
Vol.:(0123456789)

Virchows Archiv (2024) 485:291–297 
https://doi.org/10.1007/s00428-024-03814-8

ORIGINAL ARTICLE

CDH1 methylation analysis in invasive lobular breast carcinomas 
with and without gene mutation

Silvia González‑Martínez1,2,3 · Viera Horvathova Kajabova4 · Belén Pérez‑Mies2,3,5,6 · Irene Carretero‑Barrio2,3,5,6 · 
Tamara Caniego‑Casas2,3 · David Sarrió3,7 · Gema Moreno‑Bueno3,7,8 · María Gión9 · José Perez‑García1,10,11,12 · 
Javier Cortés1,3,10,11,12,13,14 · Bozena Smolkova4 · José Palacios2,3,5,6 

Received: 2 November 2023 / Revised: 8 April 2024 / Accepted: 19 April 2024 / Published online: 7 May 2024 
© The Author(s) 2024

Abstract
The proposed role of CDH1 (E-cadherin gene) methylation as a mechanism of gene inactivation in invasive lobular carcinoma 
(ILC) remains inconclusive. For many years, CDH1 promoter hypermethylation has been regarded as a mechanism for gene 
inactivation in ILC. However, this assumption has primarily relied on non-quantitative assays, which have reported CDH1 
methylation frequencies ranging from 26 to 93% at CpG sites within the island region. Few studies employing quantitative 
methods and covering CpG island shores, regions of relatively low CpG density situated proximal to conventional promoter 
CpGs, have been conducted, revealing lower percentages of methylation ranging from 0 to 51%. Therefore, using the quanti-
tative pyrosequencing method, we examined CDH1 methylation in the island region and shores in E-cadherin deficient ILC 
cases (15 with CDH1 mutation and 22 non-mutated), 19 cases of invasive breast carcinomas non-special type (IBC-NSTs), 
and five cases of usual ductal hyperplasia (UDH). Our analysis revealed CDH1 methylation frequencies ranging from 3 to 
64%, with no significant increase in methylation levels in any group of ILCs (median = 12%) compared to IBC-NST (median 
= 15%). In addition, considering the poorly studied association between the number of tumor-infiltrating lymphocytes (TILs) 
and CDH1 methylation in breast cancer, we undertook a thorough analysis within our dataset. Our findings revealed a positive 
correlation between CDH1 methylation and the presence of TILs (r = 0.5; p-value < 0.05), shedding light on an aspect of 
breast cancer biology warranting further investigation. These findings challenge CDH1 methylation as a CDH1 inactivation 
mechanism in ILC and highlight TILs as a potential confounding factor in gene methylation.
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Abbreviations
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TILs	� Tumor-infiltrating lymphocytes
MSP	� Methylation-specific PCR
HM27	� HumanMethylation 27
HM450	� HumanMethylation 450
N-shore	� Northern shore
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Introduction

Invasive lobular carcinoma (ILC) is the second most com-
mon type of invasive breast cancer, accounting for around 
10–15% of all cases. ILC is characterized by its unique 

growth pattern. The key molecular hallmark is the loss of the 
epithelial cell-cell adhesion molecule E-cadherin, encoded 
by CDH1, which occurs in 85% of ILC [1]. The molecular 
mechanisms involved in the decrease or even loss of this pro-
tein vary. The CDH1 gene can be inactivated by mutations 
(50–60% cases) and loss of heterozygosity [1].

For many years, CDH1 promoter hypermethylation has 
been accepted as a mechanism for gene inactivation in ILC. 
This assumption largely stems from non-quantitative assays, 
predominantly methylation-specific PCR (MSP), which 
reported CDH1 methylation frequencies ranging from 26 
to 93% [2–7]. However, it has been demonstrated that MSP 
can yield a significant number of false-positive results [8].

The comprehensive TCGA study by Ciriello et al. [9] 
challenged the hypothesis of frequent CDH1 methylation in 
ILC. Analyzing 111 ILCs via Illumina Infinium DNA meth-
ylation HumanMethylation 27 (HM27) and HumanMethyla-
tion 450 (HM450) platforms, the authors unveiled similar 
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CDH1 methylation patterns in ILCs and invasive breast car-
cinomas non-special type (IBC-NSTs), the latter character-
ized by preserved E-cadherin expression. While the study 
encompassed both CDH1 wild-type and mutated ILCs, it 
lacked a dedicated analysis of methylation data stratified by 
mutation status or CDH1 mRNA expression, positive in 13% 
of samples. More recently, Alexander et al. [10] also failed 
to identify significant CDH1 promoter methylation in nine 
ILC cases exhibiting varying levels of E-cadherin expression 
through methylation EPIC BeadChip 850K array analysis.

It is noteworthy that a variable that has been underex-
plored in CDH1 methylation studies in breast cancer is the 
role of tumor-infiltrating lymphocytes (TILs), despite Lom-
baerts et al. [5] first describing lymphocyte infiltration as 
a factor to consider in 2004 due to its potential influence 
on the detection of CDH1 promoter methylation in breast 
tumors.

In light of these discoveries, we hypothesized that if 
CDH1 methylation contributes to CDH1 gene inactiva-
tion in ILCs, it would be more prevalent in tumors lacking 
E-cadherin expression and devoid of CDH1 mutation. In 
this selected group of cases, CDH1 methylation could pre-
sent itself as a viable alternative mechanism for inducing 
inactivation, complementing the role typically fulfilled by 
gene mutations. To test this hypothesis and to evaluate the 
possible impact of the abundance of TILs on methylation 
results, we analyze a group of ductal and lobular carcinomas 
with different CDH1 mutational status and TIL abundance 
by pyrosequencing.

Methods

The study received approval from the Local Ethics Com-
mittee (Ramón y Cajal Research Ethics Committee refer-
ence 223/18). A total of 61 cases were selected from the 
Pathology Department of Ramón y Cajal University Hos-
pital (Madrid, Spain). The selection process for the studied 
cases was based on data availability from prior sequencing 
studies conducted in our laboratory, along with more recent 
cases diagnosed within the past year through the Pathology 
Department. These latter cases underwent thorough DNA 
sequencing as part of their evaluation process. Clinical data 
were obtained from clinical databases. Histological evalu-
ation, immunohistochemistry, and sequencing were carried 
out as previously reported [11].

TIL evaluation was conducted in regions where DNA was 
extracted for methylation analysis, following the recommen-
dations of the TILs Working Group [12].

Genomic DNA (2 μg) from all tumors was used for 
sodium bisulfite treatment using the EpiTect Bisulfite kit 
(Qiagen). This approach ensures the complete conversion 
of unmethylated cytosine to uracil, enabling the detection 

of methylated CpGs. Four sets of primers were designed, 
covering 18 CpG dinucleotides in the regulatory regions of 
the gene CDH1–N-shore, CpG Island, and S-shore, using 
the PyroMark Assay Design 2.0 software (Qiagen) (Sup-
plementary Table  1). Quantitative pyrosequencing was 
employed to assess the DNA methylation of these regulatory 
regions. PCR amplification was conducted with PyroMark 
PCR Kit (Qiagen) as per the manufacturer’s instructions. 
Pyrosequencing was performed using the PyroMark Gold 
Q24 Reagents (Qiagen) on a PyroMark Q24 platform. Data 
analysis utilized the PyroMark Q24 2.0.6. software (Qia-
gen). Median methylation values for each CpG were com-
pared among the three groups of tumors (Kruskal-Wallis or 
ANOVA test). To examine differences in methylation levels 
across studied regions, the median of the mean methylation 
values of the CpG sites per region were compared among 
groups (Kruskal-Wallis or ANOVA test). All statistical tests 
and plots were conducted using the R software.

Results and discussion

To ascertain the prevalence of CDH1 methylation in ILCs 
characterized by both the absence of CDH1 mutation in the 
exonic region and E-cadherin expression, we conducted 
quantitative pyrosequencing on a cohort of 22 ILC cases that 
had undergone comprehensive massive parallel sequencing, 
revealing a lack of CDH1 mutations and complete E-cad-
herin expression absence [11, 13, 14]. For comparative pur-
poses, we analyzed 15 ILC cases with CDH1 mutations and 
full E-cadherin expression loss, along with 19 IBC-NSTs 
marked by preserved E-cadherin expression and no CDH1 
mutation and five cases of usual ductal hyperplasia (UDH). 
The main clinicopathological and molecular data of the 
patients are presented in Supplementary Table 2. In sum-
mary, tumors were diagnosed in patients aged between 36 
and 92 years old (median = 63 years old). Concerning the 
histological type, 30% of the ILC tumors exhibited pleomor-
phic lobular characteristics. In terms of molecular subtype, 
86% of the tumors were luminal (32 ILC and 16 IBC-NST), 
12% were triple-negative (4 ILC and 3 IBC-NST), and 2% 
were luminal HER2+ (1 ILC).

Pyrosequencing is a high-resolution method for the 
detection of DNA methylation and provides quantitative 
information for each CpG site under study, allowing for the 
control of bisulfite conversion efficiency. Pyrosequencing 
is the technique with the best reproducibility (even higher 
than methylation array) and can work well even on minute 
amounts of highly fragmented DNA [15].

Within this cohort of 56 primary tumors, we compre-
hensively examined the methylation status of 18 CpG dinu-
cleotides situated in the CpG island (103 bp) of the CDH1 
gene and in the Northern and Southern shore (N-shore, 
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S-shore) regions. Analyzing the differences in methylation 
frequency according to molecular phenotype (triple-negative 
vs. luminal), we did not observe statistically significant dif-
ferences, neither in general nor in any of the methylation 
zones (N-shore, island, and S-shore) (p-value > 0.05). The 
median methylation frequency in ILCs was 12%, while in 
IBC-NSTs, it was 15% (p-value > 0.05). The CpG island 
region encompassed the majority of sites explored in prior 
MSP studies as well as four CpGs as scrutinized by Ciriello 
et al. [9] and five CpGs by Alexander et al. [10] through 
methylation arrays (Supplementary Tables 3, 4, 5). Nota-
bly, the observed methylation values in the CpG island were 
generally modest (ranging between 3 and 18%) (Fig. 1a). 
CpG methylation values statistically differ among the stud-
ied groups for CpG sites at positions 68737141, 68737278, 
68737296, and 68737299 located in the CpG island region. 
Interestingly, these CpGs exhibited slightly heightened 
methylation levels in IBC-NSTs (p-value < 0.05) (Supple-
mentary Fig. 1 B-E). Furthermore, there were significant 
differences in methylation levels in the whole island region 
between the group of mutated ILCs and IBC-NSTs, the latter 
being higher (Fig. 1b).

Tissue- and cancer-specific differentially methylated 
regions can occur not only within CpG islands themselves 
but also within CpG island shores, regions of relatively 
low CpG density, situated proximal to conventional pro-
moter CpGs (up to 2 kb distant). This suggests the potential 
involvement of shore methylation in tissue differentiation, 
epigenetic reprogramming, and cancer [16]. Intriguingly, the 
analysis of CDH1 shore methylation has not been analyzed 
in MSP studies (Supplementary Table 3). Therefore, we 
extended our primer design to CpGs located in both N-shore 
and S-shore (Supplementary Table 3). Methylation levels 
in these regions were, in general, higher than in the CpG 
island (ranging from 4 to 35% and 14 to 64%, respectively) 
(Fig. 1a). There were significant differences between the 
studied groups for CpG site at position 68737077 in terms 
of CpG site-specific comparisons (Supplementary Fig. 1A), 
but there were no significant differences for whole region 
assessments (Fig. 1b).

We further examined these CpG sites in the five non-
tumoral tissue samples, revealing lower methylation percent-
ages compared to tumor samples across all regions (Fig. 1a).

In an effort to corroborate our findings, we compare our 
results with those reported by Ciriello et al. [9] and Alex-
ander et al. [10]. Unfortunately, the available datasets from 
Ciriello et al. lack explicit specification of methylation beta 
values corresponding to the individual probes, offering a 
graphical overview instead. Since they did not make a dif-
ferential analysis between the methylation status of CDH1-
mutated and non-mutated cases, we compared the meth-
ylation frequencies at each CpG site for both ILC groups 
combined (with and without CDH1 mutation). Conversely, 

the dataset provided by Alexander et al. [10] allowed us to 
compare methylation levels in ILCs according to CDH1 
mutation status, although the small number of cases lack-
ing CDH1 mutation (n = 4) was a significant limitation of 
data reproducibility. In general, we observed similarity in 
methylation levels when compared to those outlined by 
Ciriello et al. [9], while we demonstrated lower methylation 
levels in contrast to those observed in the study by Alex-
ander et al. [10] (Supplementary Tables 4 and 5). Further-
more, Fridrichova et al. [17] reported CDH1 methylation 
levels assessed by pyrosequencing across seven identical 
CpGs situated within the CpG island among 24 ILC cases, 
178 invasive ductal carcinoma, and four other breast cancer 
patients. Although the mutational status of ILC cases was 
not assessed in this study, consistent with our current results, 
there were no disparities in DNA methylation across these 
groups, and the average value in tumors and paired lymph 
node metastasis remained below 10.5% [17].

While we did not observe substantial differences in CDH1 
methylation across diverse tumor subtypes, noteworthy 
instances of elevated methylation were noted in selected 
tumors, such as cases 2, 8, 11, 50, or 56, among others. The 
relevant aspect to be considered is that CDH1 methylation 
can occur in TILs, thereby introducing a confounding ele-
ment that can lead to false positive outcomes, particularly 
when using MSP [5]. To confirm this hypothesis, we con-
ducted a correlation analysis between TILs and methylation 
levels across different CpGs, unveiling a modest yet statisti-
cally significant correlation between TILs and methylation 
levels across all examined regions (p-value < 0.05) (Fig. 2). 
In our observations, the percentage of TILs was found to 
be slightly higher in the IBC-NST group (median = 30%), 
exhibiting a statistically significant difference compared to 
the mutated-ILC group (median = 5%) (p-value < 0.05). 
This disparity could influence the higher methylation per-
centage observed in the IBC-NST group across all stud-
ied regions (Fig. 1; Supplementary Fig. 1). Additionally, 
UDH displayed low methylation percentages (median 11%, 
6%, and 16% methylation in N-shore, Island, and S-shore 
regions, respectively) (Fig. 1a), alongside a considerably low 
TILs percentage ranging from 0 to 10% (median = 4%), 
which could influence the low methylation levels.

In conclusion, our findings, facilitated by high-resolu-
tion quantitative detection methodology, indicated that the 
frequency and extent of CDH1 gene methylation in ILCs 
are not higher than those observed in IBC-NSTs. This 
result held true irrespective of the presence or absence 
of CDH1 mutations, thereby challenging the notion of 
CDH1 methylation as a pervasive mechanism for CDH1 
gene inactivation. Moreover, our analysis suggested the 
potential impact of TIL abundance on CDH1 methyla-
tion analysis. Importantly, the conspicuous loss of E-cad-
herin in the non-mutated ILC subgroup might be driven 
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Fig. 1   a DNA methylation status of sequenced CpGs sites aligning with the CDH1 gene. Grey boxes = data not available. b Violin plots depict-
ing methylation data across each tumor subgroup within the respective region
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by mechanisms beyond DNA methylation. The intricate 
interplay of additional genetic and epigenetic mechanisms, 
along with non-genetic determinants such as cellular sign-
aling pathways, environmental factors, and cellular con-
text, holds promise in shedding light on alternative mecha-
nisms to the loss of CDH1 for the lobular phenotype [18].
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