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ABSTRACT Brain microstructural changes already occur in the earliest phases of Alzheimer’s disease
(AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the
potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers
for capturing such tissue modifications. Tract-based spatial statistics (TBSS) and support vector machines
(SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (Aβ-
/tau-) and Aβ+/tau+ or Aβ+/tau- subjects. Moreover, eXplainable Artificial Intelligence (XAI) was used to
highlight the most influential features in the SVMs classifications and to validate the results by seeing the
explanations’ recurrence across different methods. TBSS analysis revealed significant differences between
Aβ-/tau- and other groups in line with the literature. The best SVM classification performance reached an
accuracy of 0.73 by using advanced measures compared to more standard ones. Moreover, the explainability
analysis suggested the results’ stability and the central role of the cingulum to show early sign of AD. By
relying on SVM classification and XAI interpretation of the outcomes, AMURA indices can be considered
viable markers for amyloid and tau pathology.

Clinical impact: This pre-clinical research revealedAMURA indices as viable imagingmarkers for timelyAD
diagnosis by acquiring clinically feasible dMR images, with advantages compared to more invasive methods
employed nowadays.

INDEX TERMS Amiloyd-beta, tau, AMURA, tract-based spatial statistics, eXplainable Artificial
Intelligence.

I. INTRODUCTION

AMYLOID-BETA (Aβ) accumulation and neurofibril-
lary tangles due to phosphorylated tau protein define the

Alzheimer’s disease (AD) molecular pathology [1]. Recent
studies showed that both can occur from a pre-clinical and
asymptomatic condition to the appearance of symptoms
such as mild cognitive impairment (MCI) and diagnosed
dementia [2]. For this reason, markers reflecting these two

targets’ variations in the earliest disease phase are currently
researched to develop potential therapies able to slow or stop
its progression. At present, Aβ and tau can be revealed by
positron emission tomography and cerebrospinal fluid via
lumbar puncture [3]. However, more advantageous methods
are required since these techniques are used at the cost
of radioactive tracers, high spending and invasiveness [3].
Recent pathology studies employing diffusion magnetic
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resonance imaging (dMRI) reported brain microstructural
abnormalities in the earliest phases of AD in both gray (GM)
[4] andwhite matter (WM) [3], [5], [6], [7]. In particular, such
abnormalities can be detected before the appearance of brain
atrophy typically evidenced by classical T1-weighted (T1w)
MRI [4], [5].
The diffusion tensor imaging (DTI) [8] is the most

popular dMRI model used in clinics to quantitatively
measure microstructural brain tissue properties. It was
recently exploited by Chen et al. [3] to characterize WM
differences among Aβ-negative/tau-negative (Aβ−/tau−),
Aβ-positive/tau-negative (Aβ+/tau−), and Aβ-positive/tau-
positive (Aβ+/tau+) cognitively normal controls (CN),
as well as Aβ+/tau+ MCI and AD subjects. They found
widespread WM alterations in the whole AD continuum,
but such a finding occurred especially early and correlated
with tau pathology in the hippocampal cingulum revealing
the potential of dMRI in the early AD detection chal-
lenge. The DTI popularity is mainly due to its simplicity
and feasibility with data acquired in clinical conditions
(i.e., low number of diffusion gradients in addition to
their poor strength and timing). Nevertheless, it assumes
a Gaussian trend of the dMRI signal with the intrinsic
limitation of failing the reconstruction of complex WM
architectural configurations where diffusion is anisotropic
(e.g., fibers’ crossings, kissings, etc.). Recent overcomes
of this limitation are represented by multi-shell dMRI
and new modelling techniques like the Neurite Orientation
Dispersion and Density Imaging (NODDI) [9], though
not standard for clinical purposes. NODDI is a com-
partmental model which assumes that the brain tissue is
divided in isotropic, intracellular diffusion, and extracellular
microstructural compartments. Vogt et al. [6] showed that
the NODDI-derived neurite density index was sensitive to
GM modifications in Aβ+/tau+ CN before the onset of
brain atrophy and cognitive impairment. Spotorno et al. [4]
too demonstrated the higher potential of GM microstructural
alterations in revealing the astrocytic response to Aβ

aggregation compared to macrostructural measurements as
those derived from T1w-MRI. In particular, they relied
on a multi-shell acquisition as in [6], but they employed
the Mean Apparent Propagator (MAP)MRI model [10]
which, differently from NODDI, does not assume any tissue
composition. Indeed, avoiding assumptions on tissue com-
position is preferable especially in disease state because the
underlying biophysical theoretical assumptions at the bases
of the compartmental models probably do not hold in such
conditions. In line with this consideration, Moody et al. [7]
used MAPMRI to detect AD-related early neurodegenerative
changes in WM, finding more spatially diffuse associations
withAβ and tau cerebrospinal fluidmarkers compared toDTI
and NODDI.

In the present study, we further investigated the potential
of dMRI in highlighting WM microstructural alterations in
the earliest phases of AD with the twofold goal of exploiting

typical clinical acquisition protocols while enabling finer
microstructural characterization. To this end, we relied on a
recently proposed method called Apparent Measures Using
Reduced Acquisitions (AMURA) [11], allowing to exploit
single-shell acquisition protocols while maintaining the
descriptive power of MAPMRI indices under certain condi-
tions. AMURA applied to high b-value acquisitions provides
microstructural indices with similar sensitivity compared
to MAPMRI-derived ones [11], hence allowing a highly
specific microstructural characterization at a finer granularity
compared to DTI while bringing DTI-like advantages such
as clinical feasibility, i.e. a reduced number of samples and
low computational complexity. In this preliminary study,
AMURA capability in the characterization of different Aβ

and tau status in the AD continuum was compared with the
classical DTI in exquisitely clinical acquisitions (i.e. low b-
value) allowing to test its suitability also in such a scenario.
Of course, the complete characterization of the method
would require to contrast it with the MAPMRI outcomes
when relaxing the constraint of single-shell acquisitions.
However, this is out of the scope of this contribution which
focuses on classical single-shell acquisitions for which DTI
is the de-facto benchmark. Though the applied method
is not new, in our opinion its application to a hard and
open problem at the state of the art also holding high
translational potential deserves an in-depth analysis, and the
post-hoc assessment of the outcomes would mark a step
in the direction of the neurophysiological plausibility of
the results, and thus on the relevance and usefulness of
the method in the translational perspective highlighting its
ability to capturing actual tissue alterations without being
invasive.

In the context of post-hoc assessments, the application of
eXplainable Artificial Intelligence (XAI) methods is gaining
increasing importance due to the outbreak of AI applied
to the biomedical field in the last years. Indeed, XAI
has the potential of offering a key for the interpretation
and strengthening of the AI-derived results themselves by
bringing to light some aspects of the internal thinking of
complex models, deep networks on the top of the list,
or providing ordered lists of input features leading the
algorithm’s outcomes. Many examples can be found in
the literature [12], [13], though a real awareness of the
intrinsic limitations and related risks of suchmethods is rarely
acknowledged and faced. Otherwise stated, the validation of
theXAImethod ismost often overlooked, that is a serious risk
especially in the biomedical field. In this work, in addition
to employ AI and XAI to assess the early AD classification
when based on different microstructural properties of the
tissue, we faced the validation issue by comparing two
different interpretability methods and through a more simple
framework that is the relying on the prior knowledge derived
from the literature. The last is a qualitative validation of
the outcomes limited to the neurophysiological plausibility.
Other validation strategies like post-hoc association studies
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as well as the analysis of other attributes of XAI methods
are left for future investigation. In particular, in this work
we rely on SHAP [14] and LIME [15] methods, that are
among the most widespread for their conceptual simplicity
and understandability, to derive an ordered list of features,
i.e. brain WM tracts, allowing to discriminate across the
Aβ and tau spectra. To the best of our knowledge, only
one work which specifically investigated the pre-clinical AD
attempted to give an interpretation of the results by exploiting
the XAI. In the mentioned study, Hwang et al. [16] classified
Aβ+ and Aβ- CN with a deep generative model relying
on T1w scans and many other features like demographics
and cognitive scores. They subsequently used the integrated
gradients XAI method to explain their outcomes. Hence, the
main novelty represented by our current investigation consists
of the information used at the basis of the classification.
Indeed, the dMRI targets the microstructural properties of
the tissue instead of the macrostructural ones as the T1w-
MRI does. In this respect, this work constitutes a step forward
in the comprehension of the mechanisms at the basis of
AD, also thanks to the translational power of the XAI that
provides reliable explanations of easy interpretation for the
clinicians.

II. METHODOLOGY
A. MICROSTRUCTURAL BRAIN DESCRIPTION THROUGH
AMURA
AMURA is an innovative method for studying cerebral
microstructure [11]. The innovation is represented by
the capability of computing ensemble average propagator
(EAP)-based indices such as the return to origin/axis/plane
probability (RTOP/RTAP/RTPP) with lower computational
complexity and number of diffusion gradients compared to
current state-of-the-art approaches likeMAPMRI [10]. These
three indices represent the probability that protons do not
move during the dMRI acquisition, thus reflecting barriers’
restriction and consequently cell bodies’ size measures.
In particular, RTAP and RTPP can be considered as the RTOP
projections on the perpendicular plan and parallel direction
to the maximum diffusion. The simpler computation with
AMURA is possible because it treats the diffusion anisotropy
as independent on the b-value (i.e., the factor indicating the
acquisition diffusion gradients’ strength and timing). Given
b = q2τ , the normalised signal E(q) in the q-space can be
formalized as:

E(q) = E(q0, θ, φ) = exp
(
−4π2τq20D(θ, φ)

)
, (1)

where q = qu (u ∈ S is a unit direction in space,
and ||u|| = 1), q0 = ||q||, θ and φ are the angular
coordinates in the spherical system, τ is the diffusion time,
and D(θ, φ) is the apparent diffusion coefficient (ADC) on
a single-shell acquisition [17]. In light of the assumptions
described above, a numerical implementation of the indices
based on spherical harmonics (SH) expansions has been

TABLE 1. Demographic summary of the study cohort.

proposed in [11]:

RTOPAMURA =
1

(4π )2τ 3/2
C0,0{D(θ, φ)−3/2

}, (2)

RTAPAMURA =
1

8π2τ
G
{

1
D(θ ′)

}
(r0), (3)

RTPPAMURA =
1

√
4πτ

1
√
DSH (r0)

. (4)

C0,0{D(θ, φ)−3/2
} is the 0th order coefficient of the SH

series expansion, G
{

1
D(θ ′)

}
(r0) is the Funk-Radon transform

of the inverse of the diffusion signal D(θ ′), i.e. the diffu-
sion signal at the equator normal to r0 (the direction of
maximum diffusion), parameterized by the angle θ ′, and
DSH (r0) is the SH regularized version of the ADC evaluated
at r0.

B. DATASET
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and
early AD. Images were collected from different centers with
scanners from GE, Philips, and Siemens vendors. Please
refer to https://adni.loni.usc.edu/ for up-to-date information.
442 subjects being CN or MCI were selected from the
ADNI phase 3 (ADNI3) database. Although both basic and
advanced dMRI acquisitions were performed in this phase of
the study consisting of single or multiple shells acquisitions,
only single-shell ones were considered for the current
study [18].

For each subject, the 3D T1w-MRI volume (sagittal
accelerated MPRAGE, TR/TE = shortest, TI = 900 ms,
FOV = 208 × 240 × 256 mm3, flip angle = 9◦, resolution =

1 × 1 × 1 mm3) and the single-shell dMR image (acquisition
through 3T MRI scanner, TR/TE = 7200/56 ms, FOV = 232
× 232 × 160 mm3, resolution = 2 × 2 × 2 mm3, b = 0 and
1000 s/mm2, diffusion time τ = 38.7 ms) were collected
along with concentration values of Aβ and tau protein in the
cerebrospinal fluid. These concentration values were used to
stratify the cohort into 3 classes. In particular, subjects were
classified as Aβ+ if [Aβ-protein] ≤ 980 pg/mL, and tau+ if
[tau-protein] ≥ 24 pg/mL (see Table 1).
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C. PREPROCESSING
A minimal preprocessing including the bias-field correction
and the linear registration to the 2-mmMNI spacewas applied
to T1w images by employing the fsl_anat tool (FSL, version
6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) [19].

The dMRI data were preprocessed by extracting the
brain and performing Eddy currents correction still using
FSL [20]. Subsequently, data were denoised using the
Python dipy library (https://dipy.org/) to apply a principal
component analysis (PCA)-based denoising algorithm with
automatic PCs classification grounding on the Marcenko-
Pastur distribution [21] (the radius of the 3D sliding window
was set equal to 2). The b0 volumes were averaged and
registered to the T1w image of the subject through the
epi_reg routine in FSL [22], and then linearly registered
to the MNI space by applying the transformation obtained
through fsl_anat. The same linear transformations applied to
the average b0 were also applied to all the other volumes
of the dMR image, and the result obtained was further
non-linearly registered to the MNI space through ANTs
software (http://stnava.github.io/ANTs/) [23] to correct for
EPI-induced currents [24]. The dMRI gradients’ direction
was rotated accordingly.

D. MICROSTRUCTURAL INDICES EXTRACTION
RTOP/RTAP/RTPPAMURA microstructural descriptors were
derived following the numerical implementation described in
Section II-A. A SH spherical order of 6 and a cost parameter
for the Laplace-Beltrami regularization of λLB = 0.001 were
selected for the computations. In addition, relying on the dipy
library, the diffusion tensor model [8] was used to obtain DTI-
based versions of RTOP/RTAP/RTPP as follows [11]:

RTOPDTI =
1√

(4πτ )3
(λ1 · λ2 · λ3)−1/2, (5)

RTAPDTI =
1√

(4πτ )2
(λ2 · λ3)−1/2, (6)

RTPPDTI =
1

√
(4πτ )

(λ1)−1/2. (7)

Specifically, λi is the ith eigenvalue of the diffusion tensor.
Standard Mean Diffusivity (MD) and Fractional Anisotropy
(FA) microstructural descriptors were also derived [8].

E. TRACT-BASED SPATIAL STATISTICS
The tract-based spatial statistics (TBSS) pipeline from FSL
was performed on the aforementioned FA images. More
in detail, all images were registered to the FA image of
the JHU DTI-based WM atlas [25] through a non-linear
transformation, and the resulting WM skeleton was obtained
using a threshold of 0.2 on the calculated average volume.
The same obtained registrations were subsequently applied
to the images of all microstructural indices. The pipeline
ended with a two-sample unpaired t-test performed through
the FSL tool randomise [26]. Both contrasts (CN > patients,
and patients > CN) were investigated for each index by

comparing Aβ−/tau− with Aβ+/tau−, and Aβ−/tau− with
Aβ+/tau+. For each test, the number of permutations
performed was 1000. Images representing the threshold-free
cluster enhanced p-value corrected for multiple comparisons
across space were obtained.

F. SUPPORT VECTOR MACHINE-BASED CLASSIFICATION
Aβ−/tau− with Aβ+/tau−, and Aβ−/tau− with Aβ+/tau+
were further investigated by performing their classifica-
tions through Support Vector Machines (SVMs) relying
on Scikit-Learn library (https://scikit-learn.org/stable/) in
Python. SVMs are notoriously able to perform classification
tasks in a very versatile way (e.g., linearly or not linearly)
[27], and they are commonly used for biomedical applications
with good performance [28], [29]. Besides, a deep learning
strategy was not affordable in this work because of the limited
number of subjects available.

Considering only voxels belonging to theWMskeleton, for
all subjects, the average value of each index was extracted
from 48 Regions of Interest (ROIs) (i.e., WM tracts) based
on the JHU DTI-based WM atlas previously introduced [25].
Thus, for each of the two classification tasks, we trained and
validated 8 SVMs (one per microstructural index), each one
based on a different initial data matrix of dimensions N ×

48. N was the total number of subjects depending on the two
classes of the classification task to handle, while 48 was the
number of WM tracts.

The optimal hyperparameters were found through an
exhaustive search performed with a cross-validation strategy
over all possible kernels and [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1, 10, 20] regularization parameters C , resulting
in the linear kernel andC = 0.4. The final classification tasks
were carried out with a stratified 10-folds cross-validation,
and the performance was assessed by calculating the mean
accuracy, precision, sensitivity and specificity over the folds.
Due to the limited cohort numerosity, we did not retain also
a test set in addition to those used for training and validating
the model.

G. EXPLAINABLE ARTIFICIAL INTELLIGENCE ANALYSIS
SHAP and LIME were used for identifying the features
that contributed most to the SVM outcome. To this end,
we focused on the classification task generally obtaining
the best performance based on validation accuracy in order
to maximise the generalizability, reliability and robustness
of the results [30]. Indeed, poor classification performance
would be an indication of the difficulty of the model in
discriminating the classes relying on the available features,
casting shadows on the actual relevance of the SHAP/LIME
attribution values.

Given the lack of an independent test set, for each
microstructural index, the fold obtaining the best accuracy
among the ten was selected in order to maximize both
predictive and descriptive accuracy [30]. The former is
the classifier’s accuracy, while the latter is the objective
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FIGURE 1. Microstructural maps of values of one representative subject for Aβ−/tau−, Aβ+/tau−, and Aβ+/tau+ groups (rows), respectively. The
representative axial slices reported are in MNI space and are displayed in radiological convention. RTOP = return to the origin probability; RTAP =

return to the axis probability; RTPP = return to the plane probability; MD = mean diffusivity; FA = fractional anisotropy.

capability of the interpretability method to capture the
relationships learned by the classifier itself. Both predictive
and descriptive accuracies should be high to obtain a
trustworthy explanation, but the former constrains the latter.
For this reason such a selectionwas done as in [31], [32], [33],
and [34]. Thus, the SHAP and LIME values indicating the
relevance of each feature to the classification of every subject
in the validation set were calculated.

1) SHAPLEY ADDITIVE EXPLANATIONS
SHapley Additive exPlanation (SHAP) [14] is a model-
agnostic and perturbation-based method for estimating the
input feature importance. Basically, it is a method from
coalitional game theory where a prediction is explained by
assuming that each feature is a ‘‘player’’ in a game where
the prediction is the payout. The SHAP value of a feature is
calculated as the average marginal contribution of that feature
across all possible coalitions. Calculating Shapley feature
importance values thus becomes computationally expensive
for complex models and high number of features. However,
this is not the case for the problem at hand where both the
number of features and data samples (subjects) is limited.
SHAP has demonstrated its efficacy in the medical domain to
explain clinical decision-making both from image [35], [36],
[37] and non-image [38], [39], [40], [41] inputs.
In this work, the SHAP library (https://github.com/shap/

shap) in Python was used with a kernel explainer using a
weighted linear regression to compute the importance of each

feature. For each index and feature, the mean SHAP value
over the validation set was derived.

2) LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS
The Local Interpretable Model-agnostic Explanations
(LIME) [15] is a model-agnostic method based on pertur-
bation like SHAP, with the main difference of focusing
on explaining individual predictions instead of providing a
global interpretation based on the whole dataset. Given an
individual prediction, the approach starts with the creation of
a fictitious dataset produced by perturbing the corresponding
input features within a proximity usually defined by an
exponential kernel based on the Euclidian distance. The local
fidelity is ensured by assigning to each new data point a
weight that is the higher the closer it is to the original one.
The artificial dataset is thus used to train an interpretable
surrogate simple model like the linear regression instead
of the original complex one. With reference to the linear
model, the relevance of each feature on the initial individual
prediction is thus defined by the coefficients found by solving
the fitting. Together with SHAP, LIME is the most commonly
used method to evaluate the impact of every single feature to
a AI-derived result [42]. In this work, we used the Python
implementation of LIME (https://github.com/marcotcr/lime)
for tabular data. The surrogate model chosen was the linear
regression. Despite the local nature of LIME, a global
explanation for each index was provided by finding the
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LIME values for each subject of the validation set and thus
calculating the average across all of them [43].

III. RESULTS
A. QUALITATIVE ASSESSMENT
The maps for each dMRI index for a representative subject of
each group (i.e., Aβ−/tau−, Aβ+/tau−, and Aβ+/tau+) are
shown in Fig. 1. The cubic-root of RTOP, and the square-root
of RTAP were calculated and reported to easily compare the
three restriction indices (i.e., RTOP, RTAP, and RTPP).

As expected, RTOP/RTAP/RTPPAMURA/DTI had similar
contrast to FA, appearing hyperintense in regions where
diffusion takes place preferentially along a single direction
(e.g., corpus callosum). MD showed an opposite trend,
reaching the highest values where diffusion is unrestricted.
No evident differences across groups could be appreciated by
qualitative assessment.

B. TBSS ANALYSIS
The TBSS analysis results are shown in Fig. 2. The
significant voxels for each of the considered indices are
overlaid to the JHU-FA atlas. Results unveiled widespread
statistically significant differences corrected for multiple
comparisons (p-value ≤ 0.05) between Aβ-/tau- and both
Aβ+/tau− and Aβ+/tau+ groups for all indices. More
in detail, RTOP/RTAP/RTPPAMURA/DTI and FA exhibited
these significant differences only in the contrast Aβ-/tau-
> Aβ+/tau− or Aβ+/tau+, while MD index displayed
significance only in the opposite contrast.

C. SVM CLASSIFICATION PERFORMANCE
The SVMs performance is illustrated in Fig. 3, showcasing
the mean and standard deviation of the measurements across
the ten folds. The most challenging task involved discrim-
inating Aβ−/tau− from Aβ+/tau− subjects. MD emerged
as the best feature for distinguishing between these two
classes, even though with a performance similar to that
showed by AMURA and DTI. In particular, it resulted in an
accuracy of 0.619. In this classification, the least effective
performance was observed in the FA-based classification
(accuracy = 0.534). As anticipated, superior results were
achieved in the Aβ−/tau− and Aβ+/tau+ condition. Specif-
ically, RTOPDTI outperformed others, with an accuracy of
0.729, closely followed by RTAPAMURA with an accuracy of
0.694. RTPPAMURA demonstrated the poorest performance
(accuracy = 0.618). In both cases, the model was affected
by a tendency toward imbalanced classification, sometimes
labeling Aβ+/tau+ or Aβ+/tau- as Aβ-/tau-. This behavior
is emphasized by the high specificity and relatively low
sensitivity observed across the ten folds.

D. XAI-BASED POST-HOC ASSESSMENT
Fig. 4 represents, for each dMRI index, the top five features
found by SHAP and LIME mostly contributing to the
classification task that reached the best performance (i.e.,

Aβ−/tau− versus Aβ+/tau+). As evident, the findings from
both the XAI methods are in agreement because at least
four among the top five most impactful features are the
same across the two approaches for each dMRI index. Only
the sorting can vary slightly, and anyway it is preserved
for the top two features except for RTPP. Of note, the left
cingulum connecting hippocampus appeared as the most
important WM tract to consider for distinguishing subjects
with amyloid/tau positivity from negative ones. Indeed, in this
WM tract, all microstructural indices except RTPP (in both
AMURA and DTI versions) showed the highest SHAP
value reflecting such a relevance. Instead, the discrepancy
with RTPP was in agreement with its derived classification
performance, which emerged as the worst. In addition, more
generally, respectively RTOP, RTAP, and RTPP, demonstrated
a high correspondence between the AMURA and DTI
versions, often highlighting the same WM tracts with similar
SHAP and LIME values.

IV. DISCUSSION
In this study, for the first time, we revealed the potential of
RTOP/RTAP/RTPPAMURA as imaging markers for early AD
detection by exploiting their WM characterization in subjects
with amyloid and possibly tau pathology compared to subject
without such a pathology. From a medical point of view, this
could represent a further step toward a possible screening at a
pre-clinical level without the need of more invasive methods.
Pursuing this aim, we took advantage of both classical
statistical (i.e., TBSS) and machine learning techniques (i.e.,
SVMs), using the well-established DTI-based indices as
benchmark. Moreover, the SHAP and LIME XAI methods
were employed to identify the features most contributing
to the SVMs outcomes, enabling the translational value of
the present work and identifying the cingulum WM tract as
possible target for future clinical research trials. The usage
of the two different XAI approaches served for comparing
the outcomes and thus testing their reliability. However, the
results were additionally critically analysed with respect to
the literature to assess their plausibility.

Classical statistical analysis performed through TBSS
further suggested the dMRI derived indices as possible
imaging markers of microstructural degeneration from the
earliest phases of AD. Indeed, widespread statistically
significant differences between Aβ-/tau- and Aβ+/tau- or
Aβ+/tau+ surviving the correction for multiple comparisons
were found. In addition, the contrast of such significance
evidenced a lower anisotropy and restriction along with a
higher diffusivity in Aβ+/tau- or Aβ+/tau+ compared to Aβ-
/tau-, compatible with a clinical picture of neurodegeneration
and inline with literature [5].
In this study, alongside statistical analysis at the population

level, we used AI to diagnose the pathology at the subject
level. The Aβ/tau detection task is particularly complex
because the mechanisms that lead to the development of
AD are still unknown. Despite this, we anyway chose to
use a relatively simple machine learning model, focusing
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FIGURE 2. Tract-based Spatial Statistics (TBSS) results. The significant differences for both the contrasts Aβ−/tau− versus Aβ+/tau+ and Aβ−/tau−

versus Aβ+/tau− are shown for the eight diffusion indices (columns). Significant voxels are superimposed on the FA image of the JHU DTI-based WM
atlas. Red-yellow and blue-lightblue colormaps indicate statistically significant clusters corrected for multiple comparisons in the CN > patients and
CN < patients contrasts, respectively (significant p-value = 0.05).

instead on the type of information used for classification
(i.e., microstructural information). Indeed, the centrality of
the role played by the goodness of the chosen features was
made evident by the fact that even with a less complex model
than the deep generative one used in [16] (i.e., HexaGAN),
our SVMs were able to achieve a similar performance to that
obtained byHwang et al. when based on T1w-MRI alone (i.e.,
macrostructural information). Hwang and colleagues [16]
were able to achieve a superior performance only at the cost
of more input data than just the images.

SVM results interestingly revealed MD as the index
leading to the highest accuracy when used to distinguish
Aβ−/tau− versus Aβ+/tau− subjects, suggesting it as
possible imaging marker of Aβ irrespectively from the tau
concentration.

Of note, a similar finding, although in gray matter (GM),
was reported also by Spotorno et al. [4] employing the
MAPMRI-derived mean squared displacement (MSD) index
in GM. The MSD can be considered as the Ensemle
Average Propagator (EAP)-based version of MD since
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FIGURE 3. Mean accuracy, precision, sensitivity, and specificity, along with the relative standard deviation, across the 10 folds of the
cross-validation step.

FIGURE 4. Mean SHAP (top) and LIME (bottom) value over the validation set for each feature and index-derived SVM classification; Abbreviations: left
cingulum connecting the cingulate gyrus (CG (cg) L), left/right cingulum connecting the hippocampus (CG (hi) L/R), right external capsule (EC R),
column and body of fornix (FX), genu of corpus callosum (GCC), right inferior cerebellar peduncle (ICP R), left medial lemniscus (ML L), right posterior
corona radiata (PCR R), right posterior thalamic radiation including optic radiation (PTR R), left/right retrolenticular part of internal capsule (RIC L/R),
splenium of corpus callosum (SCC), right superior cerebellar peduncle (SCP R), left/right superior corona radiata (SCR L/R), left superior
fronto-occipital fasciculus that could be a part of anterior internal capsule (SFF (aic) L), right superior longitudinal fasciculus (SLF R), left tapetum (TP
L), right anterior corona radiata (ACR R), right anterior limb of internal capsule (AIC R), left inferior cerebellar peduncle (ICP L).

both represent the average amount of diffusion in the
unit time and, consequently, holds sensitivity to a lower
or higher restriction [4], [44]. In [4], such a measure
in GM was found to be correlated with many other
markers of amyloid and tau pathology, but in particular the
association with Aβ-PET and glial fibrillary acidic protein
suggested its relationship to the astrocytic response to Aβ

aggregation.

However, in the present study, MD-related mean accuracy
was lower compared to that of other indices in the classifi-
cation of Aβ−/tau− versus Aβ+/tau+ subjects (accuracy =
0.685). More specifically, RTOPDTI and RTAPAMURA appear
to be superior in performance, although not at the level of
statistical significance, suggesting their sensitivity to the tau
pathology onset (accuracy = 0.729 and 0.694, respectively).
Also Chen et al. [3] observed that alteredWM, as highlighted
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by their results using FA and MD, may reflect tau presence.
In addition, they found a correlation with tau but not with Aβ

presence enforcing that finding. The present study provides
additional evidence to such a hypothesis. All these findings
witness in favor of designating indices like RTAPAMURA as
possible better marker compared to the more standard FA
and MD, inline with other results from Moody et al. [7],
though these were obtained relying on MAPMRI on a multi-
shell acquisition at higher b-values. Hence, according to
our results, AMURA allows capturing fine microstructural
modulations with a sensitivity comparable to MAPMRI but
with data acquisitions requiring a lower number of samples.

In this study, XAI aided the decription of the SVM
results, demonstrating one time more its important role
when artificial intelligence is applied to medicine. Several
works already showed the need of this tool, especially
in pathology [45]. In the present work, the employment
of XAI enabled the discovery of the cingulum WM tract
as the most relevant to possibly detect early AD stage
subjects. The validation of such a finding consists of its
recovery as top feature through both SHAP and LIME,
despite the substantial different principles at the basis of
the two methods. In particular, by showing that different
XAI methods led to the same interpretation of the results,
we provided evidence of the stability of the explanations for
eachmicrostructural index. On the other hand, the importance
of the features also depends on the ML model because of the
peculiar assumptions at the basis of the model (e.g., linear
relationships rather than others), algorithmic constraints (e.g.,
presence or absence of regularizations), etc. By studying
the explanation that would be obtained by using a ML
model different from SVM, it would be defined its so-called
consistency [46]. Nevertheless, as alsoMolnar [46] observed,
such an explanation property is controversial. Indeed, even
though the algorithmic independence would reflect the
robustness of the ranking and should be reached in ideal
conditions, a direct comparison of the explanations across
models should take into account the model’s complexity
with respect to the numerosity of the samples, the impact of
the different architectures, the sensitivity to noise and other
factors affecting the performance in real conditions when the
data is limited and noisy. For this reason, other architectures
will be considered in future works while this work aimed at
providing a framework ending in the explanation of the most
immediate understanding for health and medicine screening
applications.

In such a context, we further confirmed the impact of
the cingulum by looking for studies in literature which
emphasized its role. Microstructural alterations in this tract
were found in MCI and individuals at genetic risk or family
predisposition for AD [5]. It was also found significantly
altered when specifically investigated in subjects with
pathological levels of tau presence compared to CN [47].
Very recently, also Chen et al. [3] reported the central role of
the cingulum tract when investigating tau pathology. More in
detail, in addition to microstructural alterations, they found a

significant correlation of these changes with tau burden in the
AD continuum. Interestingly, the cingulum is one of the WM
tracts most implicated in episodic memory function, that is
known to be tipycally impaired in AD. This can be considered
as an added form of validation of SHAP and LIME outcomes
through literature-based plausibility assessment.

Future works will include other objective assessment
methods such as association studies and analyses of the
impact of features collinearity. The former are intended to
characterize the biological differences in terms of microstruc-
ture as depicted by FA, MD, etc. and other terms like
functional connectivity; emerging studies in this direction
are [32] and [34]. The latter, instead, are aimed at addressing
the possible bias on the models’ performance due to the
collinearity potentially present in datasets with a high number
of features; for example, there exist methods specifically
tailored for SHAP [48], [49] or proxies like the modified
informative position and the normalized movement ratio
formalized by Salih et al. [50], [51] that can be used to
quantify the robustness of the feature importance provided
by XAI methods with sensitivity with respect to the presence
of collinearity.

Concerning the investigation of AMURA model’s poten-
tial, the trend’s proximity of its derived indices to their
DTI counterparts confirmed the robustness of their charac-
terization also in amyloid/tau pathological tissue. However,
additional investigations using data acquired with higher b-
value but still clinically feasible number of samples would
be required to fully exploit this model. The expectation
is to derive indices better approximating those based on
the EAP (e.g., MAPMRI-like) with well-known greater
sensitivity compared to the ones based on DTI [11].
Moreover, following [17], a future work could include other
AMURA indices like the moment-based representations of
the diffusion process in brain tissues.

V. CONCLUSION
This study investigated for the first time AMURA in
the characterization of amyloid and tau pathology in AD,
revealing their potential as imaging markers for a timely
diagnosis relying on SVM classification and XAI-based
interpretation of the outcomes. In a translational perspective,
findings highly suggest for future clinical works focusing
on cingulumWM tract analysed through non-invasive dMRI
data acquired with high b-value but still reduced protocol as
enabled by AMURA.
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