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Abstract
Dravet syndrome is a developmental and epileptic encephalopathy (DEE) characterized by intractable seizures, comorbidi-
ties related to developmental, cognitive, and motor delays, and a high mortality burden due to sudden unexpected death in 
epilepsy (SUDEP). Most Dravet syndrome cases are attributed to SCN1A haploinsufficiency, with genetic modifiers and 
environmental factors influencing disease severity. Mouse models with heterozygous deletion of Scn1a recapitulate key 
features of Dravet syndrome, including seizures and premature mortality; however, severity varies depending on genetic 
background. Here, we refined two Dravet survival modifier (Dsm) loci, Dsm2 on chromosome 7 and Dsm3 on chromosome 8, 
using interval-specific congenic (ISC) mapping. Dsm2 was complex and encompassed at least two separate loci, while Dsm3 
was refined to a single locus. Candidate modifier genes within these refined loci were prioritized based on brain expression, 
strain-dependent differences, and biological relevance to seizures or epilepsy. High priority candidate genes for Dsm2 include 
Nav2, Ptpn5, Ldha, Dbx1, Prmt3 and Slc6a5, while Dsm3 has a single high priority candidate, Psd3. This study underscores 
the complex genetic architecture underlying Dravet syndrome and provides insights into potential modifier genes that could 
influence disease severity and serve as novel therapeutic targets.

Introduction

Dravet syndrome is a developmental and epileptic enceph-
alopathy (DEE) that arises during infancy (Dravet 2011). 
Initial seizures often occur in the context of a fever; how-
ever, the syndrome evolves to include afebrile seizure types. 
Seizures are often prolonged and respond poorly to con-
ventional anticonvulsants (Dravet and Oguni 2013). Beyond 
seizures, individuals with Dravet syndrome exhibit several 
comorbidities, including developmental delay, intellectual 
disability, motor impairment, and behavioral and/or psy-
chiatric issues, each impacting quality of life (Darra et al. 
2019; Feng et al. 2024; Villas et al. 2017). Dravet syndrome 
is associated with a significantly elevated mortality risk, 
ranging from 4.4–17.5%, typically occurring during child-
hood. These premature deaths primarily result from sudden 
unexplained death in epilepsy (SUDEP) (15–53% of cases) 
or status epilepticus (SE) (11.5–36% of cases) (Cooper et al. 

2016; Dravet et al. 2005; Sakauchi et al. 2011a, b; Strzelczyk 
et al. 2023).

Over 80% of individuals with Dravet syndrome have de 
novo pathogenic variants in the SCN1A gene that encodes 
the  NaV1.1 voltage-gated sodium channel (Depienne et al. 
2009; Zuberi et al. 2011). SCN1A haploinsufficiency is the 
major mechanism underlying Dravet syndrome (Gallagher 
et al. 2024). Despite a shared genetic basis, there is a range 
of clinical severity among individuals with SCN1A haplo-
insufficiency (Depienne et al. 2010, 2009; Goldberg-Stern 
et al. 2014; Guerrini et al. 2010; Nabbout et al. 2003; Osaka 
et al. 2007; Yordanova et al. 2011; Yu et al. 2010). This 
suggests that clinical phenotypes are influenced by other fac-
tors, including genetic modifiers and environmental factors 
(de Lange et al. 2020; Hammer et al. 2017; Kearney 2011).

Dravet syndrome can be modeled in mice by heterozy-
gous deletion of Scn1a. Several mouse models with varying 
deletions have been generated and share similar phenotypes, 
including spontaneous and hyperthermia-induced seizures 
(Miller et al. 2014; Ogiwara et al. 2007; Yu et al. 2006). Sim-
ilarly, heterozygous knock-in of loss-of-function missense 
variants can also recapitulate core Dravet syndrome features 
(Ricobaraza et al. 2019). Both knockout and knock-in mod-
els have a high risk of sudden unexpected death following a 
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seizure in otherwise healthy animals (SUDEP-like) (Kalume 
et al. 2013; Miller et al. 2014; Ricobaraza et al. 2019; Yu 
et al. 2006). In the knockout models, the highest incidence of 
SUDEP-like deaths occurs early in life, with approximately 
50% mortality by one month of age (Kalume et al. 2013; 
Miller et al. 2014).

A consistent feature among Dravet mouse models is vari-
able penetrance and expressivity of Dravet-like phenotypes 
dependent on genetic strain background (Miller et al. 2014; 
Rubinstein et al. 2015; Yu et al. 2006). We generated the 
Scn1atmKea model with heterozygous deletion of the first 
coding exon (abbreviated Scn1a+/−) (Miller et al. 2014). 
Phenotype severity was highly dependent on strain back-
ground. On the 129S6/SvEvTac (129) strain, Scn1a+/− mice 
did not develop epilepsy and lived a normal lifespan. In con-
trast, when crossed with C57BL/6J (B6) mice, the resulting 
[B6 × 129]F1.Scn1a+/− mice recapitulated core features of 
Dravet syndrome, including spontaneous seizures and epi-
lepsy, and a high incidence of SUDEP-like death in the first 
month of life (Miller et al. 2014). We previously performed 
genetic mapping to identify Dravet survival modifier (Dsm) 
loci influencing strain-dependent survival of Scn1a+/− mice. 
Five Dsm loci were localized to mouse chromosomes 5, 7, 
8 and 11 (Miller et al. 2014). Dsm1 and Dsm4 mapped to 
an overlapping region on chromosome 5 in both 129 and B6 
backcrosses (Miller et al. 2014). Further fine mapping and 
candidate gene analyses of Dsm1/4 locus on chromosome 5 
identified and validated Gabra2 as a modifier gene (Hawkins 
et al. 2021, 2016; Nomura et al. 2019). In the current study, 
we used a similar interval-specific congenic (ISC) mapping 
approach to refine Dsm2 and Dsm3 on chromosomes 7 and 
8, respectively. In addition, we performed candidate gene 
analysis within the refined intervals to nominate putative 
modifier genes that may influence strain-dependent survival 
of Scn1a+/− Dravet mice.

Methods

Mice (NCBI Taxon ID 10090)

Scn1atm1Kea mice (RRID:MMRRC 037107-JAX) are main-
tained as an isogenic strain by continued backcrossing 
to 129S6/SvEvTac inbred mice (129SVE, Taconic Bio-
sciences, Germantown, NY, USA), and abbreviated herein 
as 129.Scn1a+/− (Miller et al. 2014). C57BL/6J (B6) inbred 
mice were obtained from the Jackson Laboratory (Bar Har-
bor, ME, USA; RRID: IMSR_JAX: 000664). Mice were 
maintained in a Specific Pathogen Free (SPF) barrier facility 
with a 14:10 light:dark cycle and access to food and water 
ad libitum. Animal care and experimental procedures were 
approved by the Northwestern University Animal Care and 
Use Committee in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. 
The principles outlined in the ARRIVE (Animal Research: 
Reporting of in vivo Experiments) guidelines were consid-
ered when planning experiments (Percie du Sert et al. 2020).

Interval specific congenic (ISC) lines

ISC lines were generated by crossing 129SvEvTac (129) 
males with B6 females, and then successively crossing to 
B6 to generate congenic lines with 129-derived alleles on 
the chromosome of interest on a B6 background. Separate 
series of ISC strains were developed for Dsm2 (designated 
as B6.129-ISC7A through B6.129-ISC7H) on chromosome 
7, and for Dsm3 (designated as B6.129-ISC8A through 
B6.129-ISC8G) on chromosome 8. At each generation mice 
were genotyped for microsatellite markers in the region of 
interest and mice retaining 129 alleles were propagated. 
Whole genome SNP genotyping was performed at genera-
tions N4 and N7 to select breeders with low percentages of 
129 in the rest of the genome. All lines were crossed to B6 
for ≥ N8 generations prior to any experiments.

Genotyping

DNA was prepared from tail biopsies obtained at approxi-
mately 2-weeks of age (Gentra Puregene Mouse Tail Kit, 
Qiagen, Valencia, CA, USA). Scn1a genotype was deter-
mined as previously described (Kearney et al. 2022). Micro-
satellite genotypes were determined by analysis of PCR 
products on 7% nondenaturing polyacrylamide gels. SNP 
genotypes were determined using the mini Mouse Univer-
sal Genotyping Array (miniMUGA) (Transnetyx, Cordova, 
TN). Breakpoints for ISC lines were refined using min-
iMUGA analysis at ≥ N8.

Phenotyping

Female B6.129-ISC7 or B6.129-ISC8 mice were bred with 
heterozygous 129.Scn1a+/− males to generate F1 offspring 
carrying homozygous 129/129 alleles or heterozygous 129/
B6 alleles in the Dsm2 or Dsm3 interval, respectively. This 
breeding scheme neutralizes confounding parent-of-origin 
effects for imprinted genes, a number of which reside on 
mouse chromosome 7 (Morison and Reeve 1998). At P12-
14, mice were ear-tagged, tail biopsied and genotyped. 
Mice were weaned at P19-21 into standard vivarium cages 
containing 4–5 mice of the same sex/age and monitored for 
survival to 8 weeks age. Over the monitoring period, mice 
were checked daily for general health. Any visibly unhealthy 
mouse (e.g., underweight, dehydrated, poorly groomed, or 
immobile) was euthanized and excluded (rare) because the 
focus of the study was sudden and unexpected death in oth-
erwise healthy appearing Scn1a+/− mice (SUDEP-like). 
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Subjects surviving beyond P56 were censored for survival 
analysis because they reached the predetermined end of the 
study period. Dsm2 and Dsm3 were analyzed separately with 
their respective ISC strains. Survival was compared between 
groups using Kaplan–Meier analysis with hazard ratios and 
P-values determined by LogRank Mantel–Cox tests. To 
minimize false positives due to multiple testing, false dis-
covery rate (FDR)-adjusted P-values were calculated and 
significance thresholds were determined by the Benjamini‐
Hochberg method (Benjamini and Hochberg 1995)(q < 0.1). 
Group sizes were determined by data simulations using data 
from our prior survival studies (Hawkins et al. 2016; Kear-
ney et al. 2022; Miller et al. 2014).

Candidate gene analysis

Candidate gene sets were extracted from the Mus muscu-
lus GRCm39 reference genome using the Ensembl BioMart 
tool (Martin et al. 2023). The subset of genes expressed in 
brain were defined using the MGI Gene eXpression Data-
base (Baldarelli et  al. 2021). Differential expression of 
candidate genes between 129 and B6 or F1 was assessed 
using two RNA-Seq datasets that we previously reported: 
(1) B6 and 129 forebrain (Hawkins et al. 2016); and (2) F1 
and 129 hippocampus (Hawkins et al. 2019) (NCBI GEO 
GSE112627). Coding sequence changes between strains 
were derived from our previously reported whole genome re-
sequencing of 129S6/SvEvTac (NCBI SRA PRJNA817075) 
aligned to the C57BL/6 J reference sequence (Kearney et al. 
2022). Gene- and filter-based annotation was performed 
using SnpEff and variant effect predictions were assessed 
using the Ensembl Variant Effect Predictor (VEP) (Cingo-
lani et al. 2012; McLaren et al. 2016). SIFT and PolyPhen2 
were used for predictions of missense variant effects on pro-
teins (Adzhubei et al. 2010; Vann et al. 2018). Variants are 
reported with dbSNP Reference SNP (rs) accession numbers 
whenever possible and genomic positions are based on the 
Mus musculus GRCm39 reference genome. Interval specific 
variant summaries are reported in Supplementary Table S1.

Results

We previously reported low resolution mapping of Dsm loci 
that influenced strain-dependent survival of Scn1a+/− mice 
(Miller et al. 2014). In that report, we demonstrated that 129 
alleles conferred risk at Dsm2 on chromosome 7, whereas 
129 alleles were protective at Dsm3 on chromosome 8 
(Miller et al. 2014). To refine the map intervals for these 
loci, we generated ISC lines carrying 129-derived alleles in 
the regions of interest on an otherwise B6 background. Sepa-
rate series of lines were generated and analyzed for Dsm2 
on chromosome 7 (designated ISC7-letter) and Dsm3 on 

chromosome 8 (designated ISC8-letter). For each line, ISC 
females were crossed to 129.Scn1a+/− males and survival 
was monitored to 8 weeks of age. Survival was then com-
pared between offspring carrying homozyogous (129/129) 
alleles in the ISC region or heterozygous (129/B6) F1 con-
trols. Based on our initial mapping, we expected that 129 
homozygosity would result in worse survival for modifier-
containing intervals on chromosome 7 and improved sur-
vival for modifier-containing intervals on chromosome 
8 (Miller et al. 2014).

Dsm2 fine mapping and candidate gene analysis

To map Dsm2, we used eight ISC lines carrying 129-derived 
alleles across the interval on chromosome 7 (Fig. 1A). The 
region on chromosome 7 is complex and likely has multiple 
contributing loci, similar to our previous report of Dsm5 on 
mouse chromosome 11 (Kearney et al. 2022). Line ISC7-H 
confers significant risk, while lines ISC7-C, ISC7-F, and 
ISC7-B trend toward moderate risk (Fig. 1B, C) (Table 1). 
We interpret this as there being proximal and distal risk 
alleles that synergize in line ISC7-H (Fig. 1A). Potential pro-
tective contributions from distal regions of the mapped inter-
val may attenuate risk in lines ISC7-C, ISC7-B, ISC7-G, and 
ISC7-A (Fig. 1A). The map intervals of interest for Dsm2 
are 25.3–34.1 Mb (Dsm2a) and 45.9–52.9 Mb (Dsm2b) on 
chromosome 7.

At the current resolution, the Dsm2a region contains 
224 known protein coding genes and 36 noncoding RNA 
genes, and will require additional refinement to support 
candidate gene prioritization. In contrast, the Dsm2b 
interval is tractable and contains 51 known protein cod-
ing genes and 5 known noncoding RNA genes. Among 
the 51 protein coding genes in Dsm2b, 32 are expressed 
in brain (Table 2). We evaluated the brain expressed can-
didates for evidence of differential gene expression (DEG) 
in our existing mRNA-seq datasets (Hawkins et al. 2019; 
Miller et al. 2014). We found a total of five genes with 
evidence of differential expression (Table 2). There were 
three DEGs when comparing F1.Scn1a+/− mice with or 
without recent seizures (Ldha, Ptpn5, Sergef) (Fig. 2A, 
B, C), and two DEGs when comparing the strains within 
genotypes (Ano5, Nav2) (Fig. 2D, E). Within the Dsm2b 
interval, there are 9084 SNPs and 3062 indel variants 
between 129 and B6, with more than half located in inter-
genic regions (Supplementary Tables S1, S2, S3). In terms 
of consequential coding sequence differences, we identi-
fied six genes in the refined Dsm2b interval with predicted 
missense or in-frame indel variants (Dbx1, Myod1, Nav2, 
Prmt3, Sergef, Slc6a5) (Table 2). Most missense variants 
were predicted to be tolerated or benign; however, vari-
ants in Myod1 (rs13472315) and Nav2 (rs32337268) were 
predicted to be probably damaging and possibly damaging/
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Fig. 1  Fine mapping of Dsm2 with ISC strains. A Dsm2 lines have 
varying 129-derived intervals (red) on a congenic B6 background 
(grey). B6.129-Dsm2 ISC7 lines were crossed with 129.Scn1a+/− 
mice and survival of Scn1a+/− offspring was monitored to 8 weeks of 
age. B Hazard ratios for all Dsm2 ISC lines compared to F1 controls 

plotted against −log10(P-values) determined by Mantel-Cox LogRank 
test (n = 18–24 per line). C Kaplan Meier survival plots are shown 
for each ISC7 line (red) compared to F1.Scn1a+/− controls (black). 
Shaded area represents 95% confidence interval for F1. Scn1a+/− con-
trols

Table 1  Interval specific congenic mapping of Dsm2 on chromosome 7

* Significance threshold determined by Benjamini-Hochberg (BH) method (P < q)

Line Interval (m39) Median survival 
(days)

LogRank P-value FDR q-value Significant* 
(BH)

Hazard ratio (95% CI)

ISC7-A 4.8–72.1 Mb 29 0.8356 0.1000 No 1.057 (0.5990 to 1.866)
ISC7-B 25.3–72.1 Mb 22 0.1344 0.0500 No 1.492 (0.7760 to 2.870)
ISC7-C 51.1–72.1 Mb 24 0.045 0.0250 No 1.608 (0.8840 to 2.924)
ISC7-D 57.9–72.1 Mb 25 0.8206 0.0875 No 1.064 (0.5906 to 1.918)
ISC7-E 47.0–40.0 Mb 24 0.2518 0.0625 No 1.345 (0.7334 to 2.465)
ISC7-F 47.0–34.1 Mb 25 0.0658 0.0375 No 1.534 (0.8655 to 2.717)
ISC7-G 36.1–72.1 Mb 27.5 0.6598 0.0750 No 1.115 (0.6550 to 1.897)
ISC7-H 25.4–58.9 Mb 23.5 0.008 0.0125 Yes* 1.918 (0.9695 to 3.793)
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deleterious, respectively (Supplementary Table S4). Addi-
tionally, Dbx1 has an in-frame deletion of 2 amino acids 
in 129 versus B6, and Nav2 has an in-frame insertion that 
results in modest expansion of a polyglutamine repeat 
in 129. Among the nine genes with coding sequence or 
expression differences, six had a previous association 
with epilepsy and/or seizures based on literature and data-
base searches (Dbx1, Ldha, Nav2, Prmt3, Ptpn5, Slc6a5) 
(Fig. 2F) (Table 2).

Dsm3 fine mapping and candidate gene analysis

For fine mapping of Dsm3, we used eight ISC lines with 
varying 129-derived intervals in the Dsm3 region on chro-
mosome 8 (Fig. 3A). Lines ISC8-B, ISC8-A and ISC8-E 
conferred improved survival, while other lines did not 
(Fig. 3B, C) (Table 3). Based on this, we localized the map 
interval to 66.2–68.8 Mb on chromosome 8. Genomic vari-
ants between 129 and B6 in the Dsm3 interval include 1192 

Table 2  Dsm2b Brain expressed candidate genes

* m, missense; ins, in-frame insertion; del, in-frame deletion

Gene NCBI gene ID Location (GRCm39) Expression 
difference

Coding difference (most 
severe consequence)*

Prior association 
with seizures and/or 
epilepsy

Myod1 17927 7:46025898–46028523 rs13472312 (m)
rs13472315 (m)
rs32790785 (m)

Kcnc1 16502 7:46045921–46088128 Yes
Sergef 27414 7:46092578–46289231 Yes rs31674298 (m)

rs32795453 (m)
Tph1 21990 7:46294065–46321961
Saal1 78935 7:46335532–46360104
Saa3 20210 7:46361422–46365124 Yes
Hps5 246694 7:46409890–46445488
Gtf2h1 14884 7:46445527–46473224
Ldha 16828 7:46490899–46505051 Yes Yes
Ldhc 16833 7:46510627–46527566
Tsg101 22088 7:46538697–46569717
Uevld 54122 7:46572964–46608275
Misfa 629141 7:46633328–46637551
Spty2d1 101685 7:46640144–46658159
Tmem86a 67893 7:46700349–46704525
Ptpn5 19259 7:46727543–46783432 Yes Yes
Zdhhc13 243983 7:48438751–48477188
Csrp3 13009 7:48480146–48497781
E2f8 108961 7:48516177–48531344
Nav2 78286 7:48558464–49259838 Yes rs250301556 (ins)

rs31226051 (m)
rs248206089 (m)
rs32337268 (m)

Yes

Dbx1 13172 7:49281247–49286597 rs246161289 (del) Yes
Htatip2 53415 7:49408863–49423723
Prmt3 71974 7:49428094–49508013 rs32892158 (m) Yes
Slc6a5 104245 7:49559894–49613604 rs31048165 (m) Yes
Nell1 338352 7:49624612–50516356 Yes
4933405O20Rik 243996 7:50248938–50250278
Ano5 233246 7:51160777–51248457 Yes
Slc17a6 140919 7:51271754–51320867 Yes
Fancf 100040608 7:51510325–51512015
Gas2 14453 7:51511763–51644723
Svip 75744 7:51646919–51655766
Ccdc179 100503036 7:51661431–51665476



339Fine mapping and candidate gene analysis of Dravet syndrome modifier loci on mouse chromosomes…

SNPs and 547 indels, with 80% located in intergenic regions 
(Supplementary Tables S1, S5, S6).

The refined Dsm3 interval contains 11 known protein 
coding genes. Of those, seven have confirmed expression 
in the brain. None of the brain expressed candidate genes 
have evidence of strain-dependent differences in gene 
expression, while two have missense coding sequence 
differences (Psd3, Sh2d4a) (Table 4). Psd3, encoding 
pleckstrin and Sec7 domain containing 3, has two mis-
sense variants between the strains that are each individu-
ally predicted to be tolerated/benign (Supplementary 

Table S4); however, they are in relatively close proximity 
and the combined effect of both substitutions is unknown. 
Sh2d4a, encoding SH2 domain containing 4A, has a mis-
sense variant that is predicted to be deleterious (Supple-
mentary Table S4). Based on the literature and database 
searches, there is association with seizures or epilepsy for 
five of the brain expressed genes (Marchf1, Tma16, Npy1r, 
Npy5r, Psd3). Presently, Psd3 is the only gene in the inter-
val with evidence of strain-dependent differences and a 
biological association with seizures or epilepsy.
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Fig. 2  Analysis of Dsm2 positional candidate genes. A–E Differen-
tial expression of candidate modifier genes based on analysis of our 
previously published RNA-seq datasets (Hawkins et al. 2019, 2016). 
A–C Comparing F1.Scn1a+/− mice with or without seizures in 
the 24  h preceding tissue collection, three genes were differentially 
expressed in hippocampus, Ldha (A), Ptpn5 (B), and Sergef (C). D 
Ano5 had lower hippocampal expression in F1.Scn1a+/− compared 
to 129.Scn1a+/− mice at postnatal day 14 (P14). E Nav2 had lower 

hippocampal expression in wild-type (WT) 129 versus F1 mice at 
postnatal day 24 (P24). F Summary of strain-dependent differences 
in candidate genes and their association with seizures and/or epilepsy. 
Six genes had strain-dependent differences and an existing biological 
link with seizures or epilepsy. ***FDR-adjusted p < 0.0001, **FDR-
adjusted p < 0.003, *FDR-adjusted p < 0.07 (from DeSeq2 reported in 
(Hawkins et al. 2019))
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Discussion

In the current study, we used ISC mapping to refine two 
Dravet syndrome modifier loci, Dsm2 on mouse chromo-
some 7 and Dsm3 on chromosome 8. Chromosome 7 was 
complex, with additive effects that suggested the contribu-
tion of at least two loci designated as Dsm2a and Dsm2b. 
Within the refined Dsm2b and Dsm3 intervals we identi-
fied a number of modifier gene candidates that were pri-
oritized based on (1) evidence of brain expression, (2) 
evidence of strain-dependent differences in expression or 
coding sequence, and (3) a plausible biological association 

with seizures/epilepsy. High priority candidates will be 
evaluated empirically in future studies to validate their 
modifier potential.

Among the Dsm2b genes, six were deemed strong 
candidates as they met our three levels of evidence. We 
further prioritized the genes based on strength of the bio-
logical association with seizures or epilepsy. Nav2, Ptpn5, 
Ldha, and Dbx1 are deemed higher priority as they have 
a direct biological association with seizures or epilepsy, 
while Prmt3 and Slc6a5 have an indirect association. For 
Dsm3, there was a single gene, Psd3, that met our three 

Fig. 3  Fine mapping of Dsm3 with ISC strains. A Dsm3 lines have 
varying 129-derived chromosome 8 intervals (blue) on a congenic 
B6 background (grey). B6.129-Dsm3 ISC8 lines were crossed with 
129.Scn1a+/− mice and survival of Scn1a+/− offspring was monitored 
to 8 weeks of age. B Hazard ratios for all Dsm3 ISC lines compared 

to F1 controls plotted against -log10(P-values) determined by Man-
tel-Cox LogRank test (n = 19–24 per line). C Kaplan Meier survival 
plots are shown for each ISC8 line (blue) compared to F1.Scn1a+/− 
controls (black). Shaded area represents 95% confidence interval for 
F1.Scn1a+/− controls
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levels of evidence for a strong candidate. All strong can-
didates are discussed briefly below.

Nav2 encodes Neuron navigator 2, a cytoskeletal asso-
ciated protein important for cortical neuron migration and 
axon growth (Powers et al. 2022). Bi-allelic loss-of-function 
of NAV2 was reported to cause a neurodevelopmental disor-
der with a complex brain malformation (Accogli et al. 2023). 
Disruption of the Drosophila ortholog (Sickie) results in 
hyperthermia-induced seizures and lethality (McNeill et al. 
2011).

Ptpn5 encodes Protein tyrosine phosphatase, non-recep-
tor type 5, also known as Striatal-Enriched protein tyrosine 
Phosphatase (STEP). Deletion of Ptpn5 in mice results in 
resistance to seizures induced by pilocarpine and attenu-
ates audiogenic seizures in fragile X syndrome mice (Briggs 
et al. 2011; Chatterjee et al. 2018). In addition, pharma-
cological inhibition of STEP protects mice from seizures 
induced by kainic acid (Walters et al. 2022).

Ldha encodes lactate dehydrogenase A, a key enzyme in 
the astrocyte-neuron lactate shuttle. The lactate shuttle and 

lactate dehydrogenase (LDH) are inhibited by the ketogenic 
diet and stiripentol (Sada et al. 2015). Both are recom-
mended therapies according to the Dravet syndrome Inter-
national Consensus Panel, with stiripentol recommended as 
a second line treatment and ketogenic diet as a fourth line 
treatment (Wirrell et al. 2022). Furthermore, intrahippocam-
pal antisense oligodeoxynucleotide knockdown of Ldha in 
mice suppressed high voltage spikes following kainic acid 
administration (Sada et al. 2015).

Dbx1 encodes Developing brain homeobox 1, a transcrip-
tion factor critical for interneuron differentiation, including 
Cajal Retzius cells in the cortex and brainstem pre-Bötzinger 
complex interneurons (Akins et al. 2017; Powers et al. 2022; 
Vann et al. 2018). Interestingly, the pre-Bötzinger complex 
is a critical nucleus for generating respiratory rhythms and 
has been implicated in SUDEP (Akins et al. 2017; George 
et al. 2023; Xia et al. 2016).

Prmt3 encodes Protein arginine methyltransferase 3 that 
has been shown to methylate the cardiac  NaV1.5 sodium 
channel and modulate its function (Beltran-Alvarez et al. 

Table 3  Interval specific congenic mapping of Dsm3 on chromosome 8

* Significance threshold determined by Benjamini-Hochberg (BH) method (P < q)

Line Interval (m39) Median survival 
(days)

LogRank P-value FDR q-value Significant* 
(BH)

Hazard ratio (95% CI)

ISC8-A 50.0–103.4 Mb  > 56 0.0162 0.025 Yes* 0.5111 (0.2958 to 0.8833)
ISC8-B 50.0–115.1 Mb  > 56 0.0016 0.0125 Yes* 0.4238 (0.2489 to 0.7218)
ISC8-C 68.6–115.1 Mb  > 56 0.1055 0.05 No 0.6293 (0.3592 to 1.103)
ISC8-D 93.3–115.1 Mb 29 0.761 0.1 No 1.085 (0.6405 to 1.839)
ISC8-E 50.0–87.3 Mb  > 56 0.0162 0.025 Yes* 0.5235 (0.3089 to 0.8872)
ISC8-F 75.7–103.4 Mb 52.5 0.1166 0.0625 No 0.6466 (0.3751 to 1.115)
ISC8-G 49.6–57.1 Mb 25.5 0.4632 0.0875 No 0.8032 (0.4473 to 1.442)
ISC8-H 75.7–87.3 Mb 47.5 0.2496 0.075 No 0.7423 (0.4469 to 1.233)

Table 4  Dsm3 Brain Expressed Candidate Genes

* m, missense

Gene NCBI gene ID Location (GRCm39) Expression dif-
ference

Coding difference
(most severe consequence)*

Prior association 
with seizures and/or 
epilepsy

Marchf1 72925 8:66070552–66924289 Yes
Tma16 66282 8:66925770–66939182 Yes
Tktl2 74419 8:66964408–66970987
Npy5r 18168 8:67132617–67140780 Yes
Npy1r 18166 8:67149844–67159444 Yes
Naf1 234344 8:67312869–67343216
Nat1 17960 8:67933573–67944756
Nat2 17961 8:67947510–67955236
Psd3 234353 8:68141734–68664679 rs32698896 (m)

rs32882847 (m)
Yes

Sh2d4a 72281 8:68729219–68800351 rs36852848 (m)
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2013). Similarly,  NaV1.2 function was modulated by Prmt8-
mediated arginine methylation in vitro, while kainic acid-
induced seizures in vivo resulted in elevated arginine meth-
ylation of  NaV1.2 at three sites (Baek et al. 2014). Together, 
these observations raise the possibility of arginine meth-
ylation of  NaV1.1 as a dynamic post-translation modifica-
tion that could be mediated by Prmt3, which is expressed 
in brain.

Slc6a5 encodes a presynaptic glycine transporter. Patho-
genic variants in human SLC6A5 result in hyperekplexia 
characterized by exaggerated startle response and life-threat-
ening apneas that can result in sudden death in infancy (Rees 
et al. 2006). Although seizures are not a prominent feature of 
hyperekplexia, the strong association of SLC6A5 with parox-
ysmal apneas suggests the possibility of enhanced SUDEP 
risk in the context of pre-existing epilepsy.

Psd3 encodes pleckstrin and Sec7 domain containing 3, a 
guanine nucleotide exchange factor for ARF6 whose activity 
is critical for GABAergic synapse development (Kim et al. 
2020; Sakagami et al. 2006). Knockdown of Arf6 in mice 
results in enhanced seizure susceptibility, while dysregula-
tion of ARF6 via IQSEC2 pathogenic variants are associ-
ated with epilepsy, intellectual disability, and autism (Brant 
et al. 2021; Kim et al. 2020). Although we did not observe 
differential expression of Psd3 in our transcriptomic data-
sets, a proteomics study of another Dravet mouse model 
(Scn1aA1873V) reported lower hippocampal expression of 
Psd3 in Dravet versus WT mice at 4 weeks of age (Mil-
janovic et al. 2021).

The Dsm2a region is still large and requires additional 
refinement for efficient candidate gene analysis; however, it 
has not escaped our notice Scn1b is in this interval. Scn1b 
encodes the voltage-gated sodium channel beta subunit 1, 
which regulates  NaV1.1 expression, localization, and chan-
nel gating (O’Malley and Isom 2015). It has already been 
reported that Scn1a+/− mice exhibited a deficit in Scn1b 
expression, and that AAV-Scn1b administration targeting 
GABAergic neurons improved survival in Scn1a+/− mice 
(Niibori et al. 2020). This provides support for Scn1b as 
a modifier of the Scn1a+/− survival phenotype. However, 
because the mapped interval on proximal chromosome 7 is 
still large, the possibility of other contributing genes remains 
open.

Potential limitations of our study include the following. 
First, the Dsm2 fine mapping data support the possibility of 
additive modifier genes on chromosome 7. This possibility 
could be empirically assessed with ISC lines that separate 
the proximal and distal intervals if the isolated effects sizes 
are large enough. However, in almost four years of breed-
ing, recombination within this critical interval has not yet 
occurred in our colony that relies on natural recombination. 
It may be possible to engineer the desired recombination 
in the future. Recently, it was demonstrated that CRISPR/

Cas9 editing can be utilized to circumvent recombination 
suppression in nematodes (Xie et  al. 2023). Secondly, 
although we have evidence that some candidate genes are 
differentially expressed, absence of evidence should not 
be over-interpreted. Surveying expression of biologically 
plausible candidates across different brain regions and/or 
time points may reveal differences that were not captured 
in our existing datasets and could potentially elevate can-
didates that currently lack evidence of a strain-dependent 
difference. Notably, there are many noncoding variants both 
in inter- and intra-genic regions within each interval that 
could potentially modulate gene regulation. Finally, absence 
of an existing association with epilepsy or seizures does not 
dismiss potential candidates; however, additional evidence 
is required to support a modifier role. Future studies may 
be necessary to gather additional evidence if high priority 
candidates fail to validate.

Conclusion

Variable expressivity is common among individuals with 
Dravet syndrome due to SCN1A haploinsufficiency, sup-
porting that genetic modifiers may contribute to clinical 
severity. It is challenging to discover modifier genes in 
humans in the context of rare disorders; therefore, we used 
the Scn1a+/− Dravet mouse model as a tractable system for 
identification of modifier loci and candidate genes. Iden-
tifying modifier genes that influence clinical severity will 
advance our understanding of disease mechanisms and sug-
gest potential targets for therapeutic intervention.
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