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Abstract

Metastatic cancer presents with many, sometimes hundreds of metastatic lesions through the 

body, which often respond heterogeneously to treatment. Therefore, lesion-level assessment is 

necessary for a complete understanding of disease response. Lesion-level assessment typically 

requires manual matching of corresponding lesions, which is a tedious, subjective, and error-prone 

task. This study introduces a fully automated algorithm for matching of metastatic lesions in 

longitudinal medical images. The algorithm entails four steps: (1) image registration, (2) lesion 

dilation, (3) lesion clustering, and (4) linear assignment. In step (1), 3D deformable registration is 

used to register the scans. In step (2), lesion contours are conformally dilated. In step (3), lesion 

clustering is evaluated based on local metrics. In step (4), matching is assigned based on non-

greedy cost minimization. The algorithm was optimized (e.g., choice of deformable registration 

algorithm, dilatation size) and validated on 140 scan-pairs of 32 metastatic cancer patients from 

two independent clinical trials, who received longitudinal PET/CT scans as part of their treatment 

response assessment. Registration error was evaluated using landmark distance. A sensitivity study 

was performed to evaluate the optimal lesion dilation magnitude. Lesion matching performance 

accuracy was evaluated for all patients and for a subset with high disease burden. Two investigated 

deformable registration approaches (whole body deformable (WDR) and articulated deformable 

(ADR) registrations) led to similar performance with the overall registration accuracy between 

2.3 and 2.6 mm. The optimal dilation magnitude of 25 mm yielded almost a perfect matching 

accuracy of 0.98. No significant matching accuracy decrease was observed in the subset of patients 
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with high lesion disease burden. In summary, lesion matching using our new algorithm was 

highly accurate and a significant improvement, when compared to previously established methods. 

The proposed method enables accurate automated metastatic lesion matching in whole-body 

longitudinal scans.

1 Introduction

Metastasis is the leading cause of cancer-related mortality (Chaffer and Weinberg, 2011). 

Although cancer patients have treatment options, the treatment response among lesions can 

be substantially different. This heterogeneous response poses a great challenge to cancer 

management in metastatic patients because the behaviour of one lesion (or even a few) can 

be unrepresentative of the global response to treatment. If response can be assessed at the 

lesion-level, inter-lesion heterogeneity can be quantified, providing valuable information for 

improved cancer management via early prediction of outcomes (Gayed et al., 2004; Schwarz 

et al., 2005) or via identification and subsequent selective targeting of resistant lesions 

(Lubner et al., 2013; Roth et al., 2020).

Molecular imaging is an essential tool for detecting metastatic lesions and monitoring 

their progression and therapeutic response (Baum et al., 2010; Scarpelli et al., 2018; 

Vanderhoek et al., 2013; Weissleder, 2006). Imaging can capture the heterogeneity in 

response because it is able to spatially resolve different lesion sites and to capture different 

quantitative and qualitative characteristics of each disease site. However, late-stage cancer 

patients can present with tens of metastatic lesions spread throughout their whole-body. 

Therefore, even though imaging can resolve different lesions, lesion-level disease analysis 

is impractical in daily clinical practice because it is overwhelming to manually assess 

individual lesion response. Therefore, response assessment employed by physicians often 

reduces the rich heterogeneous lesion-level image information to patient-level information 

either by summarizing all the lesions into a single score (Gallamini et al., 2014; Larson et 

al., 1999) or by evaluating a subset of lesions (Eisenhauer et al., 2009; Wahl et al., 2009) 

(e.g. RECIST or PERCIST). One way to overcome this information reduction is to achieve 

automatic assessment of individual lesion response via lesion matching.

Matching individual lesions across multiple time points has been investigated via rigid 

registration for identification of new cancerous lesions (Moltz et al., 2009) and for treatment 

response assessment of multiple sclerosis brain lesions (Bosc et al., 2003; Köhler et al., 

2019; Shahar and Greenspan, 2005). Going beyond rigid registration, Yip et al introduced a 

hierarchical articulated registration that enabled treatment response assessment of late-stage 

prostate cancer bone lesions (Yip et al., 2014; Yip and Jeraj, 2014). Finally, two dimensional 

(2D) deformable registration was previously explored as a means of refining the rigid 

registration-based lesion matching of lymphoma lesions (Xu et al., 2011).

The aforementioned studies demonstrated that rigid, articulated, and deformable image 

registration enable lesion matching in specific organs (e.g. skeleton, brain, liver). However, 

a comprehensive algorithm that enables matching of metastatic lesions spread across the 

entire patient anatomy remains unavailable. Rigid registration applicability is limited to 

certain body-parts (e.g. brain) and fails to account for skeletal movement and soft-tissue 
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deformations. Deformable registration showed promising results to aid in lesion matching, 

but the 2D nature of its previous application fell short on exploring the full potential of the 

deformations.

In this work we introduce a novel algorithm for lesion matching of metastatic lesions spread 

through the whole-body that is based on several distinctive steps, including 3D deformable 

registration, lesion dilation, clustering, and linear assignment of lesions. The lesion matching 

algorithm was tested in a population of cancer patients that received longitudinal PET/CT 

scans as part of their treatment response assessment.

2 Algorithm Description

We pose the lesion matching as a linear assignment problem. Following image registration 

(Step 1), the matching algorithm includes lesion dilation (Step 2), clustering (Step 3), and 

linear assignment (Step 4). A schematic description of the algorithm’s structure is presented 

in Figure 1.

The algorithm acts on a scan-pair of anatomical medical images, each one having an 

associated binary lesion mask. The goal of the algorithm is to automatically perform 

lesion matching decisions based on lesion superposition. A matching decision consists of 

identifying if a lesion present in one scan has an associated lesion (homologous lesion) in 

the paired scan; if so, the longitudinal pair of lesions is called single corresponding lesion 

(CL). Lesions that have no corresponding lesion in the paired scan are either new lesions 

(NL) or disappearing lesion (DL). In each scan-pair, one matching decision had to be made 

for each unique lesion and the number of unique lesions per scan-pair was defined as the 

sum of CLs, NLs, and DLs. The concepts of scan-pairs, unique lesions, matching decisions, 

corresponding lesions, new lesions, and disappearing lesions are illustrated in Figure 2.

In the first step, 3D deformable image registration is used to superimpose anatomically 

homologous regions of a scan-pair. The deformation vector field is estimated by 

minimization of the sum of square differences between voxel intensities in the moving 

and in the fixed anatomical medical images, respectively the later and the earlier scans. 

Deformable registration is done using free form deformation with 3rd order B-splines 

interpolation and hierarchical control grid (Rueckert et al., 1999). This technique was chosen 

for its wide acceptance in the medical image registration field, its local support, and for 

requiring relatively simple and fast calculations (Sotiras et al., 2014). The hierarchical 

control grid approach is also well established and is known to help in preserving the 

smoothness of the registration (Lee et al., 1996; Mattes et al., 2003; Rueckert et al., 1999).

The calculated transformation field T  is then applied to the binary lesion mask of the later 

scan in the scan-pair.

LT = T L

(1)
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where L is the set of coordinates of the lesions in the binary mask of the later scan and LT is 

this set of coordinates after transformation.

In the second step, a morphologic conformal lesion dilation operation D  is applied to 

the binary lesion masks (on both time points in the scan-pair) to increase the lesion 

superposition probabilities (Figure 3).

LT, D = D LT

(2)

ED = D E

(3)

where E is the set of coordinates of the lesions in the binary mask of the earlier scan, ED is 

the conformal dilation of the set E, such that E ⊂ ED, and LT, D is the conformal dilation of 

the set LT, such that LT ⊂ LT, D. Subsequently, the individual lesion components are numbered 

based on connected components analysis, the superposition of the lesions is evaluated and a 

matrix M of intersections is automatically constructed as

Mij = EDi ∩ LT, Dj

(4)

where LT, D ⊂ LT, D is the subset of the coordinates of the jth lesion in the later scan, EDi ⊂ ED is 

the subset of the coordinates of the ith lesion in the earlier scan, and Mij is the cardinality of 

the intersection of these subsets. The matrix M is a square matrix with N2 elements where N
is the maximal integer between NE and NL, which are the number of lesions identified in the 

earlier and in the later scans.

The algorithm’s third step is clustering of lesions, an important consideration for treatment 

response assessment, which can occur due to merging or splitting of multiple lesions from 

one to another imaging time point (Shafiei et al., 2021). Merging is usually a result of 

disease progression in adjacent lesions. Conversely, lesion splitting is usually caused by 

one lesion responding to treatment and separating into two or more smaller disjoint lesion 

components. After the second step, a lesion may intersect multiple lesions on the paired 

scan. This may be a spurious intersection with a neighboring lesion (Figure 3C), or may be 

due to merging or splitting (Figure 3D). We developed a novel lesion clustering algorithm 

designed specifically to distinguish between these two instances, so that the overall matching 

algorithm considers sets of components originating from splitting, and sets of components 

that eventually merge, as individual lesions. A set of lesion components is clustered when:

i. The components intersect to at least one common lesion on the other scan 

(Figure 4B), considering the dilation introduced on the second step
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ii. The distance u  between the centroids of the components (Figure 4C) is smaller 

than a distance d  (Figure 4D)

The distance d  is defined as the longest chord in the common matching lesion that makes 

a smaller than 5° angle with the vector u  connecting the centroids of the components to be 

clustered (Figure 4), the angular constraint is expressed as

arccos u ⋅ d
| u | ⋅ d

≤ 5∘ .

(5)

Assuming perfect registration, if a set of components originate from a homologous lesion 

in the paired scan (either merging or splitting), the components should all be spatially 

contained in the homologous lesion, in which case the condition d > | u | will be satisfied. 

If registration is not perfect, but the dilation step guarantees that all the components overlap 

to the homologous lesion, the relationship between the vectors u  and d  will still hold. The 

angular constraint of equation (5) is imposed to consider that a chord d  in a direction in 

which the homologous lesion is long might be an overly lenient threshold for evaluating 

a vector u  connecting components separated along a different direction, in which the 

homologous lesion is short. The necessity for an angular constraint is illustrated in Figure 

5. The 5° tolerance in equation (5) is used to consider that d  and u  need not be exactly 

parallel, but approximately so. The 5° value is an algorithm hyperparameter and different 

values could be explored depending on the application.

In the fourth step, the lesions are renumbered and voxels that pertain to a given lesion are 

reevaluated based on the clustering decision. A new intersection matrix M′ is calculated 

under the new conditions. A cost matrix C is then defined as Cij = 1/Mij
′ . The lesion matching 

problem is thus reduced to a linear assignment problem (Jaqaman et al., 2008), which 

consists of finding an optimal permutation matrix A

A = argmin
A

∑
i = 1

N
∑

j = 1

N
AijCij

(6)

within the constraints to the permutation matrix A

i = 1

N
Aij = 0 or 1 and

j = 1

N
Aij = 0 or 1

(7)

where summations might be zero if a lesion is superimposed to no other (NLs or DLs). 

The Munkres assignment algorithm (Munkres, 1957) is used to solve the linear assignment 
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problem. One of the possible mathematical interpretations of the Munkres algorithm is that 

it finds the optimal permutation matrix A that minimizes the global sum of costs defined by 

equation (6) within the constraints imposed by equation (7). Briefly, the Munkres algorithm 

performs a non-greedy minimization of C, which is equivalent to a maximization of the 

volume of intersection between all lesions in a scan-pair.

3 Algorithm Validation

The developed algorithm was evaluated in 172 PET/CT images of 32 patients with 

metastatic cancer, all images were acquired under the institutional standard procedures. 

PET/CT images provide anatomical structure and functional information of the location 

of diseased tissue, which makes them suitable for validating the algorithm. The PET/CT 

images were retrospectively acquired from two independent clinical trials (Table 1). One 

of the trials contained 19 metastatic melanoma patients, for whom lesion-level disease 

assessment is particularly challenging because of the plurality of metastatic sites and the 

elevated number of lesions, which in the most extreme case was of 64 unique lesions 

spanning from the legs to the head. A second dataset containing 10 different types of cancers 

was included to evaluate the algorithm for its robustness regarding disease type.

In the validation dataset, a scan-pair was defined as two longitudinal and sequential PET/CT 

scans of the same patient. Therefore, if n is the number of scans that a patient received, n − 1
is the number of scan-pairs; e.g. a patient that received four scans s1, s2, s3, s4 , will have three 

scan-pairs s1 to s2, s2 to s3, and s3 to s4. The dataset contained 140 scan-pairs.

In the validation, CT images served as the anatomical information, while the binary lesion 

masks were derived from the PET image. Using radiology reports as guidance, cancerous 

lesions, indicated by elevated PET SUV uptake relative to background, were manually 

contoured by an imaging scientist, defining thus the binary lesion masks associated to each 

PET/CT image. The manual contouring started by using an active-contours algorithm to 

automatically conform the contours to the lesions (Yang et al., 2009), then the contours 

were reviewed by a nuclear medicine physician and manually corrected when necessary. 

Reference matching decisions were made by visually analyzing the scan-pairs’ images for 

each patient and preparing a reference lesion matching decision matrix for each scan-pair. 

The merging or splitting of lesions over time was accounted for in the reference matching 

decisions. Clustering decisions were made when two or more lesions occupied the same 

anatomical position within the patient body as a larger lesion in the corresponding scan 

(Figure 4B).

The main metric used to assess the algorithm performance on the validation dataset was 

the overall accuracy of lesion matching, determined as the number of correct lesion 

matching decisions made divided by the total number of matching decisions. Additionally, 

the accuracy of matching corresponding lesions and the accuracy of identifying vanishing 

lesions and new lesions were estimated separately.

Santoro-Fernandes et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2024 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1 Image Registration Sensitivity Analysis

To fully understand the impact of image registration on lesion matching, we studied the 

algorithm performance under four distinct registration methods. Two deformable registration 

approaches were investigated: (1) Articulated Deformable Registration (ADR) which was 

preceded by Whole-body Rigid Registration (WRR) and Articulated Rigid Registration 

(ARR) and (2) Whole-body Deformable Registration (WDR), which was preceded only by 

WRR (Figure 6). Both deformable registration approaches (WDR and ADR) were done 

using free form deformation with 3rd order B-splines interpolation and hierarchical control 

grid (Rueckert et al., 1999). Additionally, lesion matching was assessed after WRR and 

ARR alone.

The centroids of corresponding lesions were used as landmarks to analyze the performance 

of image registration, only lesions whose volume varied less than 50% between scans 

were used because high volume variation can lead to displacements of the lesion centroids 

which are unrelated to registration performance. The Wilcoxon signed-rank test was used 

to compare the centroid distance distributions. Additionally, the impact of the registration 

methods on lesion matching performance was assessed using the McNemar test to 

intercompare all the registration methods (0.05 significance level).

3.2 Lesion Dilation Sensitivity Analysis

A sensitivity study was conducted to assess dependence of the lesion matching accuracy on 

the magnitude of the conformal dilation (Step 2) by varying the dilation from 0 to 55 mm in 

5 mm increments.

3.3 Anatomic Distribution Sensitivity Analysis

The overall lesion matching accuracy evaluation was stratified for the whole body and 

per individual body parts. The individual body parts considered were head and neck, 

chest+abdomen, pelvis, and left and right upper arms, forearms, hands, thighs, legs, and 

feet.

3.4 Lesion Burden Sensitivity Analysis

The lesion matching accuracy was analyzed on a subset of high burden scan-pairs to 

investigate if an accuracy drop would be observed in those cases. High burden scan-pairs 

were defined as those containing 10 or more unique lesions, twice as much as what is 

recommended for visual human evaluation. In a clinical setting and without automation, 

individual comprehensive lesion-level response assessment of these scan-pairs is prohibitive. 

Therefore, satisfactory performance of the algorithm on these scan-pairs is paramount for its 

possibility of translation into the clinic.

4 Results

In this study, 736 matching decisions were necessary to analyze all 140 scan-pairs. Based 

on the reference matching decisions, 298 of the 736 matching decisions (40%) were 

corresponding lesions and 438 (60%) were new or disappearing lesions. The accuracy of 

lesion matching is shown in Table 2. These results represent the accuracy with no dilation.
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4.1 Image Registration Sensitivity Analysis

The centroids of 186 corresponding lesions were used as landmark. The landmark distance 

distributions are shown in Figure 7. All distributions were significantly different (P < . 001). 

A visual understanding of how registration influences landmark distance, and thus proximity 

of corresponding lesions, is shown in Figure 8.

The McNemar test was used to intercompare the deformable registration approaches’ 

impact on the lesion matching performance. Lesion matching performance using WDR 

was better than ADR, nevertheless with marginal statistical significance P = . 04 . We also 

used the McNemar test to compare both deformable approaches to the rigid approaches, 

WRR and ARR. Comparison of both approaches with WRR yielded statistically significant 

differences P < . 001 . WDR significantly improved lesion matching when compared to 

ARR P < . 001 . Improvement observed with ADR was close on the verge of significance 

P = . 06 .

4.2 Lesion Dilation Sensitivity Analysis

An increase in matching accuracy was observed for corresponding lesions across the dilation 

range (Figure 9A). By contrast, the accuracy for new or disappearing lesions decreased with 

lesion dilation, (Figure 9B). The overall accuracy was observed to have an initial increase 

associated with the CL accuracy trend, followed by a decrease associated with the NL/DL 

accuracy trend (Figure 9C). The optimal dilation magnitude was determined by the peaks 

in the overall accuracy curves. The optimal dilations were of 25 mm for all registration 

methods besides WRR, which had an optimal dilation of 30 mm.

4.3 Anatomic Distribution Sensitivity Analysis

The data in Table 3 are derived from our observation of the 736 lesions present in the 

patients in our datasets, the location of all unique lesions are shown in Table 3, most of 

which were the chest+abdomen (52% - 380/736) and in the pelvis (21% - 156/736). The 

thighs (13% - 99/736) and the legs (8% - 60/736) also presented with relatively high disease 

densities.

For the four body-parts with highest number of lesions (chest+abdomen, pelvis, thighs, and 

legs), assessment of the overall accuracy was performed separately. The overall accuracies 

per body-part, evaluated at the optimal dilations (Figure 10) saw minimal variation across 

registration methods and body-parts. No accuracy result was smaller than 0.90 (WRR in the 

Thigs).

4.4 Lesion Burden Sensitivity Analysis

In the complete patient population, containing all 140 scan-pairs, the median number of 

lesion matching decisions was 3, with minimum of 1 and maximum of 68. In the high lesion 

burden subset, the median number of lesion matching decisions was 19, minimum of 11 

and maximum of 68. The high lesion burden subset accounted for 345 of the 736 matching 

decisions (47% of the total) and for 12 of the 140 scan-pairs (8.5% of the total). Accuracy 

results were evaluated for the optimal dilation magnitudes (Figure 11).
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5 Discussion

In this work we presented a lesion matching algorithm based on 4 steps: image registration, 

lesion dilation, lesion clustering, and linear assignment (Figure 1). The algorithm was 

validated on two independent patient populations and the lesion matching accuracy obtained 

was excellent (0.98 overall accuracy). No trend in accuracy was observed across patient 

populations, overall accuracies were 0.98 for both. We explored the lesion matching 

accuracy sensitivity regarding image registration methods, lesion dilation magnitude, 

anatomic distribution, and lesion burden. The deformable registration techniques (WDR and 

ADR) showed superior registration results, when compared to rigid techniques (WRR and 

ARR) as shown by the landmark distance (Figure 7), which led to a significant improvement 

in the lesion matching accuracy. Furthermore, for WDR and ADR, residual registration error 

was in accordance with literature for image intensity based methods (Yin et al., 2011). Use 

of lesion dilation magnitude was an important factor in achieving the excellent accuracy 

level. For the best performing registration approach (WDR), the use of dilation caused 

overall accuracy to increase by 0.08, from 0.90 with no dilation to 0.98 with the optimal 

dilation of 25 mm (Table 2, Figure 9). In addition, the excellent accuracy levels were 

minimally dependent on lesion body-part location (Figure 10) and were sustained on the 

analysis of high burden scan-pairs (Figure 11). Lastly, the matching criteria used by our 

methodology are positional and make no assumption regarding lesion shape, instead, the 

shape is taken into consideration by the methodology via conformal dilation (step 2) and via 

the use of lesion derived distance metrics for clustering (step 3).

Previous works have explored rigid registration-based lesion matching (Bosc et al., 2003; 

Köhler et al., 2019; Moltz et al., 2009; Shahar and Greenspan, 2005; Xu et al., 2011). Moltz 

et al. suggested that rigid registration suffices for lesion matching applications; however, 

we hypothesize that this conclusion was based on their focus on liver and lung cancer 

lesions. These organs are located in the chest+abdomen body-part, where we observed 

WRR-based matching to have its best performance (0.96 overall accuracy - Figure 10). 

However, for the purpose of whole-body soft tissue lesion matching, the rigid registration 

method (WRR) resulted in the worst overall matching accuracy; matching accuracy of 

corresponding lesions was of only 0.58 without dilation (Table 2). When compared the ARR 

method (Yip et al., 2014), use of 3D deformable registration resulted in a remarkable lesion 

matching improvement, 29%, from 0.58 to 0.75 (Table 2). Deformable registration has been 

previously employed for the task of lesion matching (Xu et al., 2011). However, it was 

limited to 2D deformation of a few image slices. The use of 3D deformable registration for 

lesion matching purposes is one of the novelties presented in this work. Other novelties of 

our work are the use of conformal dilation for lesion matching, the development of a novel 

lesion clustering methodology that is specific for longitudinal monitoring of merging and 

splitting lesions, and the use of a non-greedy optimizer to solve a linear assignment problem 

in the setting of whole-body longitudinal disease matching using in-vivo imaging of human 

patients. Most importantly, the main novelty of our work consists in combining several 

image analysis techniques to solve the problem of whole-body soft tissue lesion matching, 

which had not been done previously.
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One challenge of our work was defining the reference dataset for the lesion matching 

decisions, which is subject to human error and bias in its nature. However, these same 

limitations would be encountered in manual lesion matching performed for clinical 

decisions. In other words, some arbitrariness is unavoidably associated with visual 

interpretation of medical images. We observed, however, that this limitation is likely to 

have little impact in the validation of the algorithm because the correspondence between the 

vast majority of lesion pairs was conspicuous.

The 12 incorrect matching decisions made by the algorithm for the best performer 

parameters (WDR with dilation of 25 mm) had three causes. First, lesion dilation caused 

2 incorrect decisions where a new and a disappearing lesion were registered close enough 

that dilation led to incorrect superposition. Second, misregistration caused 4 incorrect 

decisions, all in the same scan-pair and located in the patient’s legs. Largely different legs 

positioning resulted in a large deformation vector field that failed to accurately approximate 

the corresponding lesions; use of ADR for matching lesions in the legs is one way of 

overcoming this limitation. Finally, Incorrect clustering caused 6 incorrect decisions (Figure 

12), where two or more lesions (blue) that should not cluster were superimposed to a 

common lesion (orange). Due to the particular geometric positioning, the threshold distance 

d (Figure 4D) and the angle restriction failed to prevent the incorrect clustering. This 

limitation could be overcome by use of an adaptive dilation magnitude parameterized by 

local lesion density, which will be pursued in future developments. The impact of incorrect 

lesion matching decisions on possible applications of the herein presented algorithm, such as 

automated treatment response assessment, will be subject of future investigations.

While the herein presented algorithm was validated using PET/CT images, we hypothesize 

that it is generalizable to other types of medical imaging modalities. The requirements for 

application of the algorithm are anatomical information that is used to guide the registration 

step and the existence of lesion conspicuity, which in our validation dataset was obtained 

through PET scans. We note, however, that the implementation of the method to other 

imaging modalities would require sensible adaptation of hyperparameters involved in all 

four steps of the algorithm.

6 Conclusion

In this work we introduced an algorithm that enables automated matching of metastatic 

lesion. We validated the algorithm for whole-body longitudinal PET/CT scans of metastatic 

cancer patients and showed it has high overall accuracy. One novelty of our algorithm 

is the leveraging of 3D deformable image registration, which outperformed the existing 

methods for every studied scenario and was a significant improvement, when compared to 

previously established methods. Our study suggests that whole-body lesion matching can 

be done automatically, possibly facilitating lesion-level disease assessment of metastatic 

cancer patients in clinical practice and in clinical trials, ultimately leading to enriched 

information for treatment response assessment and facilitating the development of novel 

treatment combinations.
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Figure 1 - 
schematic description of the lesion matching algorithm
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Figure 2 –. 
Illustration of types of unique lesions per scan-pair: corresponding lesions (CL), new lesions 

(NL), and disappearing lesions (DL).
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Figure 3 –. 
Illustration of the conformal dilation role in lesion matching. For clarity, lesion dilation is 

represented only on one scan of the scan-pair (blue). Lesions (solid contours) and lesions’ 

conformal dilations (black dotted lines), colors indicate lesions from different scans in a 

scan-pair. (A) Corresponding lesions are matched based on direct superposition. (B) Despite 

no direct superposition, match is still possible because of the conformal dilation. (C) lesion 

dilation yields a correct (1) and one incorrect (2) superposition, however, the Munkres 

algorithm selects the correct match. (D) Two lesions are superimposed to the dilation and are 

merged and matched. (E) A single disappearing lesion. (F) A single new lesion.
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Figure 4 –. 
Situation illustrating clustering as lesion merging caused by disease progression. The 

blue masses are from an earlier scan and the orange mass is from a later scan. (A) 

Before registration, the lesions are not superimposed. (B) After registration, lesions are 

superimposed. (C) illustrates the vector u  between centroids and (D) the vector d . After the 

clustering, the two blue masses correspond to one single lesion (orange).
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Figure 5 - 
Illustration of the rationale for using a small angle constraint in the lesion clustering step. If 

lesion overlap were considered alone, lesions L1, L2, L3, and L4 would cluster since all of 

them overlap to lesion E1 (considering dilation). Using the constraint | u | < d  without an 

angular constraint would still be insufficient and imply in wrongful clustering of L1, L2, L3, 

and L4. Using the angular constraint, L3 and L4 are correctly excluded from the cluster.
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Figure 6 –. 
Diagram illustrating the approaches to arrive at whole-body and articulated deformable 

registrations.

Santoro-Fernandes et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2024 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7 –. 
Landmark distance distribution of the 186 landmark lesions. Results on the left are for 

the 3D deformable registration methods: whole-body deformable (WDR) and articulated 

deformable (ADR). Results on the right are for previous explored registration methods: 

whole-body rigid (WRR) and articulated rigid (ARR).
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Figure 8 - 
Visualization of the impact of different registrations on proximity of corresponding lesions. 

The CT contour is shown in light gray. Earlier scan lesions are shown in blue and later 

scan lesions in orange. Red ellipses highlight the corresponding lesions that had visible 

approximation. Images are shown for whole-body rigid (WRR), articulated rigid (ARR), 

articulated deformable (ADR), and whole-body deformable (WDR) registrations. Column 

(A) compares WRR to ARR. Column (B) compares ARR to ADR. And column (C) 

compares ARR to WDR.
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Figure 9 –. 
Accuracy as a function of dilation magnitude for (A) corresponding lesions (CL), (B) new 

or disappearing lesions (NL/DL), and (C) all lesions. The markers corresponding to 0 mm of 

dilation represent the accuracy of the method without lesion dilation.
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Figure 10 –. 
Overall accuracy, using each registration method in the four body-parts with highest number 

of lesions at the optimal dilations.
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Figure 11- 
Comparison between overall accuracies obtained with the whole dataset and with the subset 

of high disease burden scan-pairs (more than 10 matching decisions per scan-pair). Results 

on the left are for the 3D deformable registration methods: whole-body deformable (WDR) 

and articulated deformable (ADR). Results on the right are for previous explored registration 

methods: whole-body rigid (WRR) and articulated rigid (ARR). The optimal lesion dilation 

was used, namely 25 mm for ARR, ADR, and WDR; and 30 mm for WRR. In addition 

to overall accuracy, the analysis was separated into corresponding lesions (CL) and new or 

disappearing lesions (NL/DL).
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Figure 12 - 
illustration of incorrect cluster decision
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Table 1 -

Patient population description

# of Patients Tracer Scanner Disease Treatment Design

19 18F-FDG
GE Discovery IQ
GE Discovery 710
GE Discovery STE

Metastatic Melanoma
immune checkpoint 
inhibitor and 
antiangiogenic drugs

Retrospective

13 18F-FLT GE Discovery VCT

Upper tract urothelial, rectal, breast, 
lung (non-small cell), prostate, 
colon, ovarian, appendiceal, adenoid, 
and squamous cell

antiangiogenic drug Prospective (Scarpelli 
et al., 2016)
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Table 2 -

Accuracy of lesion matching when no dilation is used.

Registration

Accuracy

Corresponding Lesions N = 298 New or disappearing lesions N = 438 Overall N = 736

Whole-body deformable (WDR) 0.75 1.00 0.90

Articulated deformable (ADR) 0.72 0.99 0.88

Whole-body rigid (WRR) 0.58 0.99 0.82

Articulated rigid (ARR) 0.68 1.00 0.87
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Table 3 -

Number of lesions per body-part

Body-part # of lesions % Body-part # of lesions %

Chest+abdomen 380 52% Feet 9 1.2%

Pelvis 156 21% Forearms 5 0.7%

Thighs 99 13% Arms 5 0.7%

Legs 60 8% Hands 3 0.4%

Head & neck 19 3%
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