Genetic evidence for an androgen-regulated epididymal secretory glutathione peroxidase whose transcript does not contain a selenocysteine codon

Anthony C. F. PERRY,* Roy JONES,† Lionel S. P. NIANG,* Richard M. JACKSON* and Len HALL*‡ *Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, U.K., and †Department of Biochemistry, Institute of Animal Physiology and Genetics Research, Cambridge Research Station, Babraham, Cambridge CB2 4AT, U.K.

Epididymal glutathione peroxidase (GPX) has been suggested as a major factor in combating loss of fertility of spermatozoa due to lipid peroxidation. We report here the isolation and sequence of putative GPX cDNAs from rat (*Rattus rattus*) and cynomolgus-monkey (*Macaca fascicularis*) epididymis, which exhibit marked sequence identity with known GPXs. In both species the cDNAs encode predicted preproteins containing 221 amino acid residues. Unlike other characterized GPX sequences, epididymal GPX mRNA does not contain a selenocysteine codon (UGA). However, sequence comparison and molecular-modelling studies suggest a high degree of structural conservation between epididymal and other GPXs. Transcripts corresponding to epididymal GPX are not detected in a variety of other tissues (liver, spleen, kidney and testis) and appear to be androgen-regulated in the epididymis.

INTRODUCTION

Mammalian spermatozoa are unusually rich in polyunsaturated fatty acids, a property that predisposes them to the deleterious effects of oxygen free radicals such as superoxides, hydroxyl radicals and singlet oxygen (Mann & Lutwak-Mann, 1981). These free radicals react with unsaturated acyl or alkenyl moieties in membranes, leading to the formation of cytotoxic hydroperoxides and destruction of phospholipids. In human spermatozoa, lipid peroxidation has been correlated with increased membrane permeability, loss of motility, morphological abnormalities and various pathological conditions that lead to a low level of fertilizing capacity (Aitken & Clarkson, 1987; Alvarez & Storey, 1989; Rao *et al.*, 1989).

Normally, peroxidative damage to spermatozoa is contained by two enzyme systems, superoxide dismutase and glutathione peroxidase (GPX)/reductase (mammalian spermatozoa lack catalase activity; Mann, 1964). The relative protective effect conferred by these two enzyme systems varies between species; rabbit spermatozoa, for example, rely largely on superoxide dismutase to destroy superoxides, whereas mouse and human spermatozoa are more dependent on GPX to inactivate hydrogen peroxide and organic hydroperoxides (Alvarez & Storey, 1989). Recently, the protective role of GPX in spermatozoa has received attention in relation to fertility and survival of spermatozoa in the cauda epididymis (Aitken & Clarkson, 1987; Alvarez & Storey, 1989).

GPX is primarily a cytoplasmic enzyme that contains at its catalytic centre a redox-active selenocysteine residue encoded by a TGA codon; we shall refer to these well-characterized cytoplasmic enzymes as 'cytosolic GPXs'. However, secreted GPXs have recently been described from human and rat placenta (Takahashi *et al.*, 1990; see also the Genbank Nucleotide Sequence Database). These enzymes also possess a selenocysteine residue and show a high degree of sequence similarity to

cytosolic GPXs, indicating that GPXs exist as a gene family. At least two lines of evidence suggest that the enzyme(s) responsible for GPX activity in semen may have properties more akin to those of a secreted GPX than a cytosolic GPX. First, human seminal plasma contains an activity that effectively counteracts the toxic effects of exogenous peroxidized fatty acids on sperm membranes in a manner consistent with its corresponding to a secreted GPX (Jones *et al.*, 1979). Second, a partial cDNA clone has been identified for an epididymis-specific GPX-related mouse protein that is apparently secreted (Ghyselinck & Dufaure, 1990; Ghyselinck *et al.*, 1990; Faure *et al.*, 1991).

Here we describe the cDNA cloning, sequencing and hormonal regulation of cynomolgus monkey (*Macaca fascicularis*) and rat (*Rattus rattus*) epididymal transcripts which appear to encode an epididymis-specific form of secreted GPX distinct from both cytosolic GPX and placental secreted GPX.

MATERIALS AND METHODS

Materials

Restriction endonucleases, cDNA synthesis kit, polynucleotide kinase, RNAase-free DNAase, deoxynucleotides and pre-cut cloning vector DNAs were obtained from Pharmacia, Milton Keynes, U.K. Oligo(dT)–cellulose (Type 3) was from Collaborative Research, Bedford, MA, U.S.A. T4 DNA ligase, the Klenow fragment of DNA polymerase I and Hybond N nylon membrane were purchased from Amersham International, Bucks., U.K. $[\alpha^{-32}P]dATP$ (> 800 Ci·mmol⁻¹) and $[\gamma^{-32}P]ATP$ (> 3000 Ci·mmol⁻¹) were from du Pont–NEN, Stevenage, Herts., U.K. Nitrocellulose filters and micro-dialysis membranes were from Schleicher und Schüll and Millipore respectively. Calf intestinal alkaline phosphatase (Molecular Biology grade) and proteinase K were from Boehringer Mannheim G.m.b.H., Lewes, East Sussex, U.K. and low-melting-temperature agarose from Gibco–BRL, Paisley, Renfrewshire, Scotland. All other

Abbreviations used: GPX, glutathione peroxidase; PH-GPX, phospholipid hydroperoxide glutathione peroxidase; 1 × SCC, 0.15 M-NaCl/0.015 M-sodium citrate.

[‡] To whom correspondence should be addressed.

The nucleotide sequence data reported appear in the EMBL Nucleotide Sequence Database under the accession numbers X62403 (Macaca fascicularis epididymal glutathione peroxidase) and X62404 (Rattus rattus epididymal glutathione peroxidase).

chemicals were of AnalaR grade or the purest grade available. Fresh tissue samples were obtained from adult male rats (Wistar strain) and monkeys (*M. fascicularis*).

Oligonucleotides for sequencing and hybridization were synthesized on a du Pont Coder 300 synthesizer using phosphoramidite chemistry and were used without subsequent purification.

RNA isolation and Northern-blot analysis

Castration and testosterone treatment of rats and the isolation of RNA from frozen tissues were as described previously (Girotti *et al.*, 1992). Where appropriate, poly(A)-containing RNA was purified from 1.5–3 mg of total RNA (Craig *et al.*, 1976).

Total RNA or poly(A)-containing RNA was fractionated by electrophoresis through a 1.1% (w/v) agarose gel containing formaldehyde, blotted on to a Hybond-N nylon membrane, prehybridized and hybridized as described previously (Walker *et al.*, 1990), using random-primed (Feinberg & Vogelstein, 1984) ³²P-labelled cDNA plasmid inserts as probes. All Northern blots were reprobed with a cloned mouse actin cDNA, pAM91 (Humphries *et al.*, 1981) to confirm equivalent track loadings and the integrity of the RNA preparations.

Construction and storage of epididymal cDNA libraries

A 5 μ g portion of poly(A)-containing RNA was used to direct cDNA synthesis using a Pharmacia kit, according to the recommendations of the manufacturer. Briefly, this method employs oligo(dT)₁₂₋₁₈ for priming first-strand cDNA synthesis and an *Eco*RI-*Not*I linker-adaptor cloning strategy that enables cDNA inserts to be cloned into the unique *Eco*RI site of plasmid pAT153 (Twigg & Sherratt, 1980). The ionic strength of the resultant ligations was reduced by micro-dialysis to enable efficient electroporation of *Escherichia coli* TG2 cells (Sambrook *et al.*, 1989) using a Bio-Rad Gene Pulser (Dower *et al.*, 1988). After overnight growth as discrete colonies, approx. 10⁵ transformants (corresponding to 6 ng of pAT153 DNA per ligation) were harvested in glycerol broth, snap-frozen in aliquots and stored at -70 °C until required.

Isolation of GPX cDNA clones and DNA sequence analysis

Approx. 3×10^4 monkey or rat epididymal cDNA clones were transferred to nitrocellulose filters (Grunstein & Hogness, 1975) and screened for inserts that hybridized to an oligonucleotide (⁵CCCACCAGGAACTTCTCAAAGTTCCAG³) corresponding to a conserved region of cytosolic GPX proteins. Hybridization was for 24–48 h under conditions of moderate stringency (6 × SSC, 45 °C) (1 × SSC is 0.15 M-NaCl/0.015 M-sodium citrate). After two rounds of clone purification and rescreening, plasmid DNA was isolated from positive clones and subjected to preliminary characterization by partial sequencing and/or restriction analysis with *Rsa*I. Monkey cDNA clone pmE-GPX and rat clone prE-GPX were chosen for complete DNA sequence determination.

Sequencing of recombinant plasmid cDNA clones was performed using a custom primer walking strategy on a du Pont Genesis 2000 automated sequencer utilizing fluorescently labelled dideoxynucleotides. The sequencing of pmE-GPX and prE-GPX were complete on both DNA strands.

Computer methods

DNA sequences were compiled and aligned using the program LASERGENE (DNASTAR, West Ealing, London, U.K.). Optimal eukaryotic signal-peptide cleavage sites were predicted using the von Heijne (1983) rules.

Computer modelling of monkey epididymal GPX was performed using the co-ordinates of the bovine cytosolic GPX dimer (Epp et al., 1983) from the Brookhaven Database. The programs INSIGHT, MOLEDT and DELPHI (Biosym Technologies, San Diego, CA, U.S.A.) were used to view, build and perform electrostatic calculations respectively on a Silicon Graphics Personal IRIS 4D-20 workstation. Side chains that differed at corresponding positions in the two aligned structures were replaced using MOLEDT for both subunits in the dimer. Torsion angles were maintained where possible, but where no guide atoms existed (for longer side chains), idealized geometrics were used. From this point, only side chains within a 1.5 nm (15 Å) radius of Cys-52 of the A-subunit were considered in detail. Where heavy atoms of new side chains came within 0.25 nm (2.5 \AA) of another heavy atom, their torsion angles were adjusted. The single deletion in this region (between Thr-55 and Ala-56; see Fig. 5 below) was modelled employing a 'spare parts' method (Claessens et al., 1989) using a library of fragments from structures in the Brookhaven Protein Databank. A C_a distance matrix method was used to select the ten best-fit structures for three residue splicers at both the N- and C-termini of a tworesidue variable-geometry region. Four of the fragments chosen in this way gave good backbone root-mean-square fits in the splicer regions and all corresponded to a two residue 3¹⁰ helix configuration in residues either side of the deletion. The side chains of the two residues projected in the same direction as those in the crystal structure of bovine cytosolic GPX. A threeresidue section of the fragment with the best root-mean-square fit in the splicer region was built into the structure.

The electrostatic potential field of bovine cytosolic GPX and modelled monkey epididymal GPX were calculated using the program DELPHI, utilizing a finite difference solution to solve the linearized Poisson–Boltzmann equation. Protein and solvent are represented as a two-continuum dielectric model. Protein and solvent dielectrics were 2 and 80 respectively. Charges were assigned to potentially charged residues assuming a pH of 7 (a charge of +0.5 was assigned to His residues) and potential contours were displayed using the program INSIGHT.

RESULTS AND DISCUSSION

Cloning and preliminary characterization of rat and monkey epididymis-specific GPX cDNAs

Approx. 3×10^4 rat and monkey epididymal cDNA clones were independently screened with a non-redundant oligonucleo-

Fig. 1. Size and tissue-specific expression of rat and monkey epididymal GPX transcripts

RNA samples were electrophoresed on an agarose gel under denaturing conditions, blotted and probed with an epididymal GPX cDNA insert as described in the Materials and methods section. (a) Epididymal polyadenylated RNA (1 μ g) isolated from cynomolgus monkey (lane 1) or rat (lane 2), and probed with mixed monkey (pmE-GPX) and rat (prE-GPX) epididymal GPX cDNA inserts. (b) Total RNA (15 μ g) isolated from rat epididymis (lane 1), testis (lane 2), spleen (lane 3), kidney (lane 4) and liver (lane 5), probed with rat epididymal GPX (prE-GPX) cDNA insert.

Fig. 2. Effect of castration and testosterone treatment on the steady-state levels of GPX transcripts in the rat epididymis

Epididymal total RNA samples $(15 \ \mu g)$ were electrophoresed on an agarose gel under denaturing conditions, blotted and probed with a rat epididymal GPX (prE-GPX) cDNA insert, as described in the Materials and methods section. (a) Epididymal RNA isolated from normal rats (lane 1) or rats castrated for 2 days (lane 2), 4 days (lane 3), 7 days (lane 4) or 14 days (lane 5). (b) Epididymal RNA isolated from 14-day castrated rats (lane 1) or from rats castrated for 14 days then treated with testosterone for 1 day (lane 2), 2 days (lane 3), 4 days (lane 4) or 7 days (lane 5). Lane 6 contains epididymal RNA from normal rats.

tide corresponding to a region that is highly conserved among GPX amino acid sequences from several mammalian species (WNFEKFLVG; position 160–168 in Fig. 5 below). These screens yielded 11 and 10 independent strongly hybridizing clones from rat and monkey cDNA libraries respectively.

Northern-blot analysis using the cDNA insert from one such rat clone, prE-GPX, revealed a single band corresponding to a transcript of 1.9 kb that is expressed in the rat epididymis but not in testis, liver, kidney or spleen (Fig. 1). Parallel analysis with the monkey-derived clone, pmE-GPX, revealed a hybridizing transcript of approx. 1.8 kb in the monkey epididymis (Fig. 1).

Androgen regulation of epididymis-specific GPX

The expression of several epididymal proteins is known to be sensitive to the depletion of androgens and other testicular factors that follows castration. To investigate the dependence of steady-state levels of rat epididymal GPX transcripts on testicular function, Northern-blot analyses were performed on total RNA from epididymides removed from rats at various times after castration (Fig. 2a) or after castration and subsequent testosterone administration (Fig. 2b).

Hybridizing mRNA could not be demonstrated in epididymal tissue from rats 2 or more days after castration (Fig. 2a), although its expression was rapidly restored, ultimately to levels near to those before castration, in castrated animals that had subsequently been administered testosterone (Fig. 2b). These findings suggest that prE-GPX- (and presumably pmE-GPX-) hybridizing mRNAs are markedly androgen-sensitive and epididymis-specific and are broadly consistent with those previously reported for a murine epididymal GPX where a partial cDNA clone was used as probe (Ghyselinck *et al.*, 1990; Faure *et al.*, 1991).

DNA sequence analysis of rat and monkey epididymal GPX

Monkey clone pmE-GPX and rat clone prE-GPX were initially selected for automated DNA sequencing as they each possessed relatively large cDNA inserts. The sequences of the cDNA inserts in these clones are presented in Figs. 3 and 4.

Rat prE-GPX cDNA (Fig. 4) is significantly shorter than its corresponding mRNA (1.15 kb as opposed to approx. 1.9 kb)

and is apparently truncated at its 3' end. The absence of a polyadenylation/cleavage signal from the 3' end of monkey pmE-GPX (Fig. 3) suggests that it, too, is truncated, although its insert size (1.52 kb) is close to that of its transcript (1.8 kb) when allowance is made for the poly(A) tail on the latter.

The cDNA inserts of pmE-GPX and prE-GPX cDNA each harbour a 663-nucleotide open reading frame encoding a predicted protein of 221 amino acid residues (M_r 25 300). The proposed initiating ATG codon is associated with sequence motifs known to be conserved in some eukaryotic translational initiation sites (Kozak, 1983) and marks the start of protein synthesis by analogy with human placental secretory GPX (Takahashi *et al.*, 1990; see Fig. 5).

Alignment of the deduced amino acid sequences encoded by either pmE-GPX or prE-GPX cDNAs with the sequences of human, rat or bovine cytosolic GPXs reveals a high degree of similarity, with 45-53% of the residues in the latter being conserved (Fig. 5). However, compared with these cytosolic GPXs, each epididymal sequence possesses an N-terminal extension of 26 amino acid residues, the first 21 of which are predicted as a potential signal peptide in each case. An Nterminal extension of 26 residues is also present in the sequence of the human placental secreted GPX (Fig. 5). Indeed, the degree of conservation between the placental GPX sequence and epididymal sequences discussed here is high (for example, they share approx. 70% identity) compared with the degree of conservation with their cytosolic GPX counterparts. This pattern of similarity suggests that secreted and cytosolic GPXs constitute distinct families and that the proteins encoded by pmE-GPX and prE-GPX cDNAs are members of the former. A more distantly related GPX family (phospholipid hydroperoxide glutathione peroxidase, PH-GPX), whose members are probably cytosolic, has also been reported (Schuckelt et al., 1991). PH-GPX exhibits less than 40% sequence identity with epididymal, placental and other cytosolic GPXs.

Analysis of the DNA sequences of monkey and rat epididymal GPX indicates that neither possesses the selenocysteine TGA codon found in all cytosolic and secreted placental GPXs sequenced to date. Instead, the corresponding position in the rat and monkey epididymal proteins (and that of the murine epididymal GPX; Ghyselinck et al., 1990) is occupied by a Cys residue (Cys-52) encoded by TGY. This finding was unexpected, as selenocysteine is an integral part of the GPX redox reaction centre (Epp et al., 1983). The sequences of a 5' portion of a further four independent monkey- and four independent ratderived clones (corresponding to a region that included Cys-52 and all, or part, of the putative signal peptide) were identical with their pmE-GPX and prE-GPX counterparts (results not shown). This suggests that, in contrast with placental GPX and cytosolic GPX, epididymal GPX is not a selenoenzyme (or, at least, does not contain a selenocysteine TGA codon) and argues that epididymal and placental secreted GPXs are each representatives of a further GPX subgroup. Additionally, cytosolic GPX residues implicated in substrate binding (Arg-56 and Arg-179 in Fig. 5; Epp et al., 1983) are not conserved in epididymal GPXs (but are also notably absent from placental GPX and PH-GPX).

Given these differences, we undertook preliminary modelling studies in order to determine whether epididymal GPX is conserved with respect to cytosolic GPX at the level of tertiary structure, particularly in the vicinity of its (potential) catalytic domain.

Modelling the tertiary structure of monkey epididymal GPX

A preliminary investigation of the tertiary structure of monkey epididymal GPX was undertaken by modelling the predicted monkey sequence on the 0.2 nm (2 Å) structure of bovine

TTG Car ctg ctt cc His Leu Leu Pt -1	JOCTN	DDEO	CIOC I	CLARG	ATAC	CNNN	NONCT	00000	AGOT	0000	NOON	CLIC	AGGC		LONO	AOCA						EC.						
CAT CTG CTT CC His Lou Lou Pr -1			1					~~~~																		3	2	ũ
CAT CTG CTT CC Bis Leu Leu Pr -1 Aic Tam Gig GC																					Met - 21	7 dr	7 T T T T T	ala I	293	2	l S	
CLAT CTG CTT CC Bis Lou Lou Pr -1 Car Tat Car Ar								15	0															300	0			
L- L- DAT TAT AAG		С Г	CTA	ů S	U P		DE	K N	K NO	5 5		ອ ອ	0	D AC	DIN 6		ATG	GAT	TOT	CAC	22	GAT	ONG 1			NCC N	E OF	E.K.
070 TAT 010 00		2 A		MA	2	Pbe		I ale	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	년 년 년 년	2 2 2	5	a 10	đ	N.	LLY.	Met	ABD	5	81 s	Ŀ	A D	glu]	EV.	лу 1	r rdî	₽ ● []	нc
20 010 414 210								CI	20	l								;						Э С	8			
	ATC	SCA	F	FNX	NAG	NC		TAT G	U E	E S	2	50	AT 0	F OTO	800	DAM :	CAC	ATC	CIC	LLL	OFC OFC	AAC	OTO	000	NCC 1	PAC T	5	Ę
Asp Tyr Glu Al		Na	I.	Asp	Ly.	Asp	JLu J	277	el P	ro P	5	5	р Ч	r Val	L 01y	, Lys	Bla	Ile	Leu	Phe	Lav	Ash	Lal i	ALA J	L 1q1	YF C	9.97	īγ
						30			1						4	_									50			
									350							300									100			
CTG ACA GCG CA	TAT	H U U	3	KEU	X	g.		D DV:	D DW	5 9	20	с С	N IN	50		E o	0 F0	DIC	ğ	lil	U U U	U DE	NC NC		E	A NOW	000	2
TO THE ALA UL	цуг г	Pro	nTo	T.eu	Aen	ALA	3	ale G	וות פ	lu L	5 Z	8 1 1 1 1 1	ድ የ	r 95	Leu	Lev 1	Val	Leu	Glγ	Phe	PIO	20	A85	oln I	Phe	JLY L	9 9	11
			90						ļ				0									80						
									45	0															500	~		
and cca gan an	T MO		8	ATT L	F FO	- HOO	8		E DY	AT 9	រ ខ្ល	U U U	8	8		LLL	K EO	FUU	AAT	11C	CAG	E	- HI	GNG J	3	0000	D TH	QE
ALU PTO OTY AS		Ę	71 0	•11	2 L	Pro (I VIE		н Н	YT Ve	2	1 G D	0	۲ <u>و</u> ي	, 9 <u>1</u> ,	PPe	Lev	Pro	Asn	Phe	61 0	2 E	Phe	glu I		N YIS	P	Ţ,
0	0								-1 1	81									110						1		ı	
			1			1			1	20	1														ŭ	0		
AAT GOT GAA AA		CNG	ž	5	р Г	Noc Noc		DL					5 5	Ŭ U E		8	T Y	0 E	g	ACA	UTC	2	T E U E	ATA -	L C C L	8	NC O	5
VED GIN GIN IN	1010	61 0	Ē.		Pbe	301	Pbe 1		<u>у</u> е н	1. 9	ਨੂ ਸ	10 10 10 10 10	0 H O	e Pr	801	95a	H H	Leu	Gly	Thr	Phe	Lys	Ser	Ile S	Ber 1			ß
120							130									140			I			ı			-	150	•	
										650																00/		
OTA AAG GTC CA	T ONC	ATC	ы В	90F	N	TTT -	22	FON	U UF	5 01	500	200	5	100 100 11	ATC	LOO :	DED 0	ATG	2000	D01	U) F	CNC		GCT 2		ALC N	L DO	N O
Val Lys Val B1	T Asp		Arg		Asn	Phe (alu l	a sys	Þ.	N Ne	10 11	Y Pr	0	p all	LI /	Pro	Lav	Met	Arg	d'il	301	H1.	Ard	Ala 7	Thr	val 8		H
				160									17	0)	ı			1001					
										750	_											œ						
OTC AND ACA GA	ATC	0H0	80	TAC	Off	NO	E ANC	TTC A	X X	20	LT T	O ON	TOOK	CONO	TAAG	age a	Gana	CAAT	CUTAC	LULCI CL	TTOK:	CTCA		ATGAC	CTTTC	しています		Ľ
Val Lvs Thr As	5 II•	Leu	ALA	TAF	Leu	LVB	I ALL	Phe L		br Iv	18 at	8)))	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
	190			1 9					, , ,	1 A 																		
			85	0						í	2				008	_											000	
CCCGCANANAGGA	NTATC	INTCI	TCTC	ACCA	CACT	CECE	TCCT	DCATQ	ICOCT	CCACO	TOAD	CAN	TCAC	CTCCJ	CATA	CTGC	CAGA	ATTC	CCACT	LCTCC	ACAA	ACTA	OATT	TATA	TTQ	DOAAG	UATAC	P
							•													6								
CTCTTTTGCCTCTC	LAGAG.	PDTA	TOOD	ONAG	ACTG	WWW	TAAT	MANDE	CCTA	AAATO	CCTA	GACC	TCTO	TTACI	LTOON	COAAT	CATT	COTA	LCCAC	CONOL	GOON	AATC	ATCC	TTCC1	ACGAC	CAATG	OTTO	AG.
-	001											1	c															
TCOOCCATCACATC	TOAA	IDAAG	ACAT	TCCT	AGAC	GTTC!	rgac	JCTTC	CATC	TCTCI	rccac	CCTA	GAGG	TOTAC	TAAAG	AGCA	ACGG	GOTC	NTAG	rc a cj	CAGT	TTAG	GTTC	CACT	U FCATJ	NACAT	LLLL	Đ
					1250											-	300											
TCTCCTAGGACAAA	CATOT	UTCA1	CAGT	TTCC	AACT	OTTT(10000	rcA01	TTC	ATCCI	LEGAC	ACCT	2222	CCAC	CINGCO	ATTC	TOOL	GTGQ	GAGCI	NON	CATT	GCTT	CACA	AGAAG	DAGAC	JOOC	TCTC	S
1350 TgCTggTgggAccc	NOMA C(TOTC	etot:	DTTI	2220	TAAA	- IN	LTTCC	14 TAT	00 TGTCI	COATC	LTT	ATGC	ATTCI	LLOON	COG COG	CACC	TOGA	CAGG	LATO	145 CCTT	D TATC	TTT	GAAGC	GATG	PEALT	CCC E	Į.
CTCAACCCTGGATT	CTCA	1500 XCTTC	AGAA	TGAG	E C C C E	BCCA	CTGT(

		-0	NON	TCTC		CLC	3000	AGAT	GAAC	MAQ	0000	CAGG	CCTC	50	CCON	AGTC	JOCAG	TAT	AGTC	ATG	OCT	ATA	CAG	CTA	AGA	01C	TTC	TAT	CIC	LLO	CCA	
		,																		Ket - 31	ALA	11	dlb	Leu	Arg	Val	Phe	Туг	Leu	Lev	Pro - 10	
E				5 F F	AT O V	00 20	NG NG	Pr N F	0 H 0 H	2 2 2 2 2 2 2	רים דים דים	00 22	E 720	E N S	۲.۵ ۲.۳	Ĕ Ň		D I C	A T T	E S	GAT Asp	GTG Val	EV.	00C 01y	ACC	ATC Ile	TYF	Asp	TYT TYT	ONO Glu	ocr Ala	
					, 1 1			7	7		•		350	-	1		้า		r	I	I						30		30	0		
0 z	TCT			NGG N	D D D D D D D D D D D D D D D D D D D	E N C	N D D D	TT C		K ii P a	NG NG		52	86 86	23 5 29	N THE C			Ed	CTC CTC	Ash	Ual	ALA	ACC Thr	TAT	TGT CY8	GGT Gly	CTG Leu	ACA		CAG Glb	
TAT	E CC	N N N N N N N N N N N N N N N N N N N	l Di	TAT O	DE DE	20 21	O V	AT G	E E E			1	no. Es	22 S			Ĕ	000	E		DO F	NC		TTT TTT	001	AAG	CAA			00 GGA	GAC	
ı	0				-				-1 24 11	4 5 0	9 A 27			450	5	1		;			66		,		7	7				200	06	
Ĭ	ACA	alu l			E O O	17 C	A DE	500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			00	55 75	83 ≸₹	₹ T d d		N N N N N N N N		H H H H			Phe	Ale	E A	900 91y 91y	ABP	Val	ASD ASD 120	01y 0	olu Glu	EY B	
								-	3		 		1	550		1 1 1	į			i							50			0000	0	
olu alu	GIN	olu		H d	2 4 2 4	н 1 0 е с н я с	10 10 10 10 10 10 10 10 10 10 10 10 10 1		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ŭ ĥ U e	5 0 5 0 5 0	8 9 9 9 8 9 9 9		н н н н					H	ACA	Phe	Trp 150	olu	Pro	eli 1	E S	Val	ET B	
					•	2			1		ļ	1	i	ا فت ا		2	i	č	Ì	Ì										ר ב	00	
					E a			H.				< < + 2		55 5 5	24		н К К К К	A L	រក រក	A A			N.	Pro	Val	Ber	a de	Val	Ŕ	90 H	A B	
ATC 110	CTG	Ala	LANC -	L DTC			E d S ● E H		P I C	1 00 1 00 1 00	top o	- 001	CAAG	750 CTTC	PGAT C	TCTT	CCTC	СТСТ	FTCT	сссто	NAA G		TCTG	WW	AAGA	800 CTCC	ACCT	TCTC	NOCAT	GCTC	TTT	
ACTG	TAAT	GOAC	LCTN	CCTG	CCN	B5 GTCA	CCCC CCCC	ITAN	VITAC	CIN	OTTO	TTCC	CCTQ	CACA	NGCAC	LLL	TOTO	00. CT00.	NAQ NAQ	CTGN	NGATO	LLL	LOOL	TTOT	AGAT	TLAT	gagt	TAAA	AAAG	, NAM	NGAG	
MQJ	DOAL		GAAA	NGAN	NBAU	AAGA	AAAG	INAAL	INAN	LAGAJ	1000	TAAA	TCCA	0Y00	CCTC	NOTTA	CAGG	0.L.L.L	OCTO	OTO	LT TO J	CATO	1050	CTAC	AATG	TGAN	CACT	CAGC	AGACI	LTA	ABAC	
CAT	TCAG	ACAG	11 ACAG	00 NGAC	NGN	MAAC	ATGA	LATT	TAGO	CCAG	CCTC	LOOD	ACAA	GAAA	ICTT(150 37GCG	-															
Fig.	4. Nuc	leotid	nbəs a	ence (of rat	pipida	ymal	GPX	cDN	_																						

867

	- 30	-10	H	10	30	30	40	20	60	70
Monkey epididymal GPX Rat epididymal GPX Mouse epididymal GPX Epididymal consensus	MATQLRVI MALQLRVI M Ql FV.	VHLLPLLLACF FYLVPLLLAGY l.pllla	VQTSPROM VQTTPRLAI	PREDICTION CHARDERG RARADCYRDVRG		LNKNEYVPFK LNGKERIPFK LNGKERIPFK	OY VOKHILFY DY AGKHVLFY DY ROKHVLFY DY - Økh - 1 fy	NVATYCOLF-1 NVATYCOLF-1 NVATYCOLF-1 TVATYCOLF-1 TVALYCOLF-1	ACTPELMALOR COTPELMALOD COTPELMALOR COTPELMALOR	BLKPYGLVVLG DLKVPGLVVLG DLKPPGLV1LG LK·glv.lg
Cytosolic consensus Ruman cytosolic GPX Rat cytosolic GPX Bovine cytosolic GPX				B. 44 4. 4 MCAARLAAAAAAG9 KBAARLAAAAAG9 KBAARLAAAAG9 KCAAQRBAAAAAG9	 vyafsard vyafsard Tvyafsard Prtvyafsard	i l lagged.l. Laggedvsloi Laggepvsloi Laggeppylsi	 slrgkvll14 slrgkvll114 slrgkvll11	 brvas #gtt . : hrvasl#gttvi hrvasl#gttvi hrvasl#gttvi	 rdyt.m.lg. RDYTGMELQR RDYTEMBLQR RDYTEMBLQR	 <i>Ligdeglevig</i> Rloprolvvlo Rloprolvvlo Rloprolvvlo
Pig PH-GPK Monkey epididymal GPK Ruman placental GPK	NATTOLEVI 	VHLLPLLLACT 8CLLBLLLACT	VQTSPXQEI VSQSRQQEI	 FMCDCHKDEKG - 		14417 1110 01 14417 11001 11 1 11 1	KYRGYVCIVI QYVGKHILFN QYAGKYLVI	HVA80#GKTE HVA8T#GLT-(NNTTKLVDLAA NOYPELMALOR OOYTELMALOR	RYAECGLEILA ELRPYGLVVLG
80 90 100	110	120	130	140	150	160	170	180	190	200
PPCNOPOROBPODNICELLADLARV PPCNOPOROBPODNIELLPOLARV PPCNOPOROBPODNIELLPOLARV PPCNOPOROBPODNIELLPOLARV [pcnofgaepddn.lell]]] [111]1]1]1]1]1]1]1]1]1]1 [111]1]1]1]1]1]1]1]1]1]1]1]1 [pcnofgados.kneelll.lablarv PPCNOPOROBNAKNEELLMSLAVV PPCNOPOROBNAKNEELLMSLAVV PPCNOPOROBNAKNEELLMSLAVV	RPGGGTVPWO RPGKGTLPWO RPGKGTLPWO RPGKGTLPWO RPGGT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LFERODVIGE LFAROVIGE LFAROVIGE LFAROVIGE LFAROVIGE LFAROVIGE LFERCEVIGE LFERCEVIGER	CBOKV7 87L1 CBOKV7 87L1 CBOKL777L1 CBOKL777L1 CBOKL7711 CBOKL7711 CBOKL7711 CBOKL7711 CBOKL7711 CBOKL7711 CBOKL7711 CBOKL771100 CBOKL7711000 CBOKL771000 CBOKL7710000 CBOKL77100000000000000000000000000000000000	KHSCPHPSEIL KRSCPHPSETV KRSCPHPSETV K.scplpse r.slpsedd.calm Kralpapsdd.calm Kralpapsdd.calm Kralpapsdd.calm Kralpapsdd.calm Kralpapsdd.calm	VY CLAR STATE MACUNAL STATE MACUNA	KVEDLANNER KVEDLANNER KVEDLANNER KVEDLANNER KVEDLANNER (1 1 1 1	Independent Interverdendenden Interverdendenden Interverdendenden Interverdendendenden Interverdendendendendenden Interverdendendendendendendenden Interverdendendendendendendendendendendendendend	VARMBHATVI VARMFHQAFVI VARMFHQAFVI VARWFGAFVI VARV Å. A. V. LTY. LT. C. LIRRTBRRDCT. VRRYTRRFKT	SSVTTDILAYL SFVTSDILAYL SFVTSDILAYL SFVTSDILAYL SFVTSDILAYL SFVTSDILA IDI SPOLAL IDI SPOLALL IDI SPOLALL	KOFKTK MOFKTI SHEKTI SHEKTI fkt. SQOPSKR SKOPSKP SQOASA
FPCKQFGRQEPG8DALIKEF 	AA GYNVKFDI RPGGGFVPNFD RPGGGFVPNFD	MPSKICVNGDI LPEKGDVNGEN 	LI T T T T T T T T T T T T T T T T T T T	К	/OPKGRGML stfrsismdfv 	-GNAIKWNFT KVHDIRWNFE KVHDIRWNFE	KFLIDKNGC KFLVGPDGI	VVKRYGPMBEP VVKRWSHRATV 1	QVIERDLPCYL SSVKTDILAYL 	Корктк Ввола госках

Fig. 5. Alignment of epididymal, cytosolic and placental GPXs

Gaps were introduced by eye to maximize the alignment. | indicates identity between aligned sequences. # denotes a TGA-encoded selenocysteine residue. Residue numbering refers to the monkey epididymal GPX sequence. Residues -21 to -1 denote the putative signal sequence. Sequences are: mouse epididymal GPX (Ghyselinck & Dufaure, 1990), human cytosolic GPX (Sukenaga *et al.*, 1987), bovine cytosolic GPX (Mullenbach *et al.*, 1988), pig PH-GPX (Schuckelt *et al.*, 1991) and human placental GPX (Takahashi *et al.*, 1990).

Fig. 6. Structure of the active site of bovine cytosolic GPX and modelled monkey epididymal GPX

Stereo views of residues within a 0.6 nm (6 Å) sphere of the active-site selenocysteine selenium atom of bovine GPX (a) and cysteine sulphur atom of epididymal GPX (b) are shown, together with the peptide backbone of the co-linear active-site helix. Residue side chains involved in hydrogenbonding (represented by broken lines) are numbered according to Fig. 5. 'SE' denotes selenocysteine. Note that the single residue deletion in the helix of epididymal GPX still allows the two main-chain hydrogen bonds to the sulphur of Cys-52. In addition, His-179 in epididymal GPX can hydrogen-bond to the cysteine sulphur atom.

cytosolic GPX (Epp et al., 1983). These studies suggest that overall the structures are similar, presumably reflecting the high degree of amino acid sequence conservation between them (51%)identity). Additionally, the electrostatic potential fields around bovine GPX and the modelled epididymal GPX are qualitatively similar at low isopotential contour level (kT/e = -0.05 and)+0.05), independently of whether the epididymal enzyme is assumed to be monomeric, dimeric or tetrameric (results not shown). However, amino acid sequences adjacent to, and colinear with, the redox-active selenocysteine residue in the primary structure of bovine GPX are less well conserved; only 16 of the 45 residues (36%) in bovine GPX are identical in the corresponding region of monkey epididymal GPX (residues 28-71; Fig. 5). We therefore examined in greater detail the predicted tertiary structure of the epididymal GPX within 1.5 nm (15 Å) radius of Cys-52 (that corresponds to the selenocysteine residue of bovine GPX) to investigate whether this region was also structurally less well conserved. The cardinal feature of the derived model is the high degree of conservation between the arrangement of atoms in the two structures, with Cys-52 of epididymal GPX and SeCys of cytosolic GPX residing at the Ntermini of long α -helices (Fig. 6). (It is likely that the resultant helix dipole in bovine GPX stabilizes the active form of the enzyme, R-Se⁻). In contrast, Pro-60 of epididymal GPX could not be built into the α -helix without unacceptable steric hindrance of its C_s and C_y side-chain atoms with main-chain atoms of the helix. This suggests that the Pro Ψ angle is opened to produce a 3^{10} helix conformation, thereby introducing a kink into the modelled epididymal GPX helix. The apparent deletion of a single residue in epididymal GPX (between Thr-55 and Ala-56) gives rise to a tighter helix turn in the same region (Fig. 6). Nevertheless, this model preserves the overall active-site geometry of bovine GPX, with the immediate environment of Cys-52 in the modelled epididymal GPX essentially retaining the hydrogenbonding pattern of the analogous selenocysteine residue in cytosolic GPX.

Epididymal GPX possesses a His residue (His-179) whose side chain can adopt a *trans* (χ_1) conformation without steric clashes with other protein atoms, enabling the formation of a hydrogen bond with S_y of Cys-52. Such an interaction would lower the p K_a of the thiol group of Cys-52 to a value closer to that of the selenol group of bovine GPX, with a predicted stabilization of the R-S⁻ form of the enzyme. In the crystal structure of bovine GPX, the Arg residue that corresponds to His-179 in epididymal GPX adopts a *gauche* side-chain torsion angle and cannot interact with selenocysteine by virtue of its size. The replacement of the redox-active selenium by a sulphur atom in epididymal GPX may therefore permit the resulting enzyme to function via the same catalytic mechanism, reflecting the similar redox chemistries of selenium and sulphur.

The subtle structural perturbations that exist between bovine GPX and its modelled epididymal counterpart are arguably consistent with their utilization of slightly different substrates (for example, membrane-bound peroxidized phospholipid derivatives in the case of epididymal GPX). However, these studies confirm that similarities between cytosolic GPX and epididymal GPX sequences result in a highly conserved active-site architecture and support the notion that both enzymes operate via a closely related catalytic mechanism.

Our finding that the epididymis is a rich source of GPX supports the hypothesis that the enzyme has a function in preserving spermatozoa in a viable form during storage in the cauda epididymis. By preventing the accumulation of lipid hydroperoxides in plasma membranes, secreted GPX in the epididymis would protect spermatozoa from the deleterious effects of oxygen free radicals.

We thank the Medical Research Council for partial support of this work and the University of Bristol Molecular Recognition Centre (Science and Engineering Research Council-funded) for automated DNA-sequencing and molecular-graphics facilities.

REFERENCES

- Aitken, R. J. & Clarkson, J. S. (1987) J. Reprod. Fertil. 81, 459-469
- Alvarez, J. G. & Storey, B. T. (1989) Gamete Res. 23, 77-90
- Claessens, M., Cutsem, E. V., Lasters, I. & Wodak, S. (1989) Protein Eng. 2, 335-345
- Craig, R. K., Brown, P. A., Harrison, O. S., McIlreavy, D. & Campbell, P. N. (1976) Biochem. J. 160, 57–74

Received 15 November 1991/30 January 1992; accepted 5 February 1992

- Dower, W. J., Miller, J. F. & Ragsdale, C. W. (1988) Nucleic Acids Res. 16, 6127-6145
- Epp, O., Ladenstein, R. & Wendel, A. (1983) Eur. J. Biochem. 133, 51-69
- Faure, J., Ghyselinck, N. B., Jimenez, C. & Dufaure, J. P. (1991) Biol. Reprod. 44, 13-22
- Feinberg, A. P. & Vogelstein, B. (1984) Anal. Biochem. 137, 266-267
- Ghyselinck, N. B. & Dufaure, J. P. (1990) Nucleic Acids Res. 18, 7144 Ghyselinck, N. B., Jimenez, C., Lefrançois, A. M. & Dufaure, J. P.
- (1990) J. Mol. Endocrinol. 4, 5–12
- Girotti, M., Jones, R., Emery, D. C., Chia, W. & Hall, L. (1992) Biochem. J. 281, 203-210
- Grunstein, M. & Hogness, D. S. (1975) Proc. Natl. Acad. Sci., U.S.A. 72, 3961–3965
- Humphries, S. E., Whittall, R., Minty, A., Buckingham, M. & Williamson, R. (1981) Nucleic Acids Res. 9, 4895–4908
- Jones, R., Mann, T. & Sherins, R. (1979) Fertil. Steril. 31, 531-537
- Kozak, M. (1983) Microbiol. Rev. 47, 1-45
- Mann, T. (1964) Biochemistry of Semen and of the Male Reproductive Tract, pp. 130-131, Methuen, London
- Mann, T. & Lutwak-Mann, C. (1981) in Male Reproductive Function and Semen, pp. 212–216, Springer Verlag, Heidelberg
- Mullenbach, G. T., Tabrizi, A., Irvine, B. D., Bell, G. I., Tainer, J. A. & Hallewell, R. A. (1988) Protein Eng. 2, 239–246
- Rao, B., Soufir, J. C., Martin, M. & David, G. (1989) Gamete Res. 24, 127-134
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Schuckelt, R., Brigelius-Flohé, R., Maiorino, M., Roveri, A., Reumkens, J., Strassburger, W., Ursini, F., Wolf, B. & Flohé, L. (1991) Free Radical Res. Commun. 14, 343–361
- Sukenaga, Y., Ishida, K., Takeda, T. & Takagi, K. (1987) Nucleic Acids Res. 15, 7178
- Takahashi, K., Akasaka, M., Yamamoto, Y., Kobayashi, C., Mizoguchi, J. & Koyama, J. (1990) J. Biochem. (Tokyo) 108, 145-148
- Twigg, A. J. & Sherratt, D. (1980) Nature (London) 283, 216–218 von Heijne, G. (1983) Eur. J. Biochem. 133, 17–21
- Walker, J. E., Jones, R., Moore, A., Hamilton, D. W. & Hall, L. (1990) Mol. Cell. Endocrinol. 74, 61–68