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Abstract
Based on DNA-methylation, ependymomas growing in the spinal cord com-
prise two major molecular types termed spinal (SP-EPN) and myxopapillary
ependymomas (MPE(-A/B)), which differ with respect to their clinical features
and prognosis. Due to the existing discrepancy between histomorphogical
diagnoses and classification using methylation data, we asked whether deep
neural networks can predict the DNA methylation class of spinal cord ependy-
momas from hematoxylin and eosin stained whole-slide images. Using explain-
able AI, we further aimed to prospectively improve the consistency of
histology-based diagnoses with DNA methylation profiling by identifying and
quantifying distinct morphological patterns of these molecular ependymoma
types. We assembled a case series of 139 molecularly characterized spinal cord
ependymomas (nMPE = 84, nSP-EPN = 55). Self-supervised and weakly-
supervised neural networks were used for classification. We employed atten-
tion analysis and supervised machine-learning methods for the discovery and
quantification of morphological features and their correlation to the diagnoses
of experienced neuropathologists. Our best performing model predicted the
DNA methylation class with 98% test accuracy and used self-supervised learn-
ing to outperform pretrained encoder-networks (86% test accuracy). In con-
trast, the diagnoses of neuropathologists matched the DNA methylation class
in only 83% of cases. Domain-adaptation techniques improved model generali-
zation to an external validation cohort by up to 22%. Statistically significant
morphological features were identified per molecular type and quantitatively
correlated to human diagnoses. The approach was extended to recently defined
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subtypes of myxopapillary ependymomas (MPE-(A/B), 80% test accuracy). In
summary, we demonstrated the accurate prediction of the DNA methylation
class of spinal cord ependymomas (SP-EPN, MPE(-A/B)) using hematoxylin
and eosin stained whole-slide images. Our approach may prospectively serve
as a supplementary resource for integrated diagnostics and may even help to
establish a standardized, high-quality level of histology-based diagnostics
across institutions—in particular in low-income countries, where expensive
DNA-methylation analyses may not be readily available.

KEYWORDS
DNA-methylation, ependymoma, hematoxylin and eosin stain, morphology, neural networks,
whole-slide image

1 | INTRODUCTION

Ependymal tumors (ependymomas, EPNs) are clinically
heterogeneous neoplasms of neuroepithelial origin and
can occur in all three compartments of the central ner-
vous system (supratentorial, in the posterior fossa, and in
the spinal cord) [1]. The 2021 WHO classification defines
10 types of ependymomas by their molecular characteris-
tics, anatomical compartment, and (for some types)
immunohistochemical criteria [2, 3]. Spinal cord ependy-
momas comprise four different types, labeled spinal epen-
dymoma (SP-EPN), spinal ependymoma with MYCN
amplification (SP-MYCN), myxopapillary ependymoma
(MPE) and subpendymoma (SE) [2, 3]. In particular,
authors have reported more than 20% of primary tumors
in the spinal cord to be of ependymal origin [1, 4]. Of
note, SE and MPE may also occur in other anatomical
compartments than the spine [2, 5, 6]. The spinal ependy-
moma types SE and SP-MYCN represent very rare epen-
dymoma types—thus, this manuscript exclusively focuses
on MPE and SP-EPN, which together represent the
majority of spinal cord ependymomas [1, 2, 7].

Myxopapillary ependymomas are CNS WHO grade
2 tumors that are histologically characterized by myxoid
changes in microcysts or around blood vessels and by the
presence of papillary-arranged tumor cells around vascu-
larized fibromyxoid cores [2]. SP-EPN are mainly identi-
fied from the absence of morphological features of MPE
or SE [2]. Although the overall prognosis of patients SP-
EPN and MPE ependymomas is good (5-year overall sur-
vival of nearly 100%), more frequent relapses have been
reported for myxopapillary ependymomas than for SP-
EPNs (50% vs. 88% 5-year progression-free survival
(PFS)) [1, 2]. This underlines the necessity of the assign-
ment of the correct tumor type in ependymoma diagnos-
tics. Of note, methylation profiling was recently used to
define two molecularly distinct MPE subtypes, MPE-A
and MPE-B, that showed association to papillary or
tanycytic morphology, respectively, and to specific clini-
cal features such as tumor localization and patient out-
come [8]. In particular, MPE-A cases were demonstrated
to exhibit lower PFS than MPE-B.

In combination with histological assessment of hema-
toxylin and eosin (H&E) stained tissue, DNA-
methylation based classification has become an integral
part of diagnostics and is even mandatory for the EPN
type PF-B (posterior fossa B) according to the WHO
[2, 3, 9–11]. Moreover, ependymomas histologically
represent a challenging differential diagnosis for other
tumor entities as well. In particular, a recent publication
on a subset of histologically characterized ependymo-
mas reported frequent match of DNA methylation pro-
files to other, non-ependymal tumor types [12]. Due to
their vast expressiveness, neural networks have signifi-
cantly advanced image classification over the last years
[13–16], but no image-based classifier for ependymomas
exists to date. Thus, we aimed to employ neural net-
works to elicit the limits of molecular EPN classification
based on classical H&E-stained whole-slide images. In a
second step, characteristic morphological patterns of
each molecular EPN type need to be identified as well as
quantified in order to provide quantitative guidance for
future histology-based molecular EPN diagnostics.

Whole-slide images (WSIs) are often multiple gigapix-
els in size and are therefore typically processed as a set of
small sub-images, so-called patches (cf. [17, 18]). Since
many of these patches may show irrelevant contents
(e.g., background, artifacts), until recently, tumor classifi-
cation based on WSIs required human experts to manu-
ally label representative tumor areas (regions-of-interest)
or even individual pixels [19, 20].

This manual annotation is laborious and Ilse et al.
proposed a weakly-supervised classification algorithm
which required only slide-level labels (e.g., the molecular
type of the tumor for the WSI) and demonstrated excel-
lent performance on binary classification tasks [21]. Their
approach trains a neural network (aggregation function)
to combine sets of unlabeled patches into a meaningful
representation of the entire slide, which is used together
with the slide-level label to train established classification
architectures. The relative contribution of each patch to
the slide-level representation depicts the respective atten-
tion and can be used for feature discovery, cf. [22].
Recently, clustering-constrained attention multiple
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instance learning (CLAM) was introduced, which extends
the algorithm of Ilse et al. to the multi-class case [23],
hence allowing discrimination of not only two but many
different diagnoses/molecular subgroups. CLAM
computes one or multiple slide-level representations (sin-
gle-branch/CLAM-SB, multi-branch/CLAM-MB) for
multi-class classification and additionally introduces a
linear classification objective in a compressed input
space. Compared to other methods, this approach was
demonstrated to work well with limited amounts of data.
Thus, we focused on CLAM throughout this study, since
EPNs represent a relatively rare tumor entity.

Prior to classification, these deep-learning architec-
tures utilize other deep-learning models, so-called
encoders, to embed each patch in a lower-dimensional
latent space. Multiple architectures for encoders exist,
including residual networks (ResNets) and vision trans-
formers [13, 24]. Recent results indicate that domain-
specific encoders that were trained using self-supervised
learning (SSL) on histology datasets are suited better for
WSI classification than encoders that were trained on the
classical ImageNet dataset [22, 25–28]. Compared to
other methods [29–32], simple siamese networks are a
particularly efficient SSL method (wrt. memory and com-
putation) and can be used to train residual networks of
various depths [33]. Therefore, we focus on SimSiam and
ResNets in this study.

In summary, we aim to predict the molecular type of
major spinal cord ependymomas types and subtypes from
hematoxylin and eosin stained whole-slide images using
explainable AI and to strive to extract morphological
properties of these DNA methylation types of ependymo-
mas from the classifier. Thus, our study addresses the
challenge of improving the consistency between histologi-
cal diagnoses by neuropathologists and tumor classifica-
tion by DNA methylation profiling. Prospectively, our
work may serve as a supplementary resource for inte-
grated diagnostics of MPE/SP-EPN and could help to
establish a comparable level of diagnostic quality across
institutions—which could be especially beneficial in low-
income countries, where expensive DNA-methylation
analyses may not be readily available. Of note, the meth-
odology employed in this study was explicitly chosen to
be agnostic of the considered ependymoma entities and
may prospectively be extended other ependymoma types
as well.

F I GURE 1 Cohort overview. Left column: Clinical annotations
(age, sex, tumor localization, histological grade and histological tumor
type as per neuropathology archive, ependymoma and MPE type as per
DNA methylation profile). Centre column: Input data characteristics
(number of available slides, patches per slide at 2� downscale). Right
column: Ratio of neuropathologists or (independently trained) neural
networks that predict the DNA methylation class from the H&E image.

2 | MATERIALS AND METHODS

Cases with DNA methylation classes MPE or SP-EPN
were obtained from previous publications [8] and from
the archive of the Institute of Neuropathology at the Uni-
versity Medical Center Hamburg-Eppendorf (Figure 1).
The spinal ependymoma types SE and SP-MYCN had to
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be excluded, since only a very small number of cases
could be collected for them (<10 cases in total). Of note,
the vast majority of cases had been histologically diag-
nosed as ependymomas (mostly grade 2) in our clinical
databases. Furthermore, reference cases of glioblastomas
(n = 24), medulloblastomas (n = 109), and PF-A (poste-
rior-fossa A) ependymomas (n = 100) were gathered from
the archive as well. Consent to collect demographic data
and samples was obtained from each patient, following
the protocols approved by the respective institutional
review boards of the participating institutions. H&E-
stained slides and DNA methylation profiling data were
obtained using standard protocols (cf. Supporting Infor-
mation). The Heidelberg brain tumor classifier v11b6 [9]
was used to assign the methylation class used for our
analyses.

Our method is summarized in Figure 2. Slides were
digitized on a Hamamatsu C9600-12 slide scanner at 40�
magnification (226 nm per pixel). The median area of the
slides was 8:5 �109 pixels, and the scan quality of each
WSI was verified by manual inspection. For tissue seg-
mentation, each WSI was first scaled to 1.25� magnifica-
tion (32� downscale) and then converted into HSV color
space. Following [23], we then computed a binary mask
for the tissue regions by thresholding the saturation
(S) color channel, followed by morphological opening to
smooth the corners of the contours. We then inverted the
resulting segmentation mask so that the tissue area was
in the foreground and filtered out small artifacts (see
Table S5 for details). Finally, tissue was identified as
foreground contours with an area of at least 51,200
square pixels. Per contiguous tissue area, up to 15 holes
with a minimal area of 3840 square pixels were identified
and removed from further consideration. We then sam-
pled overlapping RGB patches of 224� 224 pixels with
variable step size (stride) from the identified tissue area.
If not explicitly stated otherwise, experiments were con-
ducted at 4� downscale (10� magnification) with a
stride of 112 pixels. For this configuration, we sampled
2,493,112 patches in total (median of 12,378 patches
per WSI).

We trained domain-specific ResNet encoders on
patches of the training WSIs using SimSiam, cf. Table S6.
Encoder training was distributed over 5 GPU nodes of the
supercomputing cluster HSUper, each node featuring
256 GB DDR4 RAM, 2 Nvidia A100 GPUs and 2 Intel
Icelake sockets with an Intel Xeon Platinum 8360Y pro-
cessor (36 cores) each [34]. Features for each patch were
extracted from the final average pooling layer (cf. [33]).
For comparison, we also considered pretrained ResNets
from ImageNet with 50 trainable layers (ResNet50), which
represent a common choice in literature (cf. [23, 35]). Fol-
lowing [23], features were extracted using mean-average
pooling after the third residual block (conv4x).

The extracted features were used by CLAM models
to predict the molecular EPN type (MPE/SP-EPN). We
used the ADAM optimization algorithm [36] to train the

models for 50–200 epochs using early stopping with a
patience of 20 epochs. Hyperparameters were manually
tuned once for a pretrained ImageNet encoder
(ResNet50) on a single-branch model of CLAM and kept
constant in all other experiments for comparability
(cf. Table S7).

In some cases, our dataset contained multiple slides
of the same tumor (stained for another study or collected
from a different block). During training, these WSIs were
considered independently by CLAM to increase the size
of the training set. During validation/testing however, the
patches from all available WSIs were considered jointly,
so that CLAM predicts one unique diagnosis per case,
just like a neuropathologist would do. Moreover, WSIs
of both classes were sampled with balanced probabilities
during training in order to encourage unbiased models.
In order to estimate model variability, we trained CLAM
models in five independent repetitions for each experi-
ment and evaluated them using the metrics (1) accuracy
with respect to the DNA methylation class, (2) area
under receiver-operating characteristic curve (ROC
AUC) and (3) cross-entropy [37].

In order to enable the identification of characteristic
morphological features for each molecular EPN type, we
employed MeanShift clustering [38] to the 50 patches
with highest attention per WSI and CLAM attention
branch (maximum of 500 iterations). In pursuance of fur-
ther manual analysis, the closest patch per cluster center
was extracted. In order to quantify the relative prevalence
of the identified morphological patterns per slide, super-
vised machine learning (RandomForest, [39]) was used.
Hyperparameters were optimized by a randomized grid
search in 5-fold stratified cross-validation (cf. Supporting
Information, as well as Table S8).

3 | RESULTS

3.1 | Classification of major molecular spinal
ependymoma types MPE/SP-EPN

With this study, we aimed to predict the molecular
(DNA-methylation) ependymoma type from H&E-stained-
whole-slide images. For this, we trained domain-specific
encoders using simple siamese networks and classified the
respective patch feature vectors using explainable neural
networks (CLAM classification algorithm). The resulting
predictions and attention scores per patch led to a mecha-
nistic understanding of the classification model and allowed
for comprehensive analyses of the morphologic, inter-class
heterogeneity of spinal cord ependymomas.

We collected a case series of 139 patients (173 WSIs),
who were molecularly diagnosed with ependymoma of
either myxopapillary (MPE) or spinal (SP-EPN) type, as
assigned by the Heidelberg brain tumor classifier using
DNA-methylation data [9] (cf. Figure 1). Histological
diagnosis confirmed glial origin of all cases (136/136

4 of 17 SCHUMANN ET AL.



F I GURE 2 Legend on next page.
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cases, three cases censored due to missing histological
information in clinical databases). In particular, the vast
majority of cases was histologically diagnosed as ependy-
momas (132/136 cases) of mostly CNS WHO grade 1 or
2 (123/129 cases, 10 cases censored). Between 1 and
10 WSIs were available per patient. Eighty-four tumors
(102 WSIs) were classified as MPE and the remaining
55 cases (71 WSIs) as SP-EPN. Median age at diagnosis
was 43 years for both molecular types. Of the MPE cases,
36/48 patients were female/male respectively, whereas the
sex distribution was 19/36 for SP-EPN. In concordance
with previously reported findings [1, 2], relapses occurred
more often in MPE cases than for SP-EPN cases.
Significant differences in patient outcome (PFS) could be
confirmed for our cohort (p<0:05) using a robust Peto
log-rank test [40], which confirmed the necessity for
MPE/SP-EPN patient stratification, cf. Figure S8.
Patients were distributed into stratified training/valida-
tion/test sets with a ratio of 3:1:1 (49/34, 17/11 and 18/10
cases per class, respectively). In particular, all WSIs of a
tumor were assigned to the same data split.

3.2 | Model comparisons

In order to obtain optimal classification results, detailed
comparisons of different encoders and training strategies
were necessary. We trained domain-specific ResNets as
described in Section 2 with 18, 34, 50, 101, and 152 layers
(denoted ResNet18, ResNet34, etc. in the following)
using stochastic gradient descent (SGD) with batch sizes
of 8192, 4096, 2048, 1024, and 1024, respectively. Deeper
encoders (50 trainable layers and more) had smooth loss
curves and the training time of the encoders increased by
up to 7� from the shallowest to the deepest network
(cf. Figure 3A). Smaller batch sizes or layer-wise adaptive
rate scaling (LARS) [41] smoothed the loss curves for the
shallow ResNet18 encoder (Figure 3B).

Based on preemptive comparisons of single-branch
and multi-branch CLAM architectures (cf. Table S9), we
trained multi-branch CLAM classifiers using encoded
patches from each of the trained encoders (Figure 3C and
Table 1).

Using our default training strategy (cf. Section 2), the
shallow ResNet18 and ResNet34 encoders yielded
the worst evaluation metrics among the tested models
(e.g., a respective average validation accuracy of 67%
and 68%, respectively). The deeper, domain-specific
ResNets (50 trainable layers and more) significantly out-
performed a pretrained ResNet50 encoder, domain-
specific ResNet18 and ResNet34 encoders, as well as the

domain-specific ResNet18 encoder that was trained using
smaller batches or LARS optimization. The best classifi-
cation performance was achieved by the ResNet152
(average validation accuracy of 98%), closely followed by
the ResNet101 (97%). Since the latter achieved close to
perfect validation metrics as well as exhibited consider-
ably lower encoder training times than the ResNet152,
we focused on the ResNet101 in all further experiments.
Of note, automatic mixed-precision and re-structuring of
the data layout in GPU memory could even accelerate
the ResNet101 training time by 1.7� without loss of vali-
dation accuracy (cf. Table S10).

In order to analyze the influence of patch magnifica-
tion on the CLAM models, we sampled patches at 2�,
4� and 8� downscale (20�, 10� and 5� magnification,
respectively) from the WSIs. The dataset size was roughly
maintained by varying the stride (224, 112 and 56 pixels,
respectively). We trained domain-specific encoders
(ResNet101) and respective CLAM models for each mag-
nification and compared the results to classification based
on a pretrained ResNet50 encoder (cf. Table 2). We
observed the classifiers based on domain-specific
encoders to outperform their pretrained counterparts
(wrt. magnification) on both the validation and the test
set with respect to all evaluation metrics. Furthermore,
the test accuracy, test cross-entropy and test ROC AUC
score of the CLAM models generally improved with
increasing downscale factor for the domain-specific
encoders. In particular, the best model at 8� downscale
(5� magnification) exhibited an average test accuracy of
98%, a cross-entropy of 0.14 and a ROC AUC score
of 0.99.

3.3 | Interpretable analysis of classification
results

For each patch, the classifier assigns an attention score,
which represents the relative contribution of the patch to
the slide-level representation of the WSI (cf. Section 1).
These attention scores may be interpreted as the rele-
vance of the respective patch to classification and can be
used for the discovery of characteristic morphology per
EPN type (cf, Figure 4A).

Here, we selected the domain-specific ResNet101 at
8� downscale for further analysis, since it yielded the
best test metrics in prior analysis (cf. Section 3.2). For
our analyses, we selected the 50 patches with highest
attention scores per WSI from a single CLAM model and
retrieved a subset of patches with representative morphol-
ogy using a clustering method as described in Section 2.

F I GURE 2 Method for the morphology-based molecular classification of spinal cord ependymomas using deep neural networks. (A) Slide
background and tissue holes are identified for each whole-slide image (WSI) and patches are sampled from a regular grid over the tissue area.
(B) Simple siamese networks are used to train residual networks on patches of WSIs from the training set. (C) The trained encoders are used for slide-
level classification using clustering-constrained attention multiple instance learning (CLAM). (D) CLAM provides the molecular type prediction per
slide, as well as the attention score per patch, for further analyses.

6 of 17 SCHUMANN ET AL.



Here, we focused on the classifier’s attention branch for
the SP-EPN class, since supplementary analyses showed
that other attention branches yielded very similar atten-
tion scores (cf. Figure S9). By manual inspection of the
representative patches obtained by this method, we were
able to extract respective morphological characteristics of
MPE and SP-EPN ependymomas (Figure 4B,C). Of
note, the selected patches represent tumor locations that
were highly attended by our algorithm and may therefore
differ from morphological features that are classically
considered by neuropathologists (e.g., the type of pseudo
rosettes).

The classifier characterized WSIs of MPE ependymo-
mas using patches with dominant hyalinized vessels
(HV), myxoid changes/microcysts (MM) and myxoid/
fibrovascular cores (MFC). Based on the highly attended
patches of the validation WSIs, these features occurred in
59% (nHV = 10), 82% (nMM = 14) and 47% (nMFC = 8)
of validation patients with MPE EPNs and in only 9%
(nHV = 1), 9% (nMM = 1) and 9% (nMFC = 1) of the vali-
dation patients with SP-EPN, respectively. This indicates
that these features may serve as positive indicators for the
molecular MPE type. SP-EPN cases were typified by
the classifier using tumor tissue with hemorrhages (H), as
well as by a type of pseudo rosettes (PR) morphology.

These features were found in 91% (nH = 10) and 55%
(nPR = 6) of the validation patients of SP-EPN type,
respectively, and in only 18% (nH = 3) and 18% (nPR = 3)
of the validation MPE cases. Therefore, these features
may represent positive correlates of the molecular SP-
EPN type. Additional cross-validation experiments on
the entire cohort (all 139 cases) confirmed our findings
for the entire cohort (cf. Figures S10 and S11).

We aimed to additionally validate these findings on
the correlation of morphological features and EPN types.
In order to retrieve automated patch-level annotations
(e.g., hyalinized vessel present/not present on patch) we
used supervised machine-learning (RandomForest) to
classify each patch with respect to presence of the identi-
fied morphological features (cf. Supporting Information
for implementation details). The corresponding
RandomForest-classifiers achieved average validation F1
scores of 0.93, 0.92, and 0.89 on non-training data,
respectively. We applied these classifiers to all patches at
8� downscale and computed the relative prevalence (per-
centage of positive tissue area) for each feature and WSI
(Figure 5A) as well as the Hausdorff distance
(HD) between positively/negatively labeled patches
(Figure 5B). The HD may be interpreted as a measure of
non-focality (low HD—high focality and strongly

(A)

(C)

(B)F I GURE 3 Encoder and
classifier training. (A) Loss curves
(left panel) and training time per
epoch (right panel) for ResNet
encoders of various depths. Error
bars indicate 95% confidence
intervals. (B) Loss curves for
ResNet18 encoder trained using
stochastic gradient descent (SGD)
and layer-wise adaptive rate scaling
(LARS). The large batch optimizer
LARS reduces the oscillations of
the loss curves observed for SGD.
(C) Validation accuracies of
CLAM models trained using
custom (SimSiam) and pretrained
ResNet encoders. Solid lines
indicate averages and shaded areas
represent 95% confidence intervals.
(D) Validation accuracies of
CLAM models using domain-
specific ResNet18 encoders trained
using LARS and SGD with small
batch size. Solid lines indicate
averages and shaded areas
represent 95% confidence intervals.
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interleaved positive/negative patches; high HD—low
focality and contiguous areas of positive/negative
patches). For WSIs of MPE ependymomas, one-tailed
t-tests confirmed statistically significant enrichment of
myxoid changes/microcysts (p<2 �10�8) and hyalinized
vessels (p<2 �10�6), as well as significantly lower preva-
lence of patches with hemorrhages (p<1 �10�3). For each
morphological feature, the HD was higher for WSIs of
the corresponding molecular EPN type (p<5 �10�9,
p<5 �10�8 and p<0:15 (ns.), respectively). This indicates
that the spatial distribution of the respective characteris-
tics corresponded to larger, contiguous areas, whereas
they occurred only very focally in WSIs of the other
EPN type.

Of note, we analyzed the patches with lowest atten-
tion scores per slide (both MPE and SP-EPN cases) as
well and predominantly found low-quality patches with a
large proportion of background (e.g., at tissue bound-
aries), with smudges on the slide, with artifacts and also
unfocused patches (cf. Figures S12 and S13). This was
consistent with our expectations for unimportant patches

and thus supported the validity of the proposed attention
mechanism.

For comparison to our classifier, three experienced
human neuropathologists were asked to label the validation
and test WSIs as either MPE or SP-EPN in a blinded exper-
iment based on histomorphology (Figure 6C, Venn dia-
grams). On average, their histological diagnosis matched
the molecular, DNA methylation class in 82.7% of all vali-
dation and test cases. An average 92% of the molecular
MPE cases were assigned to the histological MPE class,
whereas only 67% of the molecular SP-EPN cases were his-
tologically assigned to the histological SP-EPN class. For
MPE, the ratio of neuropathologists that assigned a match-
ing histological diagnosis was significantly positively corre-
lated to the relative abundance of myxoid changes/
microcysts (p<0:03) as predicted by the RandomForests,
whereas for SP-EPN it was significantly negatively corre-
lated to the prevalence of hyalinized vessels (p<0:01) and
myxoid changes/microcysts (p<0:03) (Figure 6G).

Of note, only for three molecular SP-EPN cases all
neuropathologists assigned the histological class MPE.

TABLE 1 Validation metrics (accuracy, cross-entropy and ROC AUC) of multi-branch CLAM models for different encoders and encoder
training strategies (stochastic gradient descent—SGD, layer-wise adaptive rate scaling—LARS).

Metric Accuracy Cross-entropy ROC AUC

Encoder

ResNet18, SimSiam, SGD 0.67 ± 0.01 0.6 ± 0.0 0.73 ± 0.0

ResNet34, SimSiam, SGD 0.68 ± 0.0 0.63 ± 0.0 0.67 ± 0.01

ResNet50, SimSiam, SGD 0.96 ± 0.01 0.2 ± 0.04 0.96 ± 0.04

ResNet101, SimSiam, SGDa 0.97 ± 0.03 0.09 ± 0.05 0.99 ± 0.01

ResNet152, SimSiam, SGD 0.98 ± 0.02 0.07 ± 0.04 1.0 ± 0.0

ResNet50, pretrained, conv4x 0.9 ± 0.04 0.35 ± 0.03 0.9 ± 0.03

ResNet50, pretrained, last avg-poolb 0.83 ± 0.01 0.38 ± 0.02 0.91 ± 0.01

ResNet18, SimSiam, SGD (small batch) 0.86 ± 0.0 0.35 ± 0.02 0.92 ± 0.01

ResNet18, SimSiam, LARS 0.64 ± 0.05 0.63 ± 0.01 0.7 ± 0.0

Note: The domain-specific ResNet152 performed best, closely followed by the domain-specific ResNet101. For comparability, we also report the result for a pretrained
ResNet50, where features were extracted after the last average-pooling layer (similar to the domain-specific encoders) instead after the typical conv4x block. Mean and
standard deviations refer to 5 independently trained CLAM models and the two models with best validation results are highlighted.
aSelected for all further comparisons due to close to perfect validation metrics and good encoder training time (36% faster than ResNet152).
bSimilar to the domain specific encoders, features were extracted after the last average-pooling layer for this model.

TABLE 2 Validation and test metrics of multi-branch CLAM models based on features from domain-specific (SimSiam) and pretrained encoders
at multiple resolutions.

Accuracy Cross-entropy ROC AUC

Encoder type Downscale Magnification Test Valid. Test Valid. Test. Valid.

ResNet50 pretrained 2� 20� 0.86 ± 0.03 0.88 ± 0.02 0.36 ± 0.07 0.35 ± 0.01 0.96 ± 0.02 0.91 ± 0.02

4� 10� 0.82 ± 0.07 0.9 ± 0.04 0.38 ± 0.06 0.35 ± 0.03 0.91 ± 0.02 0.9 ± 0.03

8� 5� 0.75 ± 0.03 0.83 ± 0.01 0.82 ± 0.3 0.42 ± 0.02 0.86 ± 0.04 0.9 ± 0.01

ResNet101, SimSiam,
SGD

2� 20� 0.85 ± 0.04 0.9 ± 0.01 0.43 ± 0.11 0.28 ± 0.02 0.9 ± 0.04 0.92 ± 0.03

4� 10� 0.9 ± 0.01 0.97 ± 0.03 0.26 ± 0.05 0.09 ± 0.05 0.98 ± 0.0 0.99 ± 0.01

8� 5� 0.98 ± 0.02 0.93 ± 0.0 0.14 ± 0.08 0.13 ± 0.04 0.99 ± 0.01 0.99 ± 0.0

Note: The best test metrics were achieved at 8� downscale using a domain-specific ResNet101 (98% accuracy, highlighted in bold font). Mean and standard deviations
refer to 5 independently trained CLAM models.

8 of 17 SCHUMANN ET AL.



For these cases, the neuropathologists reported the WSIs
to lack distinctive features of MPE/SP-EPN
(cf. Discussion), but the classifier’s attention mechanism
was able to identify areas with hemorrhages characteris-
tic to molecular SP-EPN ependymomas in all of the three
cases (Figure 6A). Accordingly, the cases were assigned
to the correct molecular class by our classifier. For the
molecular MPE cases, two cases were assigned to the his-
tological SP-EPN class by 2/3 neuropathologists and one
of these cases was correctly classified (w.r.t. molecular
class) by our classifier using patches with myxoid
changes/microcysts and myxoid/fibrovascular cores. The
other case, however, exhibited dominant bleedings and
was accordingly mis-classified as molecular SP-EPN by
CLAM (Figure 6B). Recently, HOXB13 has been
reported as a novel immunohistochemical marker for
MPE ependymomas and we confirmed the molecularly
assigned class for these cases as far as tissue availability
allowed (cf. Figure S16).

Of note, the patches selected by the classifier for the
aforementioned cases with dis-concordant histological
diagnosis and DNA methylation class were of lower
quality than usual (case 130: mildly unfocused tumor tis-
sue, case 104: surgery artifact resembling microcysts, case
97: patches consisting purely of blood). This highlights
that these cases were challenging for the classifier and
demonstrate that human verification of the highly
attended patches is still necessary when employing the
classifier as supplementary resource in an integrated diag-
nostics setting. For the considered cases, additional

overview images, which were selected by human experts,
can be found in Figure 6D–F.

Additional cross-validation experiments indicated
that a score of less than 0.9 represents a suitable rejection
criterion for WSIs, which strikes a balance between pre-
dicting as many samples as possible (approx. 84% and
88% of the validation and test cases respectively)
and obtaining accurate predictions of the DNA methyla-
tion class (cf. Figure S14). Such a quantitative quality
estimate is highly necessary for a future application in
diagnostics and would have (correctly) rejected the mis-
classified molecular MPE case 97 in the considerations
above (the respective score was 0.62 for SP-EPN and
0.38 for MPE).

In order to test discrimination of the trained EPN
types to other brain tumor entities unknown to the classi-
fier, we also applied our classifier to WSIs of glioblasto-
mas, medulloblastomas, as well as PF-A ependymomas.
Based on the previously determined rejection threshold of
0.9, 55% of the medulloblastomas, 39% of the PF-A epen-
dymomas and 17% of the glioblastomas were rejected by
our classifier. Additionally, we observed the mean raw
attention scores of highly attended patches (n = 20) per
WSI to be significantly lower for those previously unseen
entities than for MPE/SP-EPN ependymomas (one-tailed
t-test, p<4 �10�6 for MPE and p<2 �10�3 for SP-EPN,
cf. Figure 6H). This suggests, that mean attention scores
can be used as an additional proxy for the distinction of
other brain tumor entities in general. We therefore con-
ducted proof-of-concept experiments using a calibrated

(A)

(C)

(B)F I GURE 4 Attention
analyses reveal distinct
morphology associated with
molecular EPN types.
(A) Exemplary HE slide (left)
and the corresponding spatial
distribution of attention scores.
(B, C) Patches with high
attention scores at 8� downscale
for myxopapillary and spinal
ependymomas, grouped by the
manually assigned
morphological pattern. The pie
charts indicate the number of
validation cases with the
respective morphology among
the considered 50 highly
attended patches. Additional
cross-validation experiments on
the full cohort (all 139 cases)
confirmed these findings,
cf. appendix Figures S10
and S11.
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support-vector classifier on the mean raw attention scores
per attention branch (cf. Supporting Information for
implementation details). This method yields an improved
rejection rate of 79%, 70% and 73% for glioblastomas,
medulloblastomas and PF-A ependymomas, respectively.
Combining this method with the previously defined rejec-
tion threshold of 0.9 improves the rejection rate to 86%,
85% and 74%, respectively (Figure S15). Of note, the
CLAM classifier was not trained to identify and reject
any non-MPE/SP-EPN tumor entities—yet, this
approach successfully rejects medulloblastomas/glioblas-
tomas/PF-A ependymomas, which are all brain tumors
of neuro-ectodermal origin.

3.4 | Generalization to an external validation
cohort

In order to obtain the best results, neural networks may
specialize to properties of the dataset at hand, causing
sub-optimal performance on external cases, which is an
important hurdle for prospective applications in diagnos-
tics [42]. A particularly prominent challenge is the distor-
tion of the color distribution caused by digitization with
other slide scanners. Common domain-adaptation tech-
niques to reduce this technical bias include histogram
matching (cf. [43]) and Fourier domain adaptation
(FDA, [44, 45]).

(B)

(A) F I GURE 5 Validation of identified
ependymoma morphology. (A) Percentage of
tissue area per slide labeled to exhibit
predominant myxoid changes/microcysts,
hyalinized vessels or bleedings by
RandomForest. p-Values of one-sided t-tests
between the ependymoma types MPE/SP-EPN
indicate significant differences (p < 0.05).
(b) Non-focality of the morphologies, as
measured by directed Hausdorff distance. p-
values of one-sided t-tests indicate significant
differences for myxoid changes/microcysts and
vascular hyalinization.
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F I GURE 6 Legend on next page.
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We collected an external validation series of 18 WSIs
(5 SP-EPN, 13 MPE as per DNA methylation profile),
which were assembled at the Charité Berlin and digitized
on a Hamamatsu C13140 slide scanner at 40� magnifica-
tion. We then applied the aforementioned domain-
adaptation methods to these external WSIs and classified
them using our best model (multi-branch CLAM classi-
fier, domain-specific ResNet101 encoder, 5� magnifica-
tion, cf. Section 3.2) as well as a classifier based on a
pretrained ResNet50, cf. Table 3.

Compared to naive classification (no domain-adaptation),
the aforementioned techniques improved the generalization of
the classifiers to external cases by 22% and 3% accuracy for
pretrained and domain-specific encoders, respectively. For all
methods, classifiers based on domain-specific encoders showed
better generalization to the validation cohort than their pre-
trained counterparts. Among the former, FDA (hyperpara-
meter β¼ 1%) and histogram matching achieved an
equivalent generalization accuracy of 79%, but the cross-
entropy and ROC AUC scores were better for histogram
matching (50% and 15% improvement over FDA,
respectively).

Of note, the best average accuracy obtained using
these domain-adaptation techniques (79%) is very similar
to the average consistency of neuropathologists’ diagno-
sis with DNA methylation profiles, as measured on the
in-house validation and test WSIs (83%, cf. Section 3.3).
In summary, these results demonstrate that our classifier
was able to generalize towards external cases with
human-grade performance and achieved even better
results when specialized to the respective in-house slide-
scanner.

3.5 | Interpretable classification of
myxopapillary ependymomas type A/B

Recently, two novel and clinically relevant subtypes of
myxopapillary ependymomas (MPE-A/MPE-B) were
defined using DNA-methylation analyses [8]. Motivated
by our previous results, we aimed to extend our method
towards MPE-A/MPE-B classification and to elicit the
limits of their classifiability based on H&E-stained slides.
Moreover, our method allowed for the automated,

quantitative analysis of their respective, distinctive mor-
phological features We used the previously trained,
domain-specific ResNet101 encoders (cf. Section 2) to
train classifiers for the distinction of MPE-A/MPE-B at
2�, 4� and 8� downscale (Table 4 and Figure 7A, left
panel). The best validation metrics were obtained at 8�
downscale (e.g., 71% average validation accuracy),
whereas the results were less clear for the test set (poten-
tially due to limited dataset size). While the best classifier
typically assigned the MPE-B cases to the correct class
(89% average validation accuracy), the mis-classification
rate was high for MPE-A (only 30% accuracy). Again,
we used the softmax-probability for the predicted class as
a measure of certainty for our classifier and rejected
‘uncertain’ samples based on a cutoff. The optimal cutoff
was found to be 0.71, at which the classifier rejected 23%
and 6% of the validation and test cases, respectively, and
achieved a validation and test accuracy of 89% and 80%,
respectively (Figure 7A, right panel). In particular, this
thresholded classifier assigned all MPE-B cases to the
correct class (validation and test set, 100% accuracy),
whereas the mis-classification rate of validation (test)
MPE-As improved by 29% (10%), respectively.

Moreover, we used the previously described method-
ology (Sections 2 and 3.3) to explore morphological fea-
tures of the two MPE subtypes on the validation and test
set (Figure 7B). In particular, we found vascular hyalini-
zation, bleedings, and papillary (often mono-layered)
structures to be distinctive for the MPE-A subtype. For
the MPE-B cases, we found tumor tissue with tanycytic
morphology to be particularly prominent. We used the
RandomForests from Section 3.3 to quantify the preva-
lence of hyalinized vessels and bleedings in the respective
WSIs and confirmed significant enrichment of these fea-
tures in MPE-A WSIs (both p<0:02). Of note, no signifi-
cant differences were found for the relative abundance of
myxoid changes/microcysts, which was in concordance
with [8] and supported the validity of our findings.

4 | DISCUSSION

We demonstrated the accurate prediction of the DNA
methylation class of spinal cord ependymomas (MPE/SP-

F I GURE 6 Comparison to neuropathologists. (A) Patches with high attention scores from cases with DNA methylation class MPE, that were
histologically assigned differently by the majority of participating neuropathologists. Here, the patches are algorithmically selected—the reader is
referred to (D) and (E) for representative overview images as selected by neuropathologists. (B) Corresponding patches for cases with DNA
methylation class SP-EPN. (C) Venn diagrams showing the number of concordantly and dis-concordantly classified cases of the participating
neuropathologists, our classifier and the DNA methylation class for MPE and SP-EPN. (D) High-quality images representative for the cases from
(A), as selected by human experts. (E) Corresponding images for cases from (B). (F) Representative high-resolution images of exemplary cases from
(D) and (E), as selected by human experts. (G) Linear regression models for the relationship between the average accuracy of human
neuropathologists per slide and the relative prevalence of myxoid changes/microcysts and hyalinized vessels (left panel: slides with MPE ground truth,
right panel: slides with SP-EPN ground truth). 95% confidence intervals are indicated and the p-values demonstrate statistical significance.
(H) Average attention over the 20 highest attended patches for different tumor entities (left panel; boxes range from the first to the third quartile of
the data and the whiskers extend from the box by 1.5� interquartile range). The specificity of our classifier is visible by significantly higher average
attention for MPE/SP-EPN ependymomas than for medulloblastomas (MB), glioblastomas (GB) and PF-A ependymomas (right panel, p-values
represent one-tailed t-tests).
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EPN) from H&E-stained whole-slide images using neural
networks. We trained, validated and tested our models
on a case series of 139 patients and extracted quantitative
and human-interpretable morphological information
about the respective ependymoma subgroups. Our
approach achieved up to 98% test accuracy, whereas the
histological diagnosis by neuropathologists matched
the DNA-methylation class in 83% of cases. Moreover,
our method even generalized to an external validation
cohort with up to human-grade performance.

Seizing the particular interpretability of our weakly-
supervised approach, we were able to correlate morpho-
logical features with molecular attributes of spinal cord
ependymomas. The morphological features arising from
the employed attention mechanism were consistent with
histo-morphological criteria used by neuropathologists to
date. To our knowledge, this study thus comprises the
first algorithmic confirmation of established morphologi-
cal criteria of MPE/SP-EPN ependymomas. Moreover,
the validity of the proposed methodology was confirmed
by the analysis of patches with low attention scores,
which revealed low-quality features. Besides, quantitative
attention analyses and additional supervised machine-
learning revealed insights on significant differences in
prevalence and spatial distributions of histo-
morphological features in H&E-slides that go beyond
classical attributes that are considered by neuropatholo-
gists to date.

In particular, MPE cases were characterized by vascular
hyalinization, myxoid changes/microcysts and myxoid/
fibrovascular cores, whereas distinctive features for SP-
EPN cases were pseudo-rosettes and hemorrhages.
Although the latter could be confirmed as distinct feature
for SP-EPN within our cohort, further validation studies
are necessary. Of note, a recent report indicated that hemor-
rhages occur more often in a certain type of primary brain
tumors, termed WNT medulloblastomas, than in other
medulloblastomas which may hint towards bleedings being
a potential marker for some molecular tumor entities [46].
To date, neuropathologists should include further morpho-
logical features (or immunohistochemical methods, such as
HOXB13 stain [47]) into their considerations for the dis-
crimination of the two ependymoma types or any differen-
tial diagnoses.

Finally, our analyses shed light on the morphological
intra-class heterogeneity of myxopapillary ependymomas
and elucidated their correlation to recently defined,
molecular MPE subgroups, for which our classifier
achieved up to 80% test accuracy. This finding confirmed
that these DNA methylation subgroups may also be
reflected on a morphological level, although further vali-
dation of the subgroups may be necessary.

Prospectively, our findings might improve the diag-
nostic understanding of the considered groups of spinal
cord ependymomas and might stimulate further research
in the field of weakly-supervised, neural-network based
discovery of CNS tumor morphology. As a future per-
spective for our method, we envision the integrated con-
sideration of highly attended patches, their mean
attention scores and the WSI-based classification score to
support neuropathologists in their diagnostic workflows
in addition to classical methods. In particular, a combi-
nation of the WSI-based score and a classifier that uses
the mean attention scores was able to reject three other
brain tumor entities with a true positive rate of up to
86%. Of note, the histology-based classifier had not been
trained to exclude non-MPE/SP-EPN tumor entities and
still achieved these high true-positive rate. Training the
classifier with a heterogeneous set of differential diagno-
ses (brain and non-brain tumors) may prospectively yield
further improvements of the classifier’s specificity.

Of remark, our cohort was initially selected by DNA
methylation profiling instead of the histomorphological
diagnoses. Although the latter matched the DNA methyl-
ation type in almost all cases (>97%), many factors (incl.
tumor microenvironment and tumor location) have been
reported to affect the tumor’s DNA methylation pro-
file [9, 48, 49]. Thus, the accurate predictions of our clas-
sifier are primarily intended as a prospective surrogate
for DNA methylation analysis—in particular in
low-income countries or as a supplementary resource in
integrated diagnostics. Especially for myxopapillary
ependymomas, this mismatch between DNA methylation
profiles and histomorphology has not been fully resolved
to date. In particular, the molecular subgroup of MPEs
includes cases of histologically classical ependymomas
and for histologically unresolved lesions, the alignment
of DNA methylation with the molecularly defined EPN

TABLE 3 Evaluation metrics for multi-branch CLAM models on an external validation cohort using different encoders at 8� downscale.

Encoder type Method Accuracy Cross-entropy ROC AUC

ResNet101, SimSiam, SGD FDA, β¼ 1% 0.79 ± 0.04 0.86 ± 0.12 0.79 ± 0.04

Histogram matching 0.79 ± 0.02 0.43 ± 0.03 0.91 ± 0.02

No domain adaptation 0.77 ± 0.04 0.83 ± 0.1 0.8 ± 0.01

ResNet50, pretrained FDA, β¼ 1% 0.73 ± 0.05 0.48 ± 0.05 0.85 ± 0.03

Histogram matching 0.63 ± 0.08 0.68 ± 0.1 0.82 ± 0.05

No domain adaptation 0.6 ± 0.06 0.64 ± 0.06 0.57 ± 0.07

Note: The hyperparameter β was set to 1% for the Fourier domain adaptation (FDA) technique. The best results (highlighted in bold print) were achieved using a domain-
specific ResNet101 and histogram matching. Mean and standard deviation refer to 5 independently trained CLAM models.
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type is mandatory for a diagnosis of MPE, according to
the 2021 WHO classification of CNS tumors [2, 3]. In
this context, a peculiar advantage of our attention-based
approach is that it is able to identify even very small tis-
sue sections of representative morphology (e.g., a single
patch), whereas it may be challenging for a neuropathol-
ogist to identify very focal alterations.

In our experiments, only three cases (all SP-EPN by
DNA methylation profiling) were histologically assigned

to the other considered EPN type (MPE) by the three
participating neuropathologists. Closer investigation of
these three cases revealed, that these tumors mostly
lacked decisive, morphological features indicative of SP-
EPN and MPE and both options were conceivable to the
neuropathologists. In all cases, the tumor tissue fit well to
SP-EPN but alterations of the vessels (cases 104 and 105)
and minor myxoid/microcystic changes (case 130) had
determined the neuropathologists’ split decisions. All

TABLE 4 Classification metrics of multi-branch CLAM models for MPE-A/MPE-B classification using domain-specific ResNet101 encoders at
2�, 4� and 8� downscale.

Metric

Accuracy Cross-entropy ROC AUCSet Downscale

Test 2� 0.75 ± 0.0 0.47 ± 0.0 0.96 ± 0.0

4� 0.75 ± 0.0 0.49 ± 0.1 0.93 ± 0.0

8� 0.75 ± 0.0 0.53 ± 0.02 0.93 ± 0.01

Validation 2� 0.68 ± 0.03 0.59 ± 0.0 0.69 ± 0.0

4� 0.69 ± 0.0 0.58 ± 0.0 0.72 ± 0.0

8� 0.71 ± 0.03 0.47 ± 0.01 0.86 ± 0.0

Note: The best validation results were achieved at 8� downscale (highlighted in bold), whereas the results were less consistent for the test set (probably due to dataset size).
Mean and standard deviation refer to 5 independently trained CLAM models.

(B)

(A) (C) F I GURE 7 Histology-based
classification of MPE subtypes
MPE-A and MPE-B.
(A) Validation accuracies of
CLAM models during training for
various downscale levels (left
panel). The accuracy can be
further optimized by rejecting
samples with high uncertainty
(right panel). (B) Representative
patches for the two MPE subtypes
with high attention scores from the
test and validation set at 8�
downscale. (C) Percentage of tissue
area per slide labeled to exhibit
predominant myxoid changes/
microcysts, hyalinized vessels or
blood by RandomForest.
Hyalinized vessels and blood show
statistically significant differences
(one-sided t-tests, p < 0.05),
whereas myxoid changes/
microcysts are not specific to a
MPE subgroup.
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three neuropathologists recommended additional immu-
nohistochemical or molecular analyses for the question-
able cases and would have been willing to reconsider
their diagnoses given the results of these additional
methods. Their exact statements are reported in Support-
ing Information. Among those cases with sufficient
amounts of available tissue, supplementary immunohis-
tochemical methods (HOXB13) confirmed the molecu-
larly assigned ependymoma type. From our experience,
such cases can often be resolved using an integrated diag-
nostic approach that combines, for example, clinical
information, histomorphological features, immunohisto-
chemical markers and DNA methylation profiling.

Of note, our dataset is relatively small (even smaller
for the MPE-A/MPE-B classification) and slightly imbal-
anced towards MPE ependymomas. This class imbalance
could also have influenced the predictions of the human
neuropathologists who were tasked with classifying the
H&E-stained WSIs from the validation/test set as either
MPE or SP-EPN. Future validation studies should con-
tain more cases (in particular SP-EPN) and could also be
extended towards the other spinal cord EPN types (SE,
SP-MYCN), since collecting a sufficient number of cases
to facilitate reliable prediction was not possible in the
current study. Since the methods employed in this study
were explicitly chosen to be agnostic of the considered
types of ependymomas (MPE/SP-EPN), the prospective
extension to other EPN types should be straight-forward.
We conducted initial proof-of-concept experiments and
were able to confirm the conceptual extendibility of our
approach to ZFTA and PF-A ependymomas and we aim
to report detailed experiments in follow-up research.

In summary, we established a deep learning frame-
work that accurately predicts the DNA methylation class
of spinal cord ependymomas (SP-EPN, MPE(-A/B)) from
H&E-stained whole slide images. Thus, our approach
may serve as a supplementary resource for integrated
diagnostics and may prospectively help to establish a
standardized, high-quality level of ependymoma diagnos-
tics across institutions—in particular in low-income coun-
tries, where expensive DNA-methylation analyses may
not be readily available. Moreover, the novel, morpho-
logical analyses in this study address the discrepancy
between histological diagnoses by human experts as well
as classification based on DNA-methylation data and
provide neuropathologists with quantitatively obtained
characteristics of ependymoma types, which may eventu-
ally enable rapid, and accurate decisions on patient-
specific treatment without requiring prior, expensive
DNA-methylation analyses. As an important step
towards the translation into clinical practice, our model
generalized to an external validation cohort with human-
grade performance. We suspect that increasing the vari-
ability of the training set (e.g., by additional slide-level
augmentation, or by adding WSIs from different scan-
ners, laboratories and time points) or the dataset size will
further increase the model generalization.

Current and future research include the extension of
our cohort to more EPN types in order to establish a
broader tool for molecular EPN classification. Moreover,
we aim to improve the generalization of our classifier to
other image capturing modalities in order to further
improve the potential, future integration of our classifier
into routine diagnostic workflows.
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