínez-Cruzado,
J.C.; Burchard, E.G.; Cuccaro, M.L.; Martin, E.R.; Bustamante,
C.D.  Reconstructing  the  population  genetic  history  of  the
Caribbean.  PLoS  Genet.,  2013,  9(11),  e1003925.
http://dx.doi.org/10.1371/journal.pgen.1003925 PMID: 24244192
Kumar, L.; Farias, K.; Prakash, S.; Mishra, A.; Mustak, M.S.; Rai,[117]
N.;  Thangaraj,  K.  Dissecting  the  genetic  history  of  the  roman
catholic  populations  of  West  Coast  India.  Hum.  Genet.,  2021,
140(10), 1487-1498.
http://dx.doi.org/10.1007/s00439-021-02346-4 PMID: 34424406
Dias-Alves, T.; Mairal, J.; Blum, M.G.B. Loter: A software pack-[118]
age to infer local ancestry for a wide range of species. Mol. Biol.
Evol., 2018, 35(9), 2318-2326.



Global and Local Ancestry and its Importance Current Genomics, 2024, Vol. 25, No. 4   259

http://dx.doi.org/10.1093/molbev/msy126 PMID: 29931083
Daya, M.; van der Merwe, L.; Gignoux, C.R.; van Helden, P.D.;[119]
Möller,  M.;  Hoal,  E.G.  Using multi-way admixture  mapping to
elucidate TB susceptibility in the South African Coloured popula-
tion. BMC Genomics, 2014, 15(1), 1021.
http://dx.doi.org/10.1186/1471-2164-15-1021 PMID: 25422094
Wu,  M.Y.;  Forcina,  G.;  Low,  G.W.;  Sadanandan,  K.R.;  Gwee,[120]
C.Y.;  van  Grouw,  H.;  Wu,  S.;  Edwards,  S.V.;  Baldwin,  M.W.;
Rheindt,  F.E.  Historic  samples  reveal  loss  of  wild  genotype
through domestic chicken introgression during the Anthropocene.
PLoS Genet., 2023, 19(1), e1010551.
http://dx.doi.org/10.1371/journal.pgen.1010551 PMID: 36656838
Lucas-Sánchez, M.; Fadhlaoui-Zid, K.; Comas, D. The genomic[121]
analysis of current-day North African populations reveals the exis-
tence of trans-Saharan migrations with different origins and dates.
Hum. Genet., 2023, 142(2), 305-320.
http://dx.doi.org/10.1007/s00439-022-02503-3 PMID: 36441222
Wedger, M.J.; Roma-Burgos, N.; Olsen, K.M. Genomic revolu-[122]
tion of US weedy rice in response to 21st century agricultural tech-
nologies. Commun. Biol., 2022, 5(1), 885.
http://dx.doi.org/10.1038/s42003-022-03803-0 PMID: 36076028
Browning, S.R.; Waples, R.K.; Browning, B.L. Fast, accurate lo-[123]
cal ancestry inference with FLARE. Am. J.  Hum. Genet.,  2023,
110(2), 326-335.
http://dx.doi.org/10.1016/j.ajhg.2022.12.010 PMID: 36610402
Lawrence,  E.S.;  Gu,  W.;  Bohlender,  R.J.;  Ramirez,  A.C.;  Cole,[124]
A.M.; Yu, J.J.; Hu, H.; Heinrich, E.C.; O’Brien, K.A.; Vasquez,
C.A.;  Cowan,  Q.T.;  Bruck,  P.T.;  Mercader,  K.;  Alotaibi,  M.;
Long, T.; Hall, J.E.; Moya, E.A.; Bauk, M.A.; Reeves, J.J.; Kong,
M.C.; Salem, R.M.; Vizcardo-Galindo, G.; Macarlupu, J.L.; Mují-
ca, F.R.; Bermudez, D.; Corante, N.; Gaio, E.; Fox, K.P.; Salo-
maa,  V.;  Havulinna,  A.S.;  Murray,  A.J.;  Malhotra,  A.;  Powel,
F.L.; Jain, M.; Komor, A.C.; Cavalleri, G.L.; Huff, C.D.; Villa-
fuerte, F.C.; Simonson, T.S. Functional EPAS1 / HIF2A missense
variant is associated with hematocrit in Andean highlanders. Sci.
Adv., 2024, 10(6), eadj5661.
http://dx.doi.org/10.1126/sciadv.adj5661 PMID: 38335297
Sabat,  O.B.;  Montserrat,  M.D.;  Nieto,  G.X.;  Ioannidis,  A.G.[125]
SALAI-Net:  Species-agnostic  local  ancestry  inference  network.
Bioinformatics, 2022, 38(S2), ii27-ii33.
http://dx.doi.org/10.1093/bioinformatics/btac464  PMID:
36124792
Garrigan, D.; Huff, J.; Foran, C.R. BCSYS: An accurate and scal-[126]
able  local  ancestry  classifier.  2023.  Available  from:  http-
s://www.wisdompanel.com/downloads/wp-breed-detection.pdf
Freyer, J.; Labadie, J.D.; Huff, J.T.; Denyer, M.; Forman, O.P.; Fo-[127]
ran, C.R.; Donner, J. Association of FGF4L1 retrogene insertion
with prolapsed gland of the nictitans (Cherry Eye) in dogs. Genes,
2024, 15(2), 198.
http://dx.doi.org/10.3390/genes15020198 PMID: 38397188
Hershkovitz,  G.E.;  Xia,  R.;  Yang,  Y.;  Spitzer,  B.;  Tarraf,  W.;[128]
Vásquez, P.M.; Lipton, R.B.; Daviglus, M.; Argos, M.; Cai, J.; Ka-
plan, R.; Fornage, M.; DeCarli, C.; Gonzalez, H.M.; Sofer, T. In-
teraction analysis of ancestry-enriched variants with APOE-ɛ4 on
MCI in the Study of Latinos-Investigation of Neurocognitive Ag-
ing. Sci. Rep., 2023, 13(1), 5114.
http://dx.doi.org/10.1038/s41598-023-32028-2 PMID: 36991100
Quillen,  E.E.;  Bauchet,  M.;  Bigham,  A.W.;  Burbano,  D.M.E.;[129]
Faust, F.X.; Klimentidis, Y.C.; Mao, X.; Stoneking, M.; Shriver,
M.D. OPRM1 and EGFR contribute to skin pigmentation differ-
ences  between  Indigenous  Americans  and  Europeans.  Hum.
Genet.,  2012,  131(7),  1073-1080.
http://dx.doi.org/10.1007/s00439-011-1135-1 PMID: 22198722
Cerqueira, C.C.S.; Paixão-Côrtes, V.R.; Zambra, F.M.B.; Salzano,[130]
F.M.; Hünemeier, T.; Bortolini, M.C. Predicting homo pigmenta-
tion phenotype through genomic data: From neanderthal to James
Watson. Am. J. Hum. Biol., 2012, 24(5), 705-709.
http://dx.doi.org/10.1002/ajhb.22263 PMID: 22411106
Gerstenblith, M.R.; Shi, J.; Landi, M.T. Genome-wide association[131]
studies of pigmentation and skin cancer: A review and meta-analy-
sis. Pigment Cell Melanoma Res., 2010, 23(5), 587-606.
http://dx.doi.org/10.1111/j.1755-148X.2010.00730.x  PMID:
20546537

Sturm, R.A.; Duffy, D.L. Human pigmentation genes under envi-[132]
ronmental selection. Genome Biol., 2012, 13(9), 248.
http://dx.doi.org/10.1186/gb-2012-13-9-248 PMID: 23110848
Sukhija, N.; Kanaka, K.K.; Goli, R.C.; Kapoor, P.; Sivalingam, J.;[133]
Verma, A.; Sharma, R.; Tripathi, S.B.; Malik, A.A. The flight of
chicken genomics and allied omics-a mini  review. Ecol.  Genet.
Genom., 2023, 29, 100201. a
http://dx.doi.org/10.1016/j.egg.2023.100201
Kopp, J.B.;  Smith,  M.W.; Nelson, G.W.; Johnson, R.C.;  Freed-[134]
man, B.I.; Bowden, D.W.; Oleksyk, T.; McKenzie, L.M.; Kajiya-
ma,  H.;  Ahuja,  T.S.;  Berns,  J.S.;  Briggs,  W.;  Cho,  M.E.;  Dart,
R.A.;  Kimmel,  P.L.;  Korbet,  S.M.;  Michel,  D.M.;  Mokrzycki,
M.H.; Schelling, J.R.; Simon, E.; Trachtman, H.; Vlahov, D.; Win-
kler, C.A. MYH9 is a major-effect risk gene for focal segmental
glomerulosclerosis. Nat. Genet., 2008, 40(10), 1175-1184.
http://dx.doi.org/10.1038/ng.226 PMID: 18794856
Norton,  H.L.;  Kittles,  R.A.;  Parra,  E.;  McKeigue,  P.;  Mao,  X.;[135]
Cheng, K.; Canfield, V.A.; Bradley, D.G.; McEvoy, B.; Shriver,
M.D. Genetic evidence for the convergent evolution of light skin
in  Europeans  and  East  Asians.  Mol.  Biol.  Evol.,  2006,  24(3),
710-722.
http://dx.doi.org/10.1093/molbev/msl203 PMID: 17182896
Beleza, S.; Johnson, N.A.; Candille, S.I.; Absher, D.M.; Coram,[136]
M.A.;  Lopes,  J.;  Campos,  J.;  Araújo,  I.I.;  Anderson,  T.M.;  Vil-
hjálmsson, B.J.; Nordborg, M.; Correia e Silva, A.; Shriver, M.D.;
Rocha, J.; Barsh, G.S.; Tang, H.; Tang, H. Genetic architecture of
skin and eye color in an African-European admixed population.
PLoS Genet., 2013, 9(3), e1003372.
http://dx.doi.org/10.1371/journal.pgen.1003372 PMID: 23555287
Pickrell, J.K.; Reich, D. Toward a new history and geography of[137]
human  genes  informed  by  ancient  DNA.  Trends  Genet.,  2014,
30(9), 377-389.
http://dx.doi.org/10.1016/j.tig.2014.07.007 PMID: 25168683
Harding, R.M.; Tomlinson, J.B.; Ray, A.J.; Wakamatsu, K.; Rees,[138]
J.L.; McKenzie, C.A. Phenotypic expression of melanocortin-1 re-
ceptor mutations in Black Jamaicans. J. Invest. Dermatol., 2003,
121(1), 207-208.
http://dx.doi.org/10.1046/j.1523-1747.2003.12314.x  PMID:
12839583
Chaitanya, L.; Ralf, A.; Oven, M.; Kupiec, T.; Chang, J.; Lagacé,[139]
R.;  Kayser,  M.  Simultaneous  whole  mitochondrial  genome  se-
quencing with short overlapping amplicons suitable for degraded
DNA using the ion torrent personal genome machine. Hum. Mu-
tat., 2015, 36(12), 1236-1247.
http://dx.doi.org/10.1002/humu.22905 PMID: 26387877
Ralf,  A.;  van Oven, M.; González, M.D.; de Knijff,  P.;  van der[140]
Beek, K.; Wootton, S.; Lagacé, R.; Kayser, M. Forensic Y-SNP
analysis beyond SNaPshot: High-resolution Y-chromosomal haplo-
grouping from low quality and quantity DNA using Ion AmpliSeq
and  targeted  massively  parallel  sequencing.  Forensic  Sci.  Int.
Genet., 2019, 41, 93-106.
http://dx.doi.org/10.1016/j.fsigen.2019.04.001 PMID: 31063905
Phillips, C. Forensic genetic analysis of bio-geographical ances-[141]
try. Forensic Sci. Int. Genet., 2015, 18, 49-65.
http://dx.doi.org/10.1016/j.fsigen.2015.05.012 PMID: 26013312
Phillips, C.; Devesse, L.; Ballard, D.; van Weert, L.; de la Puente,[142]
M.; Melis, S.; Iglesias, A.V.; Aradas, F.A.; Oldroyd, N.; Holt, C.;
Court, S.D.; Carracedo, Á.; Lareu, M.V. Global patterns of STR
sequence variation: Sequencing the CEPH human genome diversi-
ty panel for 58 forensic STRs using the Illumina ForenSeq DNA
Signature Prep Kit. Electrophoresis, 2018, 39(21), 2708-2724.
http://dx.doi.org/10.1002/elps.201800117 PMID: 30101987
Pitt, D.; Bruford, M.W.; Barbato, M.; terWengel, O.P.; Martínez,[143]
R.; Sevane, N. Demography and rapid local adaptation shape Cre-
ole cattle genome diversity in the tropics. Evol. Appl., 2019, 12(1),
105-122.
http://dx.doi.org/10.1111/eva.12641 PMID: 30622639
Noyes,  H.;  Brass,  A.;  Obara,  I.;  Anderson,  S.;  Archibald,  A.L.;[144]
Bradley, D.G.; Fisher, P.; Freeman, A.; Gibson, J.; Gicheru, M.;
Hall, L.; Hanotte, O.; Hulme, H.; McKeever, D.; Murray, C.; Oh,
S.J.; Tate, C.; Smith, K.; Tapio, M.; Wambugu, J.; Williams, D.J.;
Agaba, M.; Kemp, S.J. Genetic and expression analysis of cattle
identifies candidate genes in pathways responding to Trypanoso-



260   Current Genomics, 2024, Vol. 25, No. 4 Goli et al.

ma congolense  infection. Proc. Natl. Acad. Sci.,  2011,  108(22),
9304-9309.
http://dx.doi.org/10.1073/pnas.1013486108 PMID: 21593421
Ward,  J.A.;  McHugo,  G.P.;  Dover,  M.J.;  Hall,  T.J.;  Ng’ang’a,[145]
S.I.; Sonstegard, T.S.; Bradley, D.G.; Frantz, L.A.F.; Townshend,
S.M.; MacHugh, D.E. Genome-wide local ancestry and evidence
for mitonuclear coadaptation in African hybrid cattle populations.
iScience, 2022, 25(7), 104672.
http://dx.doi.org/10.1016/j.isci.2022.104672 PMID: 35832892
Griffiths, R.C.; Marjoram, P. An ancestral recombination graph.[146]
In: Progress in Population Genetics and Human Evolution; Don-
nelly,  P.;  Tavare,  S.,  Eds.;  Springer-Verlag:  Berlin,  Germany,
1997; pp. 257-270.
http://dx.doi.org/10.1007/978-1-4757-2609-1_16
Rasmussen, M.D.; Hubisz, M.J.; Gronau, I.; Siepel, A. Genome-[147]
wide inference of ancestral recombination graphs. PLoS Genet.,
2014, 10(5), e1004342.
http://dx.doi.org/10.1371/journal.pgen.1004342 PMID: 24831947
Martin, D.P.; Lemey, P.; Posada, D. Analysing recombination in[148]
nucleotide sequences. Mol. Ecol. Resour., 2011, 11(6), 943-955.
http://dx.doi.org/10.1111/j.1755-0998.2011.03026.x  PMID:
21592314
Hubisz,  M.;  Siepel,  A.  Inference  of  ancestral  recombination[149]
graphs  using  ARGweaver.  Methods  Mol  Biol,  2020,  2090,
231-266.
Marjoram,  P.;  Wall,  J.D.  Fast  “coalescent”  simulation.  BMC[150]
Genet., 2006, 7(1), 16.
http://dx.doi.org/10.1186/1471-2156-7-16 PMID: 16539698
Schaefer, N.K.; Shapiro, B.; Green, R.E. An ancestral recombina-[151]
tion graph of human, Neanderthal, and Denisovan genomes. Sci.
Adv., 2021, 7(29), eabc0776.
http://dx.doi.org/10.1126/sciadv.abc0776 PMID: 34272242
Buendia, P.; Narasimhan, G. Serial NetEvolve: A flexible utility[152]
for generating serially-sampled sequences along a tree or recombi-
nant network. Bioinformatics, 2006, 22(18), 2313-2314.
http://dx.doi.org/10.1093/bioinformatics/btl387 PMID: 16844708
McGill, J.R.; Walkup, E.A.; Kuhner, M.K. GraphML specializa-[153]
tions to codify ancestral recombinant graphs. Front. Genet., 2013,
4, 146.
http://dx.doi.org/10.3389/fgene.2013.00146 PMID: 23967010
Javed, A.; Pybus, M.; Melé, M.; Utro, F.; Bertranpetit, J.; Calafell,[154]
F.;  Parida,  L.  IRiS:  Construction  of  ARG networks  at  genomic
scales. Bioinformatics, 2011, 27(17), 2448-2450.
http://dx.doi.org/10.1093/bioinformatics/btr423 PMID: 21765095
O’Fallon, B.D. ACG: Rapid inference of population history from[155]

recombining  nucleotide  sequences.  BMC  Bioinformatics,  2013,
14(1), 40.
http://dx.doi.org/10.1186/1471-2105-14-40 PMID: 23379678
Rasmussen, M. D.; Siepel, A. Genome-wide inference of ancestral[156]
recombination graphs. arXiv1306.5110v2, 2013.
Mirzaei, S.; Wu, Y. RENT+: An improved method for inferring lo-[157]
cal genealogical trees from haplotypes with recombination. Bioin-
formatics, 2017, 33(7), 1021-1030.
http://dx.doi.org/10.1093/bioinformatics/btw735 PMID: 28065901
Duchemin, W.; Anselmetti, Y.; Patterson, M.; Ponty, Y.; Bérard,[158]
S.; Chauve, C.; Scornavacca, C.; Daubin, V.; Tannier, E. DeCoS-
TAR:  Reconstructing  the  ancestral  organization  of  genes  or
genomes using reconciled phylogenies. Genome Biol. Evol., 2017,
9(5), 1312-1319.
http://dx.doi.org/10.1093/gbe/evx069 PMID: 28402423
Speidel,  L.;  Forest,  M.;  Shi,  S.;  Myers,  S.R.  A  method  for[159]
genome-wide genealogy estimation for thousands of samples. Nat.
Genet., 2019, 51(9), 1321-1329.
http://dx.doi.org/10.1038/s41588-019-0484-x PMID: 31477933
Zhang, B.C.; Biddanda, A.; Palamara, P.F. 2021.Biobank-scale in-[160]
ference  of  ancestral  recombination  graphs  enables  genealo-
gy-based  mixed  model  association  of  complex  traits.  bioRxiv,
http://dx.doi.org/10.1101/2021.11.03.466843
Ignatieva, A.; Lyngsø, R.B.; Jenkins, P.A.; Hein, J. KwARG: Par-[161]
simonious reconstruction of ancestral recombination graphs with
recurrent mutation. Bioinformatics, 2021, 37(19), 3277-3284.
http://dx.doi.org/10.1093/bioinformatics/btab351  PMID:
33970217
Cámara, P.G.; Levine, A.J.; Rabadán, R. Inference of ancestral re-[162]
combination graphs through topological data analysis. PLOS Com-
put. Biol., 2016, 12(8), e1005071.
http://dx.doi.org/10.1371/journal.pcbi.1005071 PMID: 27532298
Shull, G.H. Duplicate genes for capsule-form inBursa bursa-pas-[163]
toris. Mol. Genet. Genomics, 1914, 12(1), 97-149.
http://dx.doi.org/10.1007/BF01837282
Davenport, C.B. Degeneration, albinism and inbreeding. Science,[164]
1908, 28(718), 454-455.
http://dx.doi.org/10.1126/science.28.718.454.c PMID: 17771943
East, E.M. Report of The Connecticut Agricultural Experiment Sta-[165]
tion;  Robinson  Street  Books,  IOBA:  Binghamton,  NY,  U.S.A.,
1908.
Shull,  G  .H  The  composition  of  a  field  of  maize.  J.  Heredity,[166]
1908, 4(1), 296-301.
http://dx.doi.org/10.1093/jhered/os-4.1.296


	Global and Local Ancestry and its Importance: A Review
	Abstract:
	Keywords:
	1. INTRODUCTION
	2. USE OF MARKERS IN ADMIXTURE STUDIES
	3. MICROSATELLITE
	4. SINGLE NUCLEOTIDE POLYMORPHISM
	5. USAGE OF MICROSATELLITE MARKERSVERSUS SNPS IN POPULATION STUDIES
	6. ANCESTRY INFORMATIVE MARKERS
	7. APPROACHES FOR ADMIXTURE ESTIMATIONTHROUGH THE USE OF BIOINFORMATICS ANDSTATISTICAL TOOLS
	Fig. (1).
	8. MODEL-BASED APPROACH
	9. NON-PARAMETRIC APPROACHES
	10. DIFFERENTIATION OF RECENT AND DISTANTADMIXTURE
	11. ADMIXTURE MAPPING
	12. LOCAL ANCESTRY
	Fig. (2).
	Fig. (3).
	13. LAMP
	14. WINPOP
	15. HAPMIX
	16. PCAadmix
	17. SupportMix
	18. ChromoPainter
	19. RFMix
	20. EILA
	21. ASPCA
	22. LOTER
	23. FLARE
	24. SALAI-Net
	25. BCSYS (LOCAL ANCESTRY CLASSIFIER)
	26. AFA (ANCESTRY-SPECIFIC ALLELE FREQUENCY)
	27. APPLICATION OF ADMIXTURE ANALYSIS
	Table 1.
	Table 2.
	Fig. (4).
	Table 3.
	CONCLUSION
	AUTHORS' CONTRIBUTIONS
	LIST OF ABBREVIATIONS
	CONSENT FOR PUBLICATION
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES



