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Abstract

At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million 

symptomatic cases and ~60,000 fatalities. Hepatitis E is generally self-limiting with a case 

fatality rate of 0.5–3% in young adults. However it can cause up to 30% mortality in pregnant 

women in the third trimester, and can become chronic in immunocompromised individuals 

such as those receiving organ transplants or chemotherapy and individuals with HIV infection. 

HEV is transmitted primarily via the faecal–oral route, and was previously thought to be a 

public health concern only in developing countries. It is now also being frequently reported in 

industrialized countries, where it is transmitted zoonotically, or through organ transplantation or 

blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. 

Additionally, no effective, non-teratogenic and specific treatments against HEV infections are 

currently available. Although progress has been made in characterizing HEV biology, the scarcity 

of adequate experimental platforms has hampered further research. In this review, we focus on 

providing an update on the HEV lifecycle. We will further discuss existing cell culture and animal 

models and highlight platforms that have proven to be useful and/or are emerging for studying 

other hepatotropic (viral) pathogens.

In the late 1970s, a large-scale waterborne epidemic of hepatitis spread through 200 villages 

in the Kashmir Valley of India, causing 52,000 cases of icteric disease and 1,700 deaths1. 

Although the patients’ clinical symptoms resembled hepatitis A, they were seronegative for 

both hepatitis A virus (HAV) and HBV. This finding led to the proposed existence of a new 

“enteric non-A non-B hepatitis” (ENANBH)2,3. A few years later in 1983, similar symptoms 

were noticed in an outbreak at a Soviet military camp in Afghanistan. A volunteer ingested 

pooled stool extracts from nine affected patients, and developed the typical signs and 

symptoms of acute hepatitis. This finding established that the virus could be transmitted via 

the faecal–oral route and led to the identification of 27–30 nm spherical virus-like particles 
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in the patient’s stool that produced hepatitis when inoculated in cynomolgus monkeys4. The 

first partial cDNA of ENANBH was cloned and sequenced in 1990, and ENANBH was 

renamed ‘hepatitis E virus’ (HEV) the same year5. HEV, an RNA virus, is now recognized 

as a global health problem in both developing and industrialized regions including South 

and East Asia, East Africa, Mexico, Western Europe and the USA6–24. In this Review, we 

provide a summary of current knowledge on HEV, highlight cell culture and animal models 

that have advanced our understanding of the virus, and discuss areas in which the existing 

models can be improved.

Epidemiology

The global burden of hepatitis E is high; every year there are an estimated 20 million 

events of HEV infection, 3.3 million symptomatic cases, and 60,000 deaths attributed 

to HEV genotypes 1 and 224,25. Genotypes 1 and 2 are limited to humans and mostly 

affect developing countries, where the virus is transmitted through faecally contaminated 

drinking water1. HEV accounts for 50% of acute hepatitis cases in India, and has caused 

17 reported large-scale epidemics in Africa between 1988 and 2013 18–20,26–39. Although 

large outbreaks of HEV are limited to developing countries, an increasing number of 

autochthonous cases are being identified in the developed world, where the prevalent 

HEV strains are genotypes 3 and 440. In developed nations, the primary routes of HEV 

transmission are zoonotic (for example, consumption of undercooked pork) and blood 

transfusions or organ transplants from infected donors 41–44. HEV is estimated to have a 

6% seroprevalence rate in the USA, with higher prevalence in many European countries: 

for example, in southern France, HEV seroprevalence is 39.1% among blood donors on 

average, but ranges 21.9–71.3% depending on the geographical area40,45. HEV prevalence 

is probably underestimated as many practitioners do not routinely test for HEV in the 

presence of acute hepatitis symptoms, and seroprevalence studies have used serological 

assays with low sensitivity46,47. The assays used to detect anti-HEV IgG concentrations 

in serum or plasma vary considerably in sensitivity and are not standardized, complicating 

the interpretation of available seroprevalence data48. In Europe, awareness of HEV has 

been increasing over the past 10 years – studies by bloodbank centers in Denmark, France, 

Germany, Ireland, Netherlands, Spain, and the UK have found that 0.02–0.14% of blood 

donations are positive for HEV RNA49–54. Currently, blood transfusions are routinely 

screened for HEV RNA in Ireland and the UK, and the Netherlands have started screening 

blood transfusions in 201755. Selective screening occurs in France and Germany for high-

risk patients, and blood authorities in Greece, Portugal, Spain, and Italy are currently 

evaluating whether to implement HEV screening55. In the United States, only 0.002% of 

plasma donations were shown to be positive for HEV RNA, suggesting that screening 

plasma-derived products in the US may not be necessary given the poor utility and low 

number of donors with positive for HEV RNA56.

HEV classification and transmission

The HEV strains affecting humans are classified into genotypes 1, 2, 3, 4, and most recently 

7, and fall under the species Orthohepevirus A (Figure 1) 57. Outside of Orthohepevirus A, 

there are several species of HEV that infect animals but are not transmissible to humans: 
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Orthohepevirus B (chicken), Orthohepevirus C (rat, ferret), Orthohepevirus D (bat), and the 

genus Piscihepevirus A (trout)57. HEV genotypes 1 and 2 of Orthohepevirus A are restricted 

to humans, primarily water-borne and associated with epidemics and sporadic cases in 

developing countries. Infections with HEV genotypes 1 and 2 are generally self-limiting 

and not associated with chronic disease, and are endemic to resource-poor regions in many 

countries in Asia, Africa and Latin America58. By contrast, HEV genotypes 3, 4 and 7 of 

Orthohepevirus A are primarily zoonotically transmitted through the consumption of animal 

products, and are associated with sporadic or cluster cases of hepatitis in industrialized 

countries59. Chronic cases of hepatitis E caused by infections with HEV genotypes 3, 4 

and 7 have been reported in immunocompromised individuals, such as organ transplant 

recipients and individuals infected with HIV40,60. Although HEV infects a broad range of 

species including bats, ferrets, rabbits and chicken, the primary species that are considered 

reservoirs for transmission to humans are swine, deer and wild boar61. Of these, swine are 

arguably the biggest reservoir of infection and mostly likely source of zoonotic infections, 

with HEV RNA detected in 73% of swine farms in Sweden (based on measurements of 

swine faeces), 47% of swine herds in Spain (based on detection of HEV RNA in swine 

sera), and 24% of pig farms in France (based on presence of HEV RNA in swine liver)62–64. 

Infection in swine is subclinical, causing only mild hepatic lesions, and therefore swine 

are not routinely tested for HEV infection65. Studies measuring the presence of HEV RNA 

in commercial pork-based food products detected genotype 3 RNA in 47% of pork pâtés 

(Canada), 22% of pork liver sausages (Germany), and 30% of figatelli (French/Corsican 

liver sausage) samples (France)66–68. HEV can be inactivated by heating at 71°C for 20 

min, therefore transmission primarily occurs through the consumption of undercooked food 

products69. HEV genotypes 7 and 8 infect dromedary and Bactrian camels, and there is 

some limited evidence of genotype 7 transmission to humans from the consumption of 

camel milk and meat70–72. Additional zoonotic hosts have been reported, including moose, 

rat, ferret, wild boar and dolphin, where it is unknown whether the corresponding HEV 

strains are transmissible to humans57. Little is known about the mechanisms underlying the 

host ranges of the various HEV genotypes.

Clinical manifestations

Hepatitis E most commonly manifests as self-limited acute hepatitis, causing symptoms 

of anorexia, nausea, vomiting, malaise, abdominal pain and jaundice typically lasting ≤1 

month. HEV infection is clinically indistinguishable from HAV infection, and is associated 

with a 1–2% mortality in immunocompetent patients24. A poorly understood clinical 

consequence of HEV is its severe effect in pregnant women, in which HEV infection can 

cause acute liver failure, haemorrhage and stillbirth, and result in up to 25% mortality in 

the third trimester73–75. The mechanisms underlying increased HEV virulence in pregnant 

women are unknown, but could be related to hormonal and/or immunological changes 

during pregnancy75. Acute infection has also been associated with high mortality among 

children under 2 years of age, and is more severe among patients with pre-existing liver 

disease39,76. HEV genotypes 3, 4 and 7 can become chronic in immunocompromised 

patients, such as organ transplant recipients and individuals infected with HIV73,77–79. 

These patients are at higher risk of developing chronic infection and rapid progression to 
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cirrhosis60,80,81. Notably, evidence has emerged that commonly used immunosuppressive 

drugs such as tacrolimus can increase the risk of developing chronic HEV in solid organ 

transplant (SOT) recipients82. For example, it has been reported that the odds ratio of 

developing chronic HEV when using tacrolimus is 1.87 (CI: 1.49–1.97, p<0.004) as 

compared to when using cyclosporine A for immunosuppression82. Additionally, SOT 

recipients who were seropositive at the time of transplantation can become reinfected upon 

taking immunosuppressive therapy, and the infection can progress to chronicity83. A recent 

case study reported on a patient presenting with primary hepatocellular carcinoma (HCC) 

who was positive for HEV but not other chronic hepatitis viruses including HBV and HCV, 

which are commonly associated with HCC84. While these data do not prove any causal 

relationship, they may warrant further analysis on whether persistent HEV can culminate in 

HCC.

HEV primarily replicates in the liver but it has been associated with a 

number of extrahepatic symptoms. Correlations have been found between HEV 

and pancreatitis, neurological symptoms (most commonly neuralgic amyotrophy and 

Guillain–Barré syndrome), haematological disorders (including severe thrombocytopenia), 

glomerulonephritis and mixed cryoglobulinaemia, and cutaneous T cell lymphoproliferative 

disorders85–90. Direct causation between HEV and neurological symptoms remains to 

be proven, but 12 cases have been reported in which HEV RNA was detected in the 

cerebrospinal fluid of patients demonstrating neurological symptoms such as Guillain-Barre 

syndrome and neuralgic amyotrophy, and HEV has additionally been shown to replicate 

in neurons in vitro79,88,91,92. HEV has also been shown to replicate in intestine, lymph 

nodes, spleen and kidney in a swine model93. These findings reveal that hepatitis E is 

a complex disease whose pathogenesis and clinical progression needs to be characterized 

more thoroughly.

Treatment

There is currently no direct-acting treatment for HEV infection, and it remains a major 

public health concern particularly among immunocompromised patients and pregnant 

women. If possible, in transplant recipients or other immunocompromised patients, 

reduction of immune suppression is attempted first, which results in a sustained virologic 

response in 30% of patients (defined as undetectable HEV RNA in serum for 4 

weeks)60,82,94. The current treatment of choice for HEV infection in chronically infected 

patients is monotherapy with the nucleoside analogue ribavirin; however, ribavirin is 

specifically contraindicated in pregnant women, who disproportionately have adverse 

effects as a result of HEV infection95. No established treatment for HEV is available 

for pregnant women, so only supportive care is provided (also known as symptomatic 

treatment), resulting in up to 30% maternal mortality associated with fulminant hepatic 

failure, spontaneous abortion and stillbirth96. Additionally, ribavirin-resistant HEV strains; 

for example, a genotype 3 HEV strain with a mutation in the C-terminal of the viral 

polymerase (encoding the G1634A protein variant) are being reported with increasing 

frequency in nonpregnant, chronically infected patients97. Some mutations that have been 

associated with ribavirin treatment failure clinically – such as the G1634R and Y1320H 

variants – have not resulted in ribavirin sensitivity in vitro, but have led to increased 
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viral replication97,98. Alternative treatments for ribavirin failures, which include pegylated 

interferon, have met with limited success and have not been systematically evaluated99–101. 

Finally, preliminary studies suggest that sofosbuvir, an HCV-specific direct-acting antiviral 

agent, inhibits replication of genotype 3 HEV in vitro; however, this finding remains to 

be independently and clinically verified102,103. Ultimately, there is a great need for novel 

therapies against HEV97,98,104,105.

Prevention efforts have focused on sanitation, as the primary route of HEV transmission 

worldwide is contaminated water, and on vaccination. Hecolin (Innovax, China), a protein-

based HEV vaccine eliciting anti-capsid antibodies and inducing a vigorous T cell response, 

is the only option for vaccination but is currently only licensed in China106–108. A second 

protein-based vaccine, rHEV, also contains amino acids from the capsid protein (ORF2) and 

was tested in phase II clinical trials but despite good safety and efficacy profile was not 

further developed due to the cost of clinical trials and development 109,110. Vaccine efficacy 

for Hecolin was shown to be 100% against genotype 1 HEV after three doses in a phase III 

trial in China, and cross-protects against genotype 4111. Notably, Hecolin has not been tested 

in pregnant women, but immunogenicity has been confirmed in pregnant mice111,112. More 

studies are needed to confirm whether Hecolin is effective against other genotypes including 

genotype 3, and to evaluate its efficacy in pregnant women and also to test efficacy in other 

patient populations beyond China.

An HEV vaccine holds great promise for preventing disease among residents and travellers 

to endemic regions such as Southeast Asia, and for reducing the alarming HEV-associated 

mortality in pregnant women. However, the vaccine will need to be made available outside 

of China, a move that is hindered by HEV not being on the WHO’s prequalification vaccine 

priority list113. Furthermore, distribution of the vaccine in high-endemicity regions, where 

health care access is often limited, will be an obstacle. Still, the vaccine holds potential to 

benefit high-risk patients in developed nations as well, such as SOT recipients who could be 

administered the vaccine as a preventative measure. Ultimately, widespread distribution of 

the HEV vaccine will most likely depend on public and private sector partnerships.

The molecular virology of HEV

The HEV virion is icosahedral in shape and measures 27–32nm in diameter. The capsid 

consists of a single, self-assembling protein whose crystal structure has previously been 

elucidated114. HEV was declared to be a ‘quasi-enveloped’ virus in 2016, existing in both 

non-enveloped and enveloped (‘eHEV’) forms, similar to HAV115. HEV is shed in faeces 

as a non-enveloped virus, but HEV produced in cell culture contains a lipid envelope116. 

The quasi-enveloped nature of HEV affords protection from neutralizing antibodies against 

the ORF2 and ORF3 proteins in the ‘eHEV’ form; however, attachment and entry of 

eHEV particles is far less efficient than that of non-enveloped HEV particles117–119. Non-

enveloped HEV and eHEV are believed to have distinct cellular entry mechanisms, and 

further studies are required to characterize these processes117.

The HEV virion contains a positive-sense, single-stranded RNA genome of ~7.2kB in 

length, and is classified in the Hepeviridae family. The viral genome is organized into 
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three open reading frames (ORFs 1–3), and contains three short untranslated regions 

(UTRs)120,121. A fourth open reading frame (ORF4) has been described only in HEV 

genotype 1, and is translated into a protein that enhances activity of the RNA-dependent 

RNA polymerase (RdRp)122 (Figure 2). ORF1 is the largest viral gene product of HEV, 

and encodes the non-structural proteins of the virus including the RdRp, RNA helicase 

and methyltransferase123–125. HEV also contains several other, less well-characterized 

domains including the ‘X’ and ‘Y’ domains, the hypervariable region (HVR), and a putative 

papain-like cysteine protease (PCP). HEV plausibly contains a PCP based on bioinformatic 

comparison that identified a domain in HEV distantly related to the protease of rubella 

virus126. Most positive-strand RNA animal viruses, including alphaviruses, togaviruses and 

picornaviruses, contain a protease that mediates polyprotein processing; however, for HEV, 

experiments attempting to show protease function and ORF1 polyprotein processing have 

yielded conflicting data 127–129. The fate of the ORF1 polyprotein and the function of the 

PCP-like domain of HEV both remain rich areas for further research. ORF2, the second 

largest viral gene, is located downstream of ORF1 and encodes the viral capsid protein of 

HEV130. The ORF2 capsid is highly immunogenic and is the basis for the Hecolin HEV 

vaccine, however in the quasi-enveloped state eHEV virions are resistant to anti-ORF2117. 

Although no clinical data currently suggest that the presence of eHEV limits vaccine 

efficacy, it could have an effect on viral spread once an infection is already established. 

Finally, ORF3, which is only 360bp in length, almost entirely overlaps with ORF2 and 

encodes a functional ion channel that is critical for release of infectious viral particles131. 

ORF3 has additionally been shown to interact with a variety of host proteins including 

tumor susceptibility gene 101 protein (TSG101), a key component of the endosomal sorting 

complexes required for transport (ESCRT) pathway that is used by a number of viruses 

(including HIV) for budding of progeny virions132,133.

As for many other viruses heparan sulfate proteoglycans (HSPG) are required for the 

attachment of HEV virions to their target cells, and eHEV enters cells through a process that 

involves receptor-dependent clathrin-mediated endocytosis, the Rab5 and Rab7 GTPases and 

lysosomal lipid degradation117,134–136. Non-enveloped HEV and eHEV are believed to have 

distinct entry mechanisms, and little is known about entry mechanisms for non-enveloped 

HEV specifically. A cell surface receptor mediating HEV entry also remains to be identified. 

Upon viral entry of eHEV, the quasi-envelope is believed to undergo lysosomal lipid 

degradation to expose the capsid protein117. The virion then uncoats in a poorly understood 

process, and the positive-sense HEV RNA is translated by host factors to produce the ORF1 

polyprotein containing the RdRp. The RdRp then transcribes complementary full-length 

negative-sense viral RNA, which serves as a template for transcribing positive-strand full-

length HEV RNA, and a 2kB subgenomic transcript encoding ORF2 and ORF3137−140 

(Figure 3). Limited evidence suggests that an additional 3.7kB subgenomic RNA might be 

transcribed from the negative-sense template137,141,142. Both the full-length and subgenomic 

transcripts are capped and polyadenylated137. Host ribosomes are then thought to use 

leaky scanning to translate the ORF2 protein (pORF2) and ORF3 protein (pORF3) 

from the subgenomic RNA in the endoplasmic reticulum143. Leaky scanning refers to a 

phenomenon in which a ribosome will occasionally skip a ‘weaker’ initiation codon – 

possibly an ‘ATG’ triplet in a weak Kozak consensus sequence – and instead use a second, 
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downstream initiation codon; in this way the ribosome can translate two proteins from 

the same transcript. The regulation and relative levels of translation of these proteins are 

not well understood. The pORF2 capsid is then processed in the endoplasmic reticulum 

and glycosylated at three sites, a modification necessary for the formation of infectious 

virions130,144,145. pORF2 binds the 5’ end of HEV, an interaction that could mediate 

encapsidation; however, a complete picture of the role of pORF2 in the life cycle remains 

to be determined146. Different studies show that pORF2 localizes to the Golgi, cytoplasm 

and even the nucleus, suggesting that the protein could have multiple, hitherto unknown 

functions147,148. pORF3, a 113 amino acid phosphoprotein, is another poorly understood 

HEV product that is required for release of virions and was shown to exhibit ion channel 

activity in a paper published in 2017131. The ORF3 ion channel does not seem to have 

any discernible preference for specific anions or cations, and the mechanisms underlying 

viroporin-mediated viral release remains to be determined. Cell lysis and the subsequent 

release of infectious virions can be triggered by increased membrane permeability as a result 

of viroporin accumulation 149 but this process does not seem to have a role in HEV egress as 

HEV is thought to be a non-cytolytic virus. Viroporin insertion in cellular membranes have 

been proposed to disrupt the chemoelectrical barrier by facilitating flux across membranes, 

therefore dissipating the membrane potential of internal vesicles or the plasma membrane 

and stimulating viral budding 150.

In addition, pORF3 interacts with a broad range of host cellular proteins including 3IP, 

microtubules, SH3 and Pyst1 (both leading to activation of MAPK), bikunin (serine protease 

inhibitor), TSG101, hemopexin, fibrinogen, HIF1A, CIN85, HNF4 and hepsin130,151–162. 

These diverse interactions suggest that pORF3 might modulate the host environment in 

multiple ways to create favourable conditions for the viral life cycle, in addition to its role 

in viral release163. Notably, the role of pORF3 in virion release is dependent on a highly 

conserved PSAP motif which enables the interaction with TSG101, a cellular factor involved 

in the budding of viruses and a member of ESCRT pathway132,164–171 79. The ESCRT 

pathway is used by a number of other RNA viruses (for example, HIV) during viral release, 

and involves budding of the virus through the cellular membrane, leading to the acquisition 

of a lipid envelope172. Thus, the ESCRT pathway would explain how eHEV particles are 

formed; however, this aspect suggests that non-enveloped HEV uses a different mechanism 

for release that is thus far unknown, or that non-enveloped HEV is formed through shedding 

of the lipid envelope following release. Ultimately, more studies are needed to close the 

numerous gaps in our understanding of the HEV life cycle.

Cell culture models

HEV has historically been extremely difficult to culture in vitro, replicating at very low 

titers. Early experiments developing in vitro infection systems with full-length virus used a 

variety of cell types including primary hepatocytes from macaques, human HepG2 hepatoma 

cells, A549 lung adenocarcinoma cells and simian primary kidney cells (Table 1)173–176. 

However, amplification was required to detect HEV in the medium of these cells, and 

this lack of an efficient cell culture study hampered efforts to study the HEV life cycle. 

Breakthroughs in developing robust in vitro systems to study HEV have been achieved not 
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only through identifying compatible cell lines, but also through the isolation of specific 

strains with improved replication efficiency in vitro.

Cell lines.

Generally, genotype 1 HEV has been more difficult to culture in vitro than genotypes 3 

and 4, so the available cell-culture-adapted strains are mostly derived from the latter. In 

2009, the genotype 3 JE03–1760F and genotype 4 HE-JF5/15F HEV strains were isolated 

from infected patients and found to have increased replication efficiency in A549 cells and 

PLC/PRF/5 liver hepatoma cells177,178. These strains accumulated mutations after being 

serially passaged in cell culture, that presumably enhanced their ability to replicate in these 

systems. In 2011, the genotype 3 Kernow-C1 strain of HEV was isolated from a chronically 

infected patient who was co-infected with HIV and found to efficiently infect human, deer 

and pig cell lines after being serially passaged six times in culture179. The increased ability 

of the Kernow-C1/p6 strain to replicate in vitro was due to a 57-amino acid insertion 

from the human S17 ribosomal RNA into the ORF1 HVR domain. The S17-containing 

recombinant strain was present in the original faecal sample from the patient, who had 

become host to multiple quasi-species of HEV as the virus mutated during the length of 

his chronic infection. Over six serial passages in HepG2/C3A human hepatoma cells, the 

S17 insertion-containing strain was found to propagate more efficiently and become the 

dominant quasi-species. Introduction of the S17 insertion into a different, genotype 1 strain 

of HEV markedly enhanced its ability to transfect hamster BHK-21 cells180. Similarly, 

another genotype 3 HEV strain, LBPR-0379, was identified to contain an insertion in its 

HVR region from the S19 human ribosomal protein that conferred a growth advantage 

in cell culture181. The mechanisms whereby these insertions improve replication of HEV 

in vitro and broaden the virus’ host range are unknown and the subject of great interest. 

Furthermore, they demonstrate the ability of the virus to mutate into quasi-species and 

acquire novel capabilities during chronic infection.

In vitro studies of HEV have used the HepG2, HepG2/C3A, HepaRG, Huh7, Huh7.5 and 

S10–3 hepatoma cell lines to study viral replication118,131,182–184. HepG2/C3A, a subclone 

of the HepG2 hepatoma cell line, is a popular model for in vitro drug testing and exhibits an 

improved hepatic phenotype over HepG2 cells185. Replication of the Kernow-C1/p6 strain of 

HEV was reported to be ~7.5-fold higher in HepG2/C3A cells than in Huh7.5, PLC/PRF/5, 

and A549 cells, making the combination of the Kernow-C1/p6 strain with HepG2/C3A a 

powerful tool for studying HEV179. That said, hepatoma and other tumour-derived cell lines 

do not adequately reproduce the physiological environment of primary cells (hepatocytes) 

because of their abnormal cell proliferation and aberrant gene expression and regulation186.

Primary hepatocytes.

Cultures of primary hepatocytes are more desirable for in vitro experiments for HEV 

infection, but their use has several practical limitations. Indeed, it was shown that 

HEV can infect primary hepatocytes of cynomolgus monkeys, but infection of primary 

human hepatocytes has not been reported yet173. Once isolated, primary hepatocytes do 

not proliferate or undergo limited proliferation, which is a challenge. Furthermore, the 

phenotype of these primary hepatocytes is unstable, as they tend to de-differentiate within 
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days in conventional culture systems, thereby precluding longer-term studies of HEV 

infections187. Primary human hepatocyte dedifferentiation can be delayed or prevented 

in collagen sandwich cultures, by aggregation in spheroids or in co-culture with non-

parenchymal cells188–192. Primary human hepatocytes aggregated into spheroids have been 

infected with HCV193. For the latter approach, both self-assembling (SACC) and micro-

patterned primary human hepatocyte co-cultures (MPCC) are effective formats to stabilize 

hepatic function, especially if oxidative stress is reduced during the initiation of the 

culture194 195,196. MPCC and SACC primary human hepatocytes have been infected with 

HBV, HCV and Plasmodium falciparum and P. vivax 197–200 and therefore might prove 

useful to establish longer-term HEV infections, possibly even with non-cell culture-adapted 

patient isolates. Infections in primary human hepatocytes are frequently hampered by 

considerable variability in the susceptibility between different hepatocyte donors although 

the underlying etiology of this variability is unknown.

Stem cell derived hepatocyte like cells and tissue organoids.

In 2016, induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) were 

shown to support HEV replication for the Kernow-C1/p6 strain, although at lower levels 

than HepG2/C3A cells201. iPSCs carry the advantages of being indefinitely self-renewing, 

more easily amenable to genetic manipulations than fully differentiated cells, capable of 

differentiating into numerous cell types and able to produce patient- and tissue-specific 

primary — they are a promising in vitro model for studying HEV in a more physiologically 

relevant context than hepatoma-derived cells202–204. To better approximate the cellular 

complexity of the liver, efforts are under way to create more complex cultures, incorporating 

additional liver resident non-parenchymal cell populations including endothelial cells, 

cholangiocytes, Kupffer cells, fibroblasts, and stellate cells205,206. (Figure 4). Combining 

these cell types, preferably in physiologically relevant ratios, will be particularly helpful to 

more accurately mimic the inflammatory environment of the liver during HEV infection. As 

an additional layer of complexity, incorporating primary hepatocytes in a 3D architecture 

will be important to closely mimic the transcriptional heterogeneity of hepatocytes in the 

liver that is influenced by a variety of environmental cues, including oxygen and nutrient 

gradients. Differences in transcriptional activity have clearly been documented for genes 

involved in metabolism but could conceivably also affect the susceptibility and host response 

to (viral) pathogens, such as HEV207. Tremendous advances have been made in engineering 

very sophisticated (primary) cell culture platforms, which have already been successfully 

used to study other hepatotropic viruses such as HBV200,208. Undoubtedly, the HEV field 

will benefit from these advances and might even become a driver in refining them.

Tissue tropism.

It is important to note that in contrast to HBV, HCV and hepatitis delta virus (HDV), 

which are thought to productively infect only hepatocytes in vivo, HEV has a broader tissue 

tropism. HEV RNA and/or antigens have been detected in small intestine, colon, lymph 

nodes, placenta, dermal microvascular endothelial cells, and neurons based on studies in 

swine and humans90,209–212. Using negative-strand-specific PCR, HEV replication has been 

detected in human placenta209. This finding raises the possibility that non liver-derived 

cells could have potential as in vitro systems to study HEV. Indeed, HEV is capable of 
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replicating in a number of non-liver cell types. Notably, the lung adenocarcinoma-derived 

A549 cell line was one of the earliest cell lines used to culture HEV, and is permissive to 

the genotype 3 JE03–1760F and genotype 4 HE-JF5/15F HEV strains, as well as swine, wild 

boar and rabbit-derived strains of HEV 177,178,213–215. HEV has also been shown to infect 

porcine embryonic stem cell-derived hepatic cells184. It should be clearly noted, though, that 

the ability of a given virus, such as HEV, to infect and replicate in a cell line, does not 

necessarily imply that this cell type would be a natural reservoir for the virus. Exemplary for 

this point is that despite replicating in A549 cells in vitro, HEV has not been correlated with 

pulmonary HEV-related symptoms in patients.

Animal models

Even with these advancements, tissue cultures have limited utility in studying virally 

induced immune responses and disease. Thus, creating suitable animal models for HEV 

will remain a priority to study the pathogenesis of HEV, for example, during both 

fulminant acute and chronic hepatitis E, and to test novel antiviral therapeutics. The 

optimal model should be fully immunocompetent, susceptible to genetically diverse HEV 

strains causing disease in humans and recapitulating clinically apparent disease. From a 

practical perspective, the model should be cheap, easy to propagate, amenable to genetic 

manipulations and optimally a plethora of reagents should be available to monitor host 

responses to the infection. Such a model does not exist – yet.

To bridge this gap, (at least) three alternative and certainly not necessarily mutually 

exclusive approaches could be taken: conceivably, surrogate models, that is species which 

naturally support HEV infection to some extent, could be used; the host environment of a 

usually resistant species could be engineered to render it more conducive to HEV infection; 

HEV could possibly be adapted genetically to enable the virus to overcome species barriers.

Primates.

In contrast to the other hepatitis viruses, which exhibit a narrow host range largely limited 

to humans and closely related great apes (HBV, HCV, HDV) or at least smaller primates 

(HAV), certain HEV genotypes have been found in a variety of species. These include 

swine, deer, and rabbit that serve as reservoirs for HEV in industrialized nations 59 216. 

Additional zoonotic hosts include moose, rat, wild boar (genotype 5,6), camel (genotype 

7,8), and dolphin (genotype 3), but it is unknown whether the corresponding HEV strains 

are transmissible to humans 57. Despite the broad host range of HEV, infection is subclinical 

in most zoonotic hosts, and tractable small animal models to study the virus in vivo 
are lacking. Non-human primates have been among the few animals successfully used to 

study genotypes 1 and 2 of HEV, in particular rhesus monkeys, cynomolgus macaques and 

chimpanzees (Figure 5)217–219. Numerous experiments have been done in chimpanzees 

using genotype 1 HEV, including analyses of transcriptomic changes associated with 

infection, measurement of the duration of faecal shedding and viraemia, and the discovery 

that capping of HEV is required for infectivity220–223. Chimpanzees and rhesus monkeys 

have additionally been used to show that swine HEV can cross the species barrier and infect 

non-human primates224. Infected primates develop clinical responses to HEV that mimic 
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some features of human disease, including focal hepatocyte necrosis with accumulations of 

macrophages and activated Kupffer cells, and the anti-HEV immune response in primates 

is similar to that observed in humans 221,225. Thus, nonhuman primates have been useful 

models for studying hepatitis E clinical progression and for immunological studies220,226–

228. Both cynomolgus and rhesus monkeys have been used to test the efficacy of ORF2 

capsid protein-derived anti-HEV vaccines229,230 231. However, there are limitations to 

the use of non-human primates in modelling HEV in vivo. Attempts to reproduce HEV-

associated mortality in the context of pregnancy were unsuccessful in pregnant rhesus 

monkeys, who also do not exhibit vertical transmission of the virus232 233. Furthermore, 

primates are expensive to maintain, their use raises ethical concerns, and hepatitis E 

infection in primates does not accurately mimic some aspects of disease progression in 

humans, in particular HEV-associated liver injury in the context of pregnancy232,233.

Swine.

Swine were discovered to be natural hosts to HEV in 1995, and are now known to be 

the primary route of HEV transmission to humans in developed countries234,235. Unlike 

rhesus monkeys, which can be infected with HEV genotypes 1–3, swine are only susceptible 

to genotypes 3 and 4236,237. Infection in swine is largely subclinical, but pigs develop 

relatively more severe hepatic lesions when infected with human genotype 3 HEV than 

swine genotype 3 HEV65,235,238–241. Swine have been used to demonstrate extrahepatic sites 

of HEV replication, including small intestine, lymph nodes and colon, and for studies on 

cross-species infection211,242. In 2017, experimental pigs treated with immunosuppressive 

drugs were used to successfully establish chronic HEV infection with genotype 3, the same 

genotype responsible for chronic infection in humans243. Thus, swine have proven to be 

useful models for studying genotypes 3 and 4 of HEV, but are not susceptible to genotype 1, 

which accounts for the majority of clinical cases in humans worldwide.

Rabbits.

Rabbits are another natural host of HEV who could serve as useful models for HEV 

studies244. Rabbit strains of HEV have been experimentally shown to infect swine and 

cynomolgus macaques, demonstrating a high potential for cross-species transmission245,246. 

Rabbits show limited clinical symptoms from HEV, but notably studies from one group 

suggest that rabbits support chronic infection and extrahepatic replication of HEV, and that 

pregnant rabbits have high HEV-associated mortality247,248. Given the relatively small size 

of rabbits and the potential for transmission of rabbit HEV strains to humans, rabbits might 

be an interesting model in which to explore the pathogenesis of hepatitis E.

Small animals.

There has been limited success infecting naive mice with HEV, who are not natural hosts for 

the virus. One study reported that Balb/c nude mice were susceptible to genotype 4 HEV 

isolated from swine, however these findings have not been confirmed independently249. 

Conceivably, mouse orthologues of certain yet-to-be-identified host factors only inefficiently 

support different aspects of the viral life-cycle. Greater understanding of the different 

aspects of the viral life-cycle and essential cellularly encoded co-factors would potentially 
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allow us to overcome the species barrier of HEV genetically and to create mouse models that 

robustly support HEV infection.

Alternatively, tissue humanization approaches have been effective in establishing infections 

with other human hepatotropic pathogens. Mice growing a partially human liver can 

support infections with hepatotropic pathogens in vivo, including HBV, HCV, HDV and 

liver stages of parasites causing malaria in humans250–260. Humanized mice are usually 

generated through transplantation of human hepatocytes into immunocompromised liver 

injury recipients. The resulting human liver chimeric mice have been used to successfully 

establish infection with HEV genotypes 1 and 3 in the past few years261–264. These 

xenotransplanted mice are a tractable and valuable model for drug testing and for studying 

long-term viral persistence within the 3D context of the liver. However, a considerable 

shortcoming of singly engrafted human liver chimeric mouse models is their inability to 

mount cellular and humoral immune responses due to their highly immunocompromised 

status that is necessary to prevent graft rejection. To study HEV-specific immune responses, 

which counteract the infection but are also thought to contribute to the progression of liver 

pathogenesis, xenorecipients co-engrafted with both human hepatocytes and components of 

a human immune system in a single recipient might prove useful. Such dually engrafted 

mice have been used in to study human immune responses to HBV and HCV for 

example265–267. However, given that the human immune response is generally weak in 

such humanized mouse models, continued refinements of the xenorecipients strains and 

engraftment procedures remain critical.

Rats are another potential rodent model for HEV, and unlike mice, are natural hosts for 

HEV268. However, the HEV strains infecting rats are classified under Orthohepevirus C, 

and are only distantly related to the human-tropic strains of HEV, which are classified 

in Orthohepevirus A. One group successfully infected athymic nude rats with rat HEV, 

however rats are not susceptible genotypes 1, 2, or 3 of human HEV, and furthermore rhesus 

monkeys are not susceptible to rat HEV269,270. Although it is conceivable to generate HEV 

chimeras between strains of Orthohepeviruses A and C, this approach could prove difficult 

because of genetic incompatibilities that could compromise the fitness of these genomes. 

Finally, gerbils are another rodent model that warrant further investigation for their potential 

as a tool to study HEV. Several groups have reported successful infection of Mongolian 

gerbils with genotype 4 HEV271–273.

Conclusions

Although HEV is becoming increasingly recognized, much work remains to be done in 

understanding its pathogenesis and molecular mechanisms (Box 1). Little is known about 

key aspects of the viral life cycle – for example, the cellular (co-)factors involved in 

different steps in the viral life-cycle, the most prominent receptor(s) mediating viral entry, 

whether and how polyprotein processing occurs for ORF1, and the role of ORF3 in viral 

release. A better understanding of these mechanisms could hold the key to developing 

direct-acting antiviral therapeutics. The clinical pathogenesis of hepatitis E disease contains 

many mysteries as well, from the high mortality rate in pregnant women caused by specific 

strains of the virus, to the many extrahepatic symptoms that are being reported in association 
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with infection. Ultimately, more clinical data and better cell culture and animal models are 

needed to understand interactions between the virus and its host. Finally, as we encroach 

into new ecological spaces, more accurate epidemiological data is needed to understand the 

transmissibility of HEV from foods, and to characterize the full extent of the host range of 

HEV.
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Box 1 |

Key questions or challenges in HEV research

• Gaining a thorough mechanistic understanding of crucial aspects of the viral 

lifecycle: entry, genome replication, assembly and release

• Biophysical analysis and biochemical composition of hepatitis E virus (HEV) 

particles

• (noneveloped HEV versus enveloped HEV (eHEV))

• Obtaining high-resolution structures of pORF1 and pORF3

• Identification of essential host factors governing different aspects of the HEV 

lifecycle

• Defining the HEV host and tissue tropism

• Mechanism of HEV-mediated pathogenesis in clinically relevant settings (e.g. 

acute liver failure during pregnancy and extrahepatic manifestations)

• Effect of HEV co-infection in patients with underlying liver disease, such as 

chronic viral hepatitis

• Creating robust cell culture models supporting infection with all HEV 

genotypes

• Developing tractable (small) animal models that adequately recapitulate 

disease symptoms observed in patients

• Collecting epidemiological data on the prevalence and transmissibility of 

different HEV genotypes in humans and animals

• Mechanisms of innate immune recognition and correlates of immunological 

protection

• Developing direct-acting or host-targeting antiviral agents that can effectively 

cure HEV infection and can be administered to all patient populations
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Key points

• HEV causes varying disease severity among patient subpopulations: it is 

self-limiting in most young adults, but causes ~30% mortality in pregnant 

women, and lead to chronicity in immunocompromised patients.

• HEV has a broad but poorly characterized host range, and in industrialized 

countries it is primarily transmitted zoonotically through the consumption of 

undercooked meat.

• A prophylactic vaccine against HEV exists but is currently only licensed in 

China.

• There is currently no direct-acting therapy available against HEV, and no 

non-teratogenic treatment options for pregnant women, creating a need for 

development of new therapeutics.

• The molecular biology of HEV remains incompletely understood.

• New model systems are emerging to study HEV, but more refined models 

are needed to gain insights in the interactions of HEV with its host including 

mechanisms of HEV pathogenesis.
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Fig 1. Host range of hepatitis E virus.
The Orthohepevirus A genus is classified into hepatitis E virus (HEV) genotype 1–8. 

Genotypes 1 and 2 are limited to human hosts and are transmitted via the faecal–oral 

route, primarily through contaminated water. Genotypes 3 and 4 have multiple hosts, and 

can be transmitted to humans through the consumption of undercooked meats, including 

pork. Genotypes 5 and 6 are known to infect wild boar; however, it is unknown whether 

these genotypes can be transmitted to humans (although there have been reports of wild 

boar genotype 3 HEV transmission to humans). Finally, genotypes 7 and 8 infect dromedary 

Nimgaonkar et al. Page 30

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2024 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and bactrian camels, respectively. There has been one case reported of genotype 7 HEV 

transmission to a liver transplant patient who consumed camel meat and milk.
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Fig 2. Genetic organization and translation of hepatitis E virus.
Hepatitis E virus (HEV) is a ~7.2kB, positive (+)-sense single-stranded RNA virus. 

The mRNA is capped at the 5’ end, polyadenylated at the 3’ end, and the junctional 

region (JR) between ORF1 and ORF2/3 contains a stem-loop structure that is critical for 

HEV replication. After viral entry and uncoating, the (+)-sense full-length viral genome 

is translated by host ribosomes to produce the ORF1 polyprotein, which contains the 

non-structural replication machinery of the virus including the methyltransferase (Met), 

RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp), as well as several non-

enzymatic regions essential for efficient viral replication (the ‘Y’, ‘X’, and ‘hypervariable’ 

(HVR) regions). Additionally, ORF1 contains a putative papain-like cysteine protease (PCP) 

based on sequence similarity to the protease of rubella virus, though data showing protease 

activity for this region have been conflicting. It is unclear whether the ORF1 polyprotein 

undergoes processing into smaller units. HEV genotype 1 is thought to contain an additional 

open reading frame, ORF4, that is translated into a viral protein enhancing RdRp activity. 

After translation of the ORF1 polyprotein, the RdRp from ORF1 transcribes an antisense 

(–)-stranded intermediate RNA from the (+)-sense strand. The (–)-sense strand then serves 

as a template for the transcription of more (+)-sense full-length RNA for packaging into new 

progeny virions, as well as a shorter, ~2.2kB subgenomic RNA (sgRNA) encoding ORF2 

and ORF3. These viral genes are ~2.2kB and ~360bp in length, respectively, and ORF3 

entirely overlaps with ORF2 except for one leading base pair. The sgRNA, which is capped 

at the 5’ end and polyadenylated at the 3’ end, is then translated into the ORF2 capsid 

protein and the ORF3 viroporin based on a leaky scanning mechanism by host ribosomes. 

Regulation of transcription of the sgRNA is poorly understood.
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Fig 3. Life cycle of hepatitis E virus.
(1) Viral entry: hepatitis E virus (HEV) is a quasi-enveloped virus, meaning it can exist 

in the non-enveloped state (HEV) or can be coated in a lipid-derived membrane (eHEV). 

HEV and eHEV have distinct entry mechanisms. Little is known about entry mechanisms 

for HEV. For eHEV, the virus enters the cell through clathrin-dependent and dynamin-

dependent, receptor-mediated endocytosis. A specific cell surface receptor mediating eHEV 

entry remains to be identified, but the GTPases Rab5 and Rab7 are known to have a role in 

eHEV entry. Upon entering the cell, the envelope of eHEV undergoes lysosome-mediated 

lipid degradation, and uncoats in a poorly understood process to expose the viral mRNA. (2) 

ORF1 polyprotein (pORF1) containing the RdRp is translated from the (+)-strand, and the 

RdRp then transcribes full-length (–)-sense RNA. The (–)-sense RNA serves as a template 

for transcribing more full-length (+)-sense RNA to be packaged into progeny virions, as well 

as a shorter subgenomic RNA (sgRNA) which encodes ORF2 and ORF3. The ORF2 capsid 

protein (pORF2), and the ORF3 protein (pORF3), a viroporin essential for viral release, 

are translated from the sgRNA. (3) pORF3 binds to TSG101, a member of the endosomal 

sorting complexes required for transport (ESCRT) pathway that is used by several other 

RNA viruses to bud from cell membranes. The interaction of pORF3 with TSG101 probably 
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promotes budding of progeny virions into multivesicular bodies (MVBs), which then fuse 

with the plasma membrane to release virions from the cell. The lipid envelope of eHEV is 

thought to be derived from the trans-Golgi network, and viral particles contained in eHEV 

have been shown to be associated with pORF3. pORF3 has additionally been shown to 

exhibit viroporin activity, and it is possible that pORF3 exists in multiple forms to perform 

distinct functions. (4) eHEV released from the apical membrane enters the bile duct, where 

the lipid envelope is thought to be degraded by detergents and proteases in the bile. This 

feature would explain why HEV in the faeces is non-enveloped. On the other hand, eHEV 

released from the basal membrane of hepatocytes enters the serum in its quasi-enveloped 

form, where it is protected from neutralizing antibodies against pORF2 and pORF3, but is 

less efficient at infecting cells.
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Fig 4. Towards more physiologically relevant 2D and 3D cell culture models for studying HEV.
The species permissive to HEV infection include (but are not limited to) humans, rabbits, 

swine, deer, wild boar, and camel. In order to better study HEV infection in physiologically 

relevant in vitro models, it will be desirable to generate co-cultures that recapitulate 

the complexity of the liver including endothelial, stellate, cholangiocytic, Kupffer, and 

hepatic cells in the appropriate ratios. These cells can be harvested from primary tissue 

or differentiated from stem cells, and could be derived from the aforementioned species 

to explore viral host tropism. Primary cultures have the disadvantage of limited durability; 

this issue can be overcome by differentiating the various cell types from indefinitely self-

renewing stem cells. The latter, however, is technically challenging and requires advances in 

current hepatic differentiation protocols. Incorporating primary and stem-cell derived tissues 

into a 3D architecture will also be important to more closely mimic the physiological 

hepatic environment and preserve cell morphology. The architecture of the liver leads 

to heterogeneous environmental cues (e.g. nutrients, oxygen, inflammatory factors, etc) 

reaching individual cells, and 3D cultures can better capture this phenomenon. Furthermore 

it was previously shown that primary human hepatocyte dedifferentiation can be delayed or 

prevented in collagen sandwich cultures, by aggregation in spheroids, or in co-culture with 

non-parenchymal cells.
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Fig 5. Experimental animal models to study HEV Orthohepevirus A.
Experimental animal models that have been used to study HEV include non-human 

primates, swine, rabbits, and human liver chimeric mice. Chimpanzees, rhesus monkeys, 

and Cynomolgus macaques were the earliest animal models in HEV research, and have been 

used to study HEV pathogenesis and vaccine efficacy. Swine, which are naturally infected 

with gts 3 and 4 of HEV and can transmit these strains to humans, have been used to 

determine the infectivity of gt 3 isolates, and to show extrahepatic replication sites of HEV. 

Recently, an iatrogenically immunosuppressed swine model was shown to support chronic 

infection with gt 3, and similarly, human liver chimeric mice can support chronic infection 

with gt1 and gt3 HEV. Gt, genotype.
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Table 1.

In vitro models to study HEV Orthohepevirus A.

Type Cell line Tissue Species HEVgenotype Strainstested

Immortalized LLC-PK1 Kidney epithelial Swine 3 KernowC1/p6

FRhK-4 Kidney epithelial Rhesusmacaque 1 Sar55

HepG2, HepG2/C3A Liver hepatoma Human 3 KernowC1/p6

HepaRG Liver hepatoma Human 3 KernowC1/p6

PLC/PRF/5 Liver hepatoma Human 3,4 JE03-1760F, HEJF5/15F

Huh7, Huh7.5, S10-3 Liver hepatoma Human 1,3 Sar55, KernowC1/p6 (Note: 
S10-3 is a subclone of Huh7 cells 
selected for its ability to produce 
infectious Sar55 virus)

A549 Lung adenocarcinoma Human 3,4 JE03-1760F, HEJF5/15F

Caco-2 Colon adenocarcinoma Human 1 Sar55

Primary cells Primary tissue Liver Hepatocyte-like 1 Hepatocyte-like

iPSC- derived 
hepatocyte like cells

Hepatocyte-like Human 3 KernowC1/p6

Porcine embryonic stem 
cells

Embryonic Porcine 3 Swine HEV genotype 3f

HEV, hepatitis E virus; iPSC, induced pluripotent stem cells.
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