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Abstract

Single-cell analysis has become an essential tool in modern biological research, providing 

unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, 

this approach surpasses conventional population-based methods, revealing critical variations in 

cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, 

with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, 

metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the 

single-cell level is crucial for deciphering the molecular mechanisms driving tumor development 

and progression. This review highlights innovative strategies for selective cell isolation based 

on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical 

traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput 

single-cell phenotypic analysis and sorting, enabling the identification and characterization of 

specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.

Keywords

cellular heterogeneity; single-cell analysis; selective cell retrieval; phenotype; genotype; 
microfluidics; droplets

*Corresponding authors Yu-Chih Chen, 5115 Centre Ave, Pittsburgh, PA 15232, USA, cheny25@upmc.edu.
^equal contributions

Conflicts of Interest
The authors declare that no competing interests exist.

Declaration of generative AI in scientific writing
The authors utilized ChatGPT 3.5 to enhance the readability and language of this work. Following its use, the authors thoroughly 
reviewed and edited the content as necessary and take full responsibility for the content of the publication.

HHS Public Access
Author manuscript
Cancer Heterog Plast. Author manuscript; available in PMC 2024 August 16.

Published in final edited form as:
Cancer Heterog Plast. 2024 ; 1(1): . doi:10.47248/chp2401010004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Single-cell analysis has emerged as a cornerstone of modern biological research, offering 

unparalleled insights into the nuanced complexities of cellular behavior and heterogeneity.

(1-6) In contrast to conventional population-based approaches, which aggregate data from 

numerous cells, single-cell analysis looks into the unique characteristics of individual 

cells, providing a comprehensive view of cellular diversity. This level of scrutiny allows 

researchers to uncover subtle yet significant variations in cellular states, responses to 

environmental cues, and molecular signatures that may go unnoticed in bulk analyses.

(7, 8) Such granularity is indispensable for deciphering complex biological processes, 

including embryonic development, disease pathogenesis, and therapeutic interventions.

(9-12) By dissecting the cellular landscape at the single-cell level, scientists can unlock 

a deeper understanding of cellular function and behavior, paving the way for transformative 

discoveries in biomedical science.(13)

Cancer is featured with the presence of heterogeneous cell populations within 

tumors, exhibiting variations in gene expression, phenotype, and functional properties.

(14-18) This heterogeneity arises from genetic mutations, epigenetic modifications, and 

microenvironmental influences, contributing to tumor evolution, metastasis, and therapy 

resistance.(19-23) Understanding cell heterogeneity in cancer is crucial for several 

objectives. (1) Treatment response and resistance: heterogeneous cell populations within 

tumors respond differently to therapies, leading to variable treatment outcomes.(14, 24-30) 

Subpopulations of cells with intrinsic or acquired resistance mechanisms can evade 

cytotoxic effects, leading to treatment failure and disease relapse. By characterizing and 

targeting specific cell subsets, clinicians can devise more effective treatment strategies 

tailored to individual patients, improving therapeutic outcomes. (2) Disease progression 

and metastasis: cell heterogeneity plays a critical role in cancer progression and metastasis.

(6, 31-33) Subclones with enhanced migratory and invasive properties can disseminate 

from primary tumors, colonize distant sites, and establish metastatic lesions. The presence 

of distinct cell populations within tumors contributes to the formation of heterogeneous 

metastases, complicating treatment and prognosis. Understanding the cellular dynamics 

driving metastatic spread is essential for developing interventions to prevent or inhibit 

metastasis. (3) Biomarker discovery and patient stratification: cell heterogeneity offers 

valuable insights into disease biology and patient stratification.(34-40) Identification of 

specific cell populations associated with aggressive phenotypes, poor prognosis, or treatment 

resistance can inform the development of prognostic biomarkers and therapeutic targets. By 

stratifying patients based on their molecular and cellular profiles, clinicians can personalize 

treatment regimens, optimize therapeutic efficacy, and minimize adverse effects. (4) 

Precision Medicine and Therapeutic Innovation: In the era of precision medicine, targeting 

the unique molecular and cellular features of individual tumors is paramount.(41-47) Single-

cell analysis enables the identification of rare cell populations, characterization of signaling 

pathways, and assessment of therapeutic vulnerabilities. By leveraging this information, 

researchers can design precision therapies that selectively target tumor cells while sparing 

normal tissues, enhancing treatment specificity, and minimizing off-target effects.
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Considering the important role of cellular heterogeneity in cancer, elucidating the 

relationship between phenotype and molecular genotype is essential. Phenotype, often 

representing traits like drug resistance, invasiveness, or responsiveness to stimuli, directly 

informs targeted therapeutic interventions. Conversely, genotype provides the molecular 

framework governing these phenotypic traits. Notably, a single phenotype can be influenced 

by multiple genotypic characteristics, and genotypic alterations can result in diverse 

phenotypic outcomes depending on contextual factors. These sophisticated interplays 

underscore the significance of correlating phenotypic and genotypic domains at single-

cell resolution, offering invaluable insights into the mechanisms of tumor development, 

progression, resistance, and metastasis. Understanding the genotype-phenotype relationship 

also aids in discovering novel therapeutic targets. By elucidating how specific genetic 

changes translate into oncogenic phenotypes, researchers can identify new pathways and 

genes to target with innovative drugs, thus expanding the arsenal of therapeutic options 

available to treat various cancers.

To identify cells exhibiting distinct phenotypes for subsequent molecular genotypic analysis, 

Fluorescence-Activated Cell Sorting (FACS) and Magnetic-Activated Cell Sorting (MACS) 

apparatuses are the first-generation approach, enabling cell sorting based on surface markers 

or enzymatic activity. These methodologies offer a high throughput and are prevalent 

in research institutes, with FACS instruments becoming increasingly adept at sorting 

cells using a growing array of fluorescent markers. Nonetheless, there are significant 

limitations. Firstly, sorting relies on a single snapshot measurement, lacking the capacity 

to monitor temporal processes within individual cells. Moreover, FACS typically sorts cells 

post-trypsinization, resulting in the loss of original morphological features, spatial context, 

and complicating the differentiation based on shape or subcellular organelle distribution. 

Additionally, FACS fails to segregate cells according to functional behaviors, such as 

motility or persistence. In contrast, microscopy-based cell tracking offers a broader array 

of functionalities, encompassing cell behavior exploration, biosensor kinetics, enzyme 

reaction kinetics, gene expression dynamics, and subcellular localization assessments. 

However, although microscopy enables phenotypic observation, there remains a necessity 

to selectively isolate cells of interest for subsequent genotypic analysis to decipher the 

underlying mechanisms governing phenotype or morphology. In this review, we will 

elucidate innovative strategies for selectively isolating cells based on targeted phenotypes, 

including selective cell detachment and retrieval, on-site cell marking for enrichment in 

subsequent stages, and the droplet-based approach, which facilitates observation and sorting.

2. Single-cell labeling and isolation methods.

2.1. Selective cell retrieval by robotic aspiration or laser detachment.

For analyzing target cells with desired phenotype, a straightforward idea is to selectively 

retrieve them for further downstream analysis. Robotic aspiration and laser microdissection 

are two conventional strategies. The robotic aspiration technique for single-cell retrieval 

leverages advanced micromanipulation technologies integrated with computer vision and 

motion control algorithms to achieve precise and efficient handling of individual cells (Fig. 

1A).(48-50) The core principle involves a pick-and-place system that can visually track 
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a cell in real-time and accurately control positioning devices to pick up, transfer, and 

deposit a single cell at a specific location on a desired substrate. This process starts with a 

traditional glass micropipette, which is used to aspirate cells either partially or wholly. The 

technique incorporates computer vision to identify and track a target cell within the culture 

environment. Once the target cell is identified, the motion control algorithms coordinate the 

movement of the micropipette to approach and aspirate the cell. After aspiration, the robotic 

system precisely transfers the cell to a predetermined location on the substrate and deposits 

it for downstream analysis.

Laser capture microdissection (LCM) is a conventional precise technique used to isolate 

specific cells or regions from heterogeneous tissue samples by employing a focused laser 

beam to cut around and capture the cells of interest (Fig. 1B).(51, 52) The process involves 

preparing thin tissue sections or cell cultures on special slides, visualizing the sample under 

a microscope to identify target cells, and using the laser to either melt an adhesive film or 

directly cut around the cells for retrieval. There are also variations of laser cell extraction, 

including the microcapillary single cell analysis and laser extraction (μSCALE) system, 

which disrupts the surface tension of a microcapillary, ejecting its contents onto an cell 

isolation substrate with a UV pulsed laser.(53) Both aspiration and LCM offers several 

advantages, including availability of commercial instrument, high precision, compatibility 

with downstream DNA, RNA, and protein analyses, and minimal sample processing. 

However, these approaches also have drawbacks, such as high initial cost of purchasing 

the instrument, time-consuming manual identification and capture, potential risk of sample 

damage from aspiration or laser, and a limitation to thin tissue sections, which may 

not represent the tumor microenvironment. Despite these challenges, robotic aspiration 

and LCM remain useful and reliable strategies for isolating specific cells with minimal 

contamination, enabling detailed molecular profiling and analysis.

Another laser-based strategy for retrieving cells from enclosed microfluidics involves a 

multi-functional bottom substrate composed of a carbon nanotube-polydimethylsiloxane 

(CNT-PDMS) composite film (Fig. 2A).(54) In this microfluidic system, once target cells 

are identified, a nanosecond laser pulse is applied to the CNT-PDMS film to generate 

micro-bubbles. The carbon nanotubes (CNTs) within the PDMS matrix convert the incident 

optical energy into thermal energy, exploiting the composite's inherent nanoscale porosity 

to expand and merge nano-bubbles.(55, 56) This process results in rapid generation of 

heat-induced bubbles from within the PDMS, which then burst through the film surface. 

The targeted cell experiences shear forces from the bubble rupture and lateral displacement 

caused by bubble expansion, effectively detaching it from the surface. The CNT-PDMS 

composite film offers several advantages: (1) it supports highly biocompatible cell culture, 

(2) it can be easily integrated into microfluidic fabrication processes, and (3) it enables the 

generation of optically driven shear forces (or micro-bubbles) that disrupt cell adhesion to 

the surface. Additionally, the low thermal conductivity of PDMS protects cells from the 

heat generated in the CNT layer, thereby preserving cell viability. While this method is 

innovative and well-integrated with microfluidic systems, it requires a specific nanosecond 

pulse laser source, and a commercial system for this technology is not yet available.
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2.2. Microraft array for single-cell or clonal isolation.

Microraft arrays (MRAs) represent another engineering solution for selectively single cell 

or clonal retrieval (Fig. 2B). (57, 58) It involves a substrate patterned with thousands of 

tiny, detachable polymeric "rafts," each capable of capturing and supporting individual cells. 

After cells are seeded onto the array and allowed to grow in isolation, they can be identified 

and analyzed using microscopy. The cells with target phenotype are then retrieved by 

dislodging the specific rafts using a robotic micromanipulator or a microfabricated needle, 

which can be assisted with laser cutting. This gentle, non-destructive process preserves cell 

viability and allows for detailed downstream analysis, such as single-cell sequencing. The 

microraft array is versatile, supporting various cell types, though it requires specialized 

microraft arrays or expertise for fabrication and manipulation. In addition, it is difficult to 

separate two daughter cells from one mother cell, as both daughter cells will be on the same 

microraft. Despite some limitations, this technology is reliable and valuable in minimizing 

effects on cells.

2.3. Optical traps for selective single-cell isolation based on phenotypes.

Optical traps, also known as optical tweezers, are another sophisticated tool that uses highly 

focused laser beams to manipulate and isolate single cells with high precision (Fig. 3A).

(59-63) The core principle involves the gradient force exerted by the laser light on the cell, 

which allows for non-contact manipulation and detailed measurement of cellular properties. 

To build an optical trap, a laser beam is tightly focused through a microscope objective 

lens, creating a highly intense electric field at the focal point. The intensity is critical as it 

generates a gradient force that draws the cell toward the region of highest light intensity, 

effectively trapping it. Concurrently, a scattering force from the momentum transfer of 

photons acts in the direction of light propagation. For stable trapping, the gradient force 

must surpass the scattering force, which is accomplished through precise laser focusing. 

Once the cell is stably trapped, it can be manipulated by moving the laser beam or adjusting 

the focus, facilitating various types of single-cell phenotypic analyses. These analyses 

include measuring the mechanical properties of the cell by applying known forces and 

observing deformation, thereby assessing stiffness and elasticity. Optical tweezers can also 

be used for force spectroscopy to measure forces involved in cellular processes like division 

or migration. Additionally, intracellular transport can be studied by tracking the movement 

of organelles or vesicles within the trapped cell, providing insights into cellular dynamics. In 

addition to inducing lateral cell movement, optical tweezers can be employed to exert forces 

in the vertical direction, enabling the selective levitation of single cells from microwells 

for isolation.(64) The technique is also valuable for single-molecule studies, where specific 

molecules are attached to the cell's surface or interior to investigate molecular interactions 

and dynamics within the cell.(65) Optical tweezers facilitate non-invasive observation and 

manipulation of cells, preserving their viability and enabling real-time analysis of dynamic 

processes in their native environment. While this method is effective for non-adherent 

objects, such as yeast, bacteria, and immune cells, it is not suitable for moving adherent 

cancer cells. Additionally, the technique has limitations, including the complexity of the 

optical setup and moderate to low throughput for cell sorting.
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2.4. Selective cell isolation based on cellular motility or deformability.

Under specific conditions, certain phenotypes can facilitate selective cell isolation. For 

instance, cell separation based on motility and chemotaxis, critical in cancer dissemination,

(66-70) can be achieved using engineered microfluidic devices.(5, 6, 71, 72) These devices 

typically feature paired wells connected by cell migration channels (Fig. 3B). Initially, 

cells are seeded into one well. After allowing for cell adhesion to the substrate, a 

chemoattractant is introduced into the opposite well to induce cell migration through 

the channels. The fast-moving cells that migrate to the other well can then be easily 

harvested through trypsinization. Similarly, cell deformability, a phenotype associated with 

cancer invasion, can be exploited for separation using a microfluidic device.(73, 74) A 

microfluidic mechanical deformability chip, for example, employs artificial microbarriers to 

differentiate flexible cells from stiff ones using hydrodynamic forces.(75, 76) More elastic 

cells pass through the microbarriers and exit the separation chip, while stiffer cells remain 

trapped. Although those microfluidic platforms are highly effective for phenotypic-based 

cell separation, their applicability is limited to phenotypes characterized by distinct motility 

or deformability, thus restricting its applicability to a broader range of applications.

2.5. On-site cell marking for further separation.

In addition to retrieving cells immediately, an alternative is to mark cells with certain 

phenotype with fluorescence or other markers. The marked cells can be separated in the 

following steps.(77-82) SPOTlight is a representative example of this concept (Fig. 4A).(83) 

Target cells, such as bacteria, yeast, or mammalian cells, can be made optically taggable 

by introducing photo-transformable fluorescent proteins or dyes that shift from a dim to 

bright state or change colors when excited by specific light wavelengths. This tagging can 

be applied to naturally heterogeneous cell populations as well as cell libraries, such as 

those used in siRNA screens. Cells are imaged to identify phenotypes of interest, which are 

quantified at single-cell resolution. Cells of interest are selected based on their phenotypic 

profiles and optically tagged via single-cell illumination. The tagged cells are then identified 

and isolated using FACS. Subsequently, the selected cells undergo genotyping or further 

characterization as needed. Alternatively, cells can be labeled by attaching streptavidin-

coated magnetic beads to their membranes using the lasers of a confocal microscope for 

sorting.(84, 85) A simple magnet can then be used to achieve highly specific isolation of 

the labeled cells, which remain healthy and continue to proliferate normally. The advantages 

of optical tagging include its high precision, allowing cellular resolution targeting; temporal 

control, enabling the study of rapid biological events; versatility across various cell types 

and applications, including optogenetic control, photothermal therapy, and fluorescence 

activation; and real-time feedback, enhancing accuracy and efficiency. However, the use 

of phototransformable fluorescent proteins or dyes and the need for prolonged or intense 

single-cell illumination could potentially affect cell viability or alter cell status. Additionally, 

the throughput of this method might be constrained by the time required for illumination, 

image collection, and processing to select cells exhibiting the desired phenotypes. If the 

proportion of labeled cells is relatively low, significant cell loss may occur during the 

subsequent FACS step.

Chen et al. Page 6

Cancer Heterog Plast. Author manuscript; available in PMC 2024 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.6. Single-cell phenotypic analysis and sorting within droplets.

Another promising approach involves performing single-cell phenotypic assays within 

droplets, which can be efficiently sorted using microfluidics or FACS. Droplet-based 

microfluidics entails creating and manipulating minute droplets within microchannels, each 

acting as isolated microreactors. (86-88) This technology facilitates high-throughput single-

cell analysis, biochemical reactions, and assays by compartmentalizing samples, providing 

precise control over the microenvironment, and enabling efficient, scalable biological and 

chemical experimentation. For example, droplet-based microfluidics can isolate individual 

antibody-secreting cells from a large number of non-secreting cells at high throughput. 

(89-91) These principles and methods are highly adaptable for various applications. By 

screening for antigen binding, the droplet system rapidly selects cells that secrete target-

specific antibodies. Its high throughput and ability to preserve cell viability enable the 

testing of primary blood cells from patients without the need for cell immortalization. The 

fluorescence-based binding assay can be adapted to measure any secreted molecule with a 

fluorescently labeled ligand, such as insulin, chemokines, or growth factors. Additionally, 

using fluorogenic substrates, the protocol can be tailored for high-throughput screening, 

directed enzyme evolution, or screening antibodies and molecules that inhibit enzyme 

activity. This versatile approach can analyze a wide range of cells, including bacteria, yeast, 

and mammalian cells, by examining the activities of secreted, cell-surface, or intracellular 

proteins. However, it is important to note that not all assays are well-suited for the droplet 

format. Although droplet splitting and fusion allow operations such as washing or adding 

new reagents, completely removing reagents from an initial reaction before introducing 

new ones is challenging.(92-94) Furthermore, adhesion-dependent epithelial cancer cells 

might suffer from anoikis due to loss of anchorage,(29, 95, 96) making long-term culture 

of adherent cancer cells within droplets difficult and limiting the applications in cancer 

research.

Building on the concept of cell phenotypic assays in droplets, hydrogel nanovials have 

been developed for single-cell phenotypic analysis and sorting (Fig. 4B). (97-99) The 

core principle involves encapsulating individual cells within hydrogel nanovials, which 

are microscopic, suspendable containers made of biocompatible hydrogel material. These 

nanovials are engineered with functionalized surfaces to capture and retain single cells 

along with reagents necessary for specific assays. Each hydrogel nanovial provides an 

isolated microenvironment where individual cells can undergo various functional assays, 

such as enzymatic activity, protein secretion, or cell-cell interactions. The hydrogel material 

allows for the diffusion of small molecules and reagents, facilitating real-time monitoring 

of cellular responses. The nanovials can be suspended in a fluid, enabling easy handling 

and manipulation within microfluidic systems. The process begins with the loading of 

single cells into the nanovials for cell encapsulation. Once loaded, the cells can be assayed 

directly within the nanovials. The functionalized surfaces can capture secreted molecules 

or enable reactions that produce detectable signals, such as fluorescence, which correlate 

with specific cellular functions. After the phenotypic assays, nanovials containing cells of 

interest can be sorted using FACS techniques adapted for hydrogel particles. This allows 

for the rapid and precise isolation of cells based on their phenotypes as detected within the 

nanovials. Hydrogel nanovials combine the advantages of droplet-based systems and support 
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the survival of adherent cancer cells. However, certain phenotypes, such as cell morphology 

or the organization of organelles, might be difficult to visualize, and tracking individual 

cells over time is also challenging. Despite these limitations, hydrogel nanovials represent a 

powerful tool for high-throughput single-cell functional analysis and sorting.

2.7. Single-cell in situ analysis with spatial-omics technologies.

In addition to single-cell selective marking and isolation techniques, spatial-omics 

technologies offer alternative approaches for in situ single-cell analysis, yielding valuable 

insights into the microenvironmental context of individual cells. In spatial transcriptomics, 

methods such as 10x Genomics Visium, Slide-seq, and MERFISH are prominent. 10x 

Genomics Visium captures spatially resolved transcriptomes by combining tissue sections 

with RNA sequencing on barcoded slides, whereas Slide-seq uses DNA-barcoded beads 

to map gene expression profiles across tissue samples.(100, 101) MERFISH (Multiplexed 

Error-Robust Fluorescence In Situ Hybridization) utilizes sequential hybridization and 

imaging to detect thousands of RNA species in fixed tissues, enabling high-throughput 

spatial analysis.(102) Spatial proteomics technologies like Imaging Mass Cytometry (IMC), 

CODEX (CO-Detection by Indexing), and MIBI (Multiplexed Ion Beam Imaging) provide 

high-resolution protein expression maps.(103-107) IMC integrates mass spectrometry with 

immunohistochemistry by using metal-tagged antibodies, allowing for multiplexed protein 

detection. CODEX employs DNA-barcoded antibodies and cyclic immunofluorescence 

to achieve high-dimensional protein profiling, while MIBI uses secondary ion mass 

spectrometry to map proteins at subcellular resolution. For spatial metabolomics, 

Imaging Mass Spectrometry (IMS) and Secondary Ion Mass Spectrometry (SIMS) are 

key techniques.(108-110) IMS, including methods like MALDI (Matrix-Assisted Laser 

Desorption/Ionization) and DESI (Desorption Electrospray Ionization), ionizes metabolites 

directly from tissue sections to analyze their spatial distribution. SIMS uses a focused 

primary ion beam to sputter secondary ions from the sample surface, providing detailed 

metabolite maps. These technologies collectively enable the integration of transcriptomic, 

proteomic, and metabolomic data, offering a comprehensive understanding of cellular 

molecular features within their native tissue context. Spatial-omics technologies, despite 

limitations such as spatial resolution constraints in achieving single-cell precision, high 

costs, inability to integrate with functional assays, and challenges in data quality and 

normalization, provide their unique value for in situ analysis of complex biological 

microenvironments.

3. Conclusions and perspectives

Single-cell analysis has transformed modern biological research by providing unprecedented 

insights into cellular behavior and heterogeneity. Unlike conventional population-based 

methods, this approach examines individual cells, revealing significant variations in cellular 

states, responses to stimuli, and molecular signatures often obscured in bulk analyses. 

This level of detail is crucial for understanding complex physiological and pathological 

processes, enabling researchers to gain profound insights into cellular function and 

behavior, thus driving groundbreaking discoveries in biomedical science. In cancer research, 

single-cell analysis is particularly essential due to the notorious heterogeneity within 
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tumor cell populations, which exhibit diverse gene expression, phenotypes, and functional 

properties. This heterogeneity, influenced by genetic mutations, epigenetic alterations, 

and microenvironmental factors, profoundly affects tumor progression, metastasis, and 

treatment resistance. Deciphering this heterogeneity is essential for advancing cancer 

treatment, as distinct cell subpopulations within tumors respond differently to therapies, 

leading to resistance and disease recurrence. By characterizing and targeting specific cell 

subsets, clinicians can develop personalized treatment strategies with improved efficacy. 

Specifically, advancements in single-cell analysis have revolutionized the ability to correlate 

phenotypic and genotypic data at the individual cell level, a critical step in understanding 

the molecular mechanisms underlying cell behaviors. Cutting-edge techniques, such as 

robotic aspiration, laser detachment, microraft arrays, optical tweezers, optical labeling, 

microfluidics, hydrogel nanovials, and droplet-based systems, offer promising strategies for 

high-throughput single-cell phenotypic analysis and selective cell isolation for genotypic 

downstream characterizations. However, challenges remain in analyzing certain phenotypes 

and tracking individual cells over time. Additionally, the complexity and cost of initial 

setups, along with limited throughput in many systems, constrain the investigation of 

phenotype-genotype correlations.

Future advancements in deep learning are poised to significantly enhance single-cell 

techniques across three primary areas: (1) Automating selective cell picking using 

computer vision, rather than human discretion, to markedly increase the throughput and 

reproducibility of single-cell isolation. (2) Optimizing the control of robotic aspiration 

and droplet systems to improve precision and efficiency. (3) Identifying complex patterns 

and relationships within single-cell data that are otherwise difficult to discern, with 

deep learning models integrating multi-omics data to provide comprehensive insights into 

cellular heterogeneity and function.(111-114) Additionally, advances in robotics operating 

microfluidic and other platforms will significantly boost the throughput, reliability, and 

reproducibility of experiments.(115-118) The data generated through robotic operations 

can further enhance the application of data science in system optimization, normalization, 

and quality control of single-cell data. Although challenges remain, rapid developments 

in robotics and deep learning will gradually address these issues, greatly enhancing the 

capability of analyzing individual cells in biomedical research. This progress is particularly 

valuable in cancer research, where understanding cellular heterogeneity is essential for 

advancing precision medicine and fostering therapeutic innovation.
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Figure 1. Operation of Robotic Aspiration and Laser Microdissection for Selective Single-Cell 
Retrieval.
(A) Robotic aspiration of target cells from cell cultures. (B) Laser capture microdissection 

for isolating target cells from tissue slides or cell cultures.
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Figure 2. Selective cell retrieval using a nanosecond pulse laser on CNT-PDMS film and 
microraft arrays.
(A) Laser-induced bubbles on CNT-PDMS film facilitate cell detachment and retrieval from 

enclosed microfluidics. (B) Microrafts carrying cells of interest are selectively retrieved.
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Figure 3. Schematics of optical traps and microfluidics for phenotype-based cell selection.
(A) Cells of interest are trapped and manipulated using optical traps for isolation. (B) 

Fast-moving cells are guided by a chemo-gradient through migration channels, facilitating 

motility-based selection.
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Figure 4. Cell selection via SPOTlight and droplet systems.
(A) Cells labeled with phototransformable proteins or dyes are selectively transformed to 

different colors in situ and subsequently isolated by FACS. (B) Cells cultured in nanovials 

undergo fluorescent assays and are selected by FACS.
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