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Abstract
Bipolar disorder (BD) is a heritable disorder characterized by shifts in mood that manifest in manic or depressive episodes. 
Clinical studies have identified abnormalities of the circadian system in BD patients as a hallmark of underlying pathophysiol-
ogy. Fibroblasts are a well-established in vitro model for measuring circadian patterns. We set out to examine the underlying 
genetic architecture of circadian rhythm in fibroblasts, with the goal to assess its contribution to the polygenic nature of BD 
disease risk. We collected, from primary cell lines of 6 healthy individuals, temporal genomic features over a 48 h period 
from transcriptomic data (RNA-seq) and open chromatin data (ATAC-seq). The RNA-seq data showed that only a limited 
number of genes, primarily the known core clock genes such as ARNTL, CRY1, PER3, NR1D2 and TEF display circadian 
patterns of expression consistently across cell cultures. The ATAC-seq data identified that distinct transcription factor fami-
lies, like those with the basic helix-loop-helix motif, were associated with regions that were increasing in accessibility over 
time. Whereas known glucocorticoid receptor target motifs were identified in those regions that were decreasing in acces-
sibility. Further evaluation of these regions using stratified linkage disequilibrium score regression analysis failed to identify 
a significant presence of them in the known genetic architecture of BD, and other psychiatric disorders or neurobehavioral 
traits in which the circadian rhythm is affected. In this study, we characterize the biological pathways that are activated in 
this in vitro circadian model, evaluating the relevance of these processes in the context of the genetic architecture of BD and 
other disorders, highlighting its limitations and future applications for circadian genomic studies.

Background

It is estimated that the lifetime worldwide prevalence of 
bipolar disorder (BD) is 1% (Moreira et al. 2017), with 
an estimated heritability of 60–85% (Song et al. 2015; 
Bienvenu et al. 2011). Genome-wide association studies 
(GWAS) of BD are showing a highly polygenic genetic 
architecture of disease susceptibility with common genetic 
variants explaining 20% of the heritability (Stahl et al. 
2019; Mullins et al. 2021). BD is primarily characterized 
by shifts in mood, which result in manic or depressive epi-
sodes. Clinical studies have associated abnormalities of the 
circadian system in Bipolar disorder type 1 (BD1) patients 
as a hallmark component of its pathophysiology, with dis-
turbed sleep quality being identified as an early symptom 
of manic episodes (Leibenluft et al. 1996). Furthermore, 
dysregulation of sleep and wake cycles during manic epi-
sodes include sleep abnormalities such as decrease in total 
sleep time, delta sleep, and REM latency (Levenson and 
Frank 2011). These abnormalities have also extended to 
other circadian regulated systems such as cortisol levels. 
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Both differences at morning levels of cortisol within BD 
subjects when compared to controls (Girshkin et al. 2014), 
as well as higher cortisol levels prior to a manic episode 
(Berg et al. 2020) have been reported. Despite these find-
ings, the precise mechanisms of altered circadian rhythms 
in BD remain unclear.

The circadian rhythms synchronize physiological pro-
cesses with the environment, creating and maintaining an 
internal 24 h cycle. The main controller of the circadian 
cycle in mammals is the suprachiasmatic nucleus (SCN), a 
brain region located in the basal hypothalamus. It receives 
environmental cues, also called zeitgebers, such as light 
information from the retina which is relayed using synaptic 
and hormonal signaling (Minh et al. 2001) to the rest of the 
central nervous and peripheral systems. At the molecular 
level, the circadian machinery within every cell (Schibler 
and Sassone-Corsi 2002) consists of multiple transcrip-
tional feedback loops, where core circadian genes BMAL1 
and CLOCK induce the expression of their own repressors, 
PER1, PER2, PER3 and CRY1, CRY2. These genes modu-
late different layers of gene expression, from modifying the 
chromatin landscape to make certain regions of the genome 
more or less accessible (Menet et al. 2014), to post-tran-
scriptional modifications altering the function of the associ-
ated proteins at specific times during the day (Robles et al. 
2017). Although disruptions in the circadian rhythms have 
been associated with neuropsychiatric traits, specifically in 
mood disorders (Walker et al. 2020), the direct interactions 
between them, as well as the contributions from genomic 
loci, are to be elucidated.

The localization of the SCN makes direct interaction and 
collection in humans impossible, with researchers instead 
using peripheral fibroblast cells to study the molecular and 
genetic components of this system (Yamazaki and Takahashi 
2005). These cells receive cortisol as a circadian signal from 
the SCN, through the hypothalamic–pituitary–adrenal axis 
(HPA). In order to study circadian rhythms using cell cul-
tures, the cells need to be synchronized. One approach for 
this is treating the cells with dexamethasone, which elic-
its rhythm synchronization between the cells in a culture 
(Yamazaki and Takahashi 2005). Dexamethasone binds to 
the glucocorticoid receptor, acting on the same pathways 
through which cortisol regulates circadian rhythms in vivo. 
This synchronization method has been used in conjunction 
with luciferase bioluminescence reporter assays to study 
the molecular dynamics of selected circadian genes in vitro 
(Nakahata et al. 2006). Studies using these systems have 
been applied to both sleep disorders and BD. Although 
researchers were able to find differences in the period of 
expression of circadian genes in sleep disorders (Hida 
et al. 2017), similar studies using cells derived from BD1 
patients were unable to detect significant (Yang et al. 2009) 
or replicable(McCarthy et al. 2013) differences.

Here we examine the broad scope of functional genomic 
features in the context of circadian rhythms as observed in 
skin fibroblast cell cultures synchronized with dexametha-
sone, and assess their relationship to the genetic architecture 
of BD susceptibility. Most previous studies using this model 
have focused on viral transfection of a single reporter gene 
targeting clock genes such as BMAL1, CLOCK, or PER, 
demonstrating strong circadian rhythms post-synchroniza-
tion (Yamazaki and Takahashi 2005; Nakahata et al. 2006). 
Instead of concentrating on a single clock gene to represent 
circadian cellular patterns, we aimed to comprehensively 
characterize genomic features of transcription (RNAseq) 
and open chromatin (ATACseq) in this in vitro model. To 
achieve this, we collected longitudinal temporal sequenc-
ing data of both gene expression and accessible chroma-
tin regions. We used the temporal gene expression data to 
identify genes exhibiting circadian oscillations and those 
regulated by glucocorticoids, as well as genes with unique 
temporal patterns indicating involvement in other biological 
pathways. The temporal accessible chromatin data allowed 
us to identify genomic regions and associated transcription 
factor motifs implicated in the temporal regulation of gene 
expression. Finally, we investigated whether the fibroblast 
in vitro model captures genomic features linked to the biol-
ogy of various human traits, including BD. Specifically, we 
assessed whether the polygenic risk scores for BD and other 
related psychiatric and sleep-related phenotypes are enriched 
in genomic regions influenced by circadian cellular rhythms.

Results

Temporal RNA‑seq Captures Genes with Distinct 
Longitudinal Expression Patterns

Outside of the subset of genes that compose the core cir-
cadian transcriptional feedback loop, most rhythmic genes 
are tissue specific (Zhang et al. 2014). Within fibroblasts, 
we aimed to identify the overall longitudinal patterns of all 
the genes that are temporally regulated and classify them 
based on their temporal features. For this purpose, we col-
lected RNA-seq data every 4 h for a 48-h period, from cell 
cultures of 6 human primary fibroblasts that were derived 
from a skin biopsy of subjects with no psychiatric disorders. 
To select these subjects, we confirmed that their cell lines 
displayed measurable circadian oscillations via a biolumi-
nescence assay (Supplementary Fig. 2). After quality con-
trol, the temporal RNA-seq dataset consisted of n = 11,004 
genes. We used a cubic spline regression model to identify 
genes that had a significant effect of time in their expres-
sion (Wang et al. 2003; Qin and Guo 2006; Madden et al. 
2017). This approach identified n = 2767 (~ 25%) genes with 
significant evidence (False discovery rate (FDR) < 0.05) 
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for temporal changes of gene expression levels. To clus-
ter these genes according to distinct temporal patterns we 
applied the Weighted Gene Co-Expression Network Analy-
sis (WGCNA)(Langfelder and Horvath 2008), which identi-
fies genes with highly correlated expression levels. WGCNA 
produced 11 modules with eigengene values that captured 
the principal time patterns present in the expression of these 
genes (i.e.: temporal modules; Supplementary Fig. 3). Gene 
ontology (GO) analysis of WGCNA modules with MetaS-
cape (Zhou et al. 2019) highlighted specific cell processes 
associated with distinct temporal patterns among 11 of 
these modules. Figure 1 depicts the eigengene values of 4 
temporal modules with significant enrichment of GO terms 
(FDR adjusted by Benjamini–Hochberg method). Genes 
in the turquoise module, which show a linear decrease in 
expression over time, had GO terms for supramolecular fiber 
organization (p = 1e-15) and mRNA splicing via spliceo-
some (p = 2.5e-13). In compasion, genes in the blue mod-
ule, which show a linear increase in expression, had a GO 
term for cellular response to hormone stimulus (p = 1.3e-9). 
The genes in the black module, which show an increase in 
expression that plateaus by the 16 h time point (28 h after 
dexamethasone treatment), were enriched for chromatin 
organization(p = 1e-12) and transcription elongation by 

RNA polymerase II (p = 7.9e-8) GO terms. The genes in the 
brown module, which show an expression pattern opposite 
of the black module, had a GO term for intracellular protein 
transport (p = 1e-18). Lastly, the purple module, which has 
genes with a peak expression at the 12 h time point (24 h 
after dexamethasone treatment), had GO terms for cell divi-
sion (p = 1e-67) and mitotic cell cycle (p = 1e-60). The com-
plete results of GO analysis for all the WGCNA modules are 
available in the supplementary files.

WGCNA results did not yield a module of co-expressed 
genes with eigengene values representative of oscillating 
24 h cycles resembling a circadian rhythm, nor were cir-
cadian related functional enrichment of GO terms found in 
any of the modules. Next we focused on closely inspecting 
known circadian genes for skin fibroblasts, identified by a 
previous in vivo array-based gene-expression circadian study 
on human skin cells (Olmo et al. 2022). Out of the 1439 
circadian genes reported in that study, we identified 267 
genes in our dataset with significant changes in expression 
over time (Fig. 2A). Using the circadian detection tools JTK 
Cycle (Hughes et al. 2010), LS (Glynn et al. 2006), ARSER 
(Yang and Su 2010), Metacycle (Wu et al. 2016) and RAIN 
(Thaben and Westermark 2014), we aimed to detect sig-
nificant oscillations within these putative circadian genes 

Fig. 1   Eigengene values for 
RNA-seq modules obtained 
from WGCNA: Eigengene 
modules from WGCNA of the 
longitudinal temporal expres-
sion patterns of RNA-seq data 
collected every 4 h for a 48 h 
period. Each color represents a 
fibroblast cell culture from a dif-
ferent individual. Module names 
were assigned by WGCNA. The 
number of genes assigned per 
module is indicated next to the 
module name
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in the complete temporal RNA-seq dataset. Among these 
methods, only JTK and ARSER identified significant peri-
odic expression patterns (after Benjamini–Hochberg correc-
tion of 0.05) for the circadian gene NR1D2, and further only 
ARSER identified significant oscillations for 73 genes. How-
ever, the predicted period differed between the methods. For 
example, JTK predicted a period of 27.6 h for NR1D2, while 
ARSER predicted 24.7 h (Supplementary files). Therefore 
instead of using these circadian detection tools, we applied 
smoothing-splines mixed effect models using the R pack-
age "sme" (Berk 2018) to model the temporal features of 
these circadian genes (Fig. 2B and Supplementary Fig. 4). 
These models showed that for some of these circadian 
genes, such as CRY2 and NFIL3, the circadian expression 

pattern is only present in some of the cell cultures, whereas 
for genes such as NR1D2 and TEF, the circadian pattern 
is ubiquitous across cell cultures from different individu-
als. The fitted models for these circadian genes were then 
used in time warping analysis to group genes with known 
expression dynamics (Fig. 2C and Supplementary Fig. 5). 
From these expression patterns, we can visualize that 
NR1D2 expression follows its inhibition effect on ARNTL 
and CRY1 (Rijo-Ferreira and Takahashi 2019), as expression 
levels of NR1D2 are higher when ARNTL and CRY1 expres-
sion is lower. Similarly, PER3 expression visually follows 
its inhibition effect with ARNTL. Despite observing similar 
expression patterns in PER2 and PER3, these were not con-
sistent across individuals (Supplementary Fig. 4). While the 

Fig. 2   Expression patterns and mixed non-linear modeling of cir-
cadian genes: A Overlap of the genes that were found to have a sig-
nificant effect of time in their expression as well as being previously 
identified as circadian within the skin tissue (Del Olmo et al. 2022). 
In bold are those genes that displayed expression patterns consistent 
with circadian rhythms. B Example of smoothing-splines mixed-
effect model of a gene that displayed circadian oscillations. The red 

area indicates the 95 percent confidence interval. Gene expression 
values are presented as lCPM (log of counts per million). C Gene 
expression levels over time for the 9 circadian clock genes identi-
fied in this in vitro model. Dynamic time warp clustering results are 
denoted by color. Cluster 1 genes are in light blue, cluster 2 genes are 
in black. Clustering results for all 267 genes can be found in the sup-
plementary material
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expected inhibition relationship between CRY1 and ARNTL 
was not visually present (Supplementary Fig. 6), this pattern 
of expression was also reported in the circadian dataset that 
was used as reference (Olmo et al. 2022).

Temporal Open Chromatin Levels Measured 
by ATAC‑seq Highlights Potential Regulatory 
Regions and Transcription Factor Binding Sites

To identify regions of the genome associated with the regu-
lation and downstream effects of circadian genes, we col-
lected ATAC-seq data following the same temporal design 
as with the RNA-seq dataset. Quality control metrics such 
as fraction of reads in peaks and transcription starting site 
for these samples is available in the supplementary material. 
After removing a cell line that did not pass quality con-
trol, we merged all overlapping regions of open chroma-
tin, also known as peaks, across samples and time points as 
described previously (Keele et al. 2020), to define a com-
mon set of ATAC-seq signals (n = 126,057). We then used 
cubic spline regression models to identify peaks that have a 
significant change in accessibility over time. This approach 
yielded n = 7568 (6%) time significant peaks, which were 
functionally annotated using ChipSeeker (Yu et al. 2015), 
a software that annotates peaks with the nearest gene and 
genomic regions (Supplementary Fig. 7B). Peaks with sig-
nificant changes in accessibility over time showed a simi-
lar genomic distribution as the full dataset (Supplemetary 
Fig. 7A). Following the approach for the RNA-seq data, we 
applied WGCNA to cluster peaks with similar temporal pat-
terns of accessibility changes (Supplementary Fig. 8).

WGCNA identified 4 different modules for the temporal 
patterns of chromatin accessibility, however the main pat-
tern that characterizes these modules is an overall increase 
or decrease in accessibility. One module captured all the 
regions that were decreasing in accessibility (Fig. 3A), com-
prising 4435 peaks. The other 3 modules showed regions 
increasing in accessibility. Individual motif enrichment 
analysis conducted with HOMER (Heinz et al. 2010, Yan 
et al. 2020), showed similar enrichment across these mod-
ules, therefore we combined them into a single cluster of 
regions increasing in accessibility, in total 3133 peaks. 
Regions that were decreasing in accessibility over time 
(Fig. 3A) had motif sequences for Fos (p = 1e-1047), Fra1 
(p = 1e-1041), ATF3 (p = 1e-1034), BATF (p = 1e-1002), 
Fra2 (p = 1e-996), AP-1 (p = 1e-976), Jun-AP1 (p = 1e-681), 
Bach2 (p = 1e-330) and JunB (p = 1e-1001). Most of these 
transcription factors are part of the AP-1 transcription 
complex. Regions that were increasing in accessibility 
over time (Fig. 3B) had motif sequences for BHLHA15 
(p = 1e-201), TCF4 (p = 1e-180), NeuroG2 (p = 1e-160), 
Twist2 (p = 1e-160), Pitx1 (p = 1e-186), Atoh1 (p = 1e-162), 
Tcf21(p = 1e-147), Olig2 (p = 1e-130), ZBTB18 (p = 1e-139) 

and NeuroD1 (p = 1e-123). These are dimerizing transcrip-
tion factors that have the basic helix-loop-helix protein 
structural motif. In both types of regions HOMER identified 
the binding sequence of the glucocorticoid response element 
(GRE), although the rank for the GRE motif in regions that 
were decreasing in accessibility was higher. For the known 
circadian transcription factors, HOMER identified sig-
nificant enrichment of the binding sequences for BMAL1 
(p = 1e-29), NPAS2 (p = 1e-9), CLOCK (p = 1e-10), particu-
larly within regions that had increasing accessibility over 
time. For the regions with decreasing accessibility over time, 
HOMER identified enrichment of NFIL3 (p = 1e-11).

Stratified Linkage Disequilibrium Score Regression 
(sLDSC) Analysis

Functional annotation of the ATAC-seq dataset showed that 
approximately one third of the peak regions identified are 
located in distal intergenic regions, with unknown functions. 
Furthermore, it also showed that these regions displaying 
transient changes in chromatin state are located across the 
entire genome. To examine whether these open chromatin 
regions highlighted in our study are enriched for genetic 
susceptibility of BD and other neuropsychiatric traits, we 
used sLDSC (stratified linkage disequilibrium analysis) 
(Finucane et al. 2015) to calculate the partitioned heritabil-
ity of these features. For this approach we used published 
Psychiatric Genomics Consortium (PGC) summary statis-
tics for BD (Mullins et al. 2021), ADHD (Attention-Deficit/
HyperactivityDisorder) (Demontis et al. 2019), schizophre-
nia (Trubetskoy et al. 2022), PTSD (Post-traumatic stress 
disorder) (Nievergelt et al. 2019), MDD (Major depression 
disorder) (Howard et al. 2019), insomnia (Watanabe et al. 
2022), and the circadian trait of morningness (Jones et al. 
2016). We used the temporally significant ATAC-seq regions 
with 1 kilobases (kb) and 10 kb genomic windows in both 
downstream and upstream directions for each region. These 
ATAC-seq defined annotations were tested jointly with the 
baseline annotations included with sLDSC (Finucane et al. 
2015). Figure 4 shows the enrichment for the traits tested 
from the ATAC-seq regions annotations as well as the base-
line annotations (Full enrichment results are provided in the 
Supplementary Material). Among these, only the ATAC-seq 
regions that were decreasing in accessibility had a nominally 
significant (p value = 0.00463) less than expected presence 
for ADHD, and this effect was not present when the regions 
are extended by either 1 kb or 10 kb. In comparison, base-
line annotations such as conserved regions in mammals 
showed a significant enrichment for all the traits (ADHD 
p value = 7.88e-11, schizophrenia p value = 1.67e-23, BD 
p value = 1.14e-8, MDD p value = 5.92e-22, insomnia p 
value = 2.65e-15, morningness p value = 3.05e-29), except 
PTSD (p value = 0.073). We did not identify significant 
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enrichment of ATAC-seq regions in the other psychiatric 
and behavioral traits tested, indicating that these genomic 
regions with temporal trends in cromatin accessibility do not 
play a major role to their genetic architecture.

Discussion

Cell cultures of peripheral tissues have been employed as 
models of in vitro circadian clock systems to study their 
molecular components (Balsalobre et  al. 2000) and the 
disorders in which they are disrupted (Kripke et al. 2009). 
Most studies using these models have focused on targeting a 

single clock gene (Yamazaki and Takahashi 2005; Nakahata 
et al. 2006). Instead of evaluating a single circadian gene, 
we aimed to characterize the circadian features present at 
gene expression and chromatin accessibility levels. Our goal 
was to identify the circadian genes engaged by this system 
and their associated regulatory genomic regions, thereby 
exploring the molecular effects of circadian rhythms across 
functional genomic features. Additionally, we aimed to 
determine if this fibroblast in vitro model captures genomic 
features linked to the biology of BD and other disorders 
where circadian rhythms are disrupted.

From the longitudinal RNA-seq data we identified con-
sistent circadian patterns of expression in a limited amount 

Fig. 3   Motif enrichment analysis of time significant peak regions: 
Motif enrichment analysis results after combining all open chroma-
tin regions that followed a similar change in accessibility over time, 
including the top 10 motifs as well as motifs associated with circa-
dian genes and glucocorticoid response. P-values were confirmed 
as significant after the Benjamini adjustment cutoff of 1% FDR. A 

Eigengene values for the Green WGCNA module and motif enrich-
ment analysis of the associated decreasing in accessibility regions. B 
Eigengene values for the Blue module and motif enrichment analysis 
of the associated peak regions, including HOMER results for all peak 
regions decreasing in accessibility
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of genes such as ARNTL, CRY1, PER3, NR1D2 (Rev-erb-
Beta) and TEF, but observed noticeable differences in the 
expression patterns between cell cultures. When compared 
to a recent in vivo circadian human skin dataset (Olmo 
et al. 2022), we identified 267 out of the 1439 circadian 
genes previously identified in this tissue to have a signifi-
cant effect of time in their expression. This limited overlap 
could indicate that this in vitro model for studying circa-
dian rhythms is constrained to the circadian genes that 
are directly activated by a glucocorticoid-like stimulus. 
Glucocorticoid response elements have been identified 
for circadian genes such as PER1, PER2, PER3, CRY1, 
CRY2, Rev-erbAlpha (NR1D1), Rev-erbBeta (NR1D2), 
DBP, NPAS2 and BMAL1 (So et al. 2009). Consistent with 
these results we identified circadian rhythmicity in most 
of those genes that had previously been identified to have 
a glucocorticoid response element (GRE), with the excep-
tion of NR1D1. While we do identify expression levels 
from NR1D1, the lack of a significant circadian oscillation 
in comparison to the strong results from NR1D2 could be 
consistent with their known redundant function for circa-
dian rhythms (Liu et al. 2008).

We found robust circadian expression patterns for 
NR1D2. However, differences in the lenght of the predicted 
periods across tools indicates that estimating period dura-
tion from longitudinal RNA-seq data is not a straightfor-
ward problem. This could be due to the the small number of 
subjects used, leading to insufficient power. Furthermore, 
while ARSER identified 73 genes with significant periodic 
expression patterns, this software is known to have a high 
false positive rate in high resolution data (Wu et al. 2016). 
Interestingly, while the expression pattern of CRY1 follows 
the expected inhibition by NR1D2 (Chiou et al. 2016), it 
does not reflect the expected inhibitory action on ARNTL, 
nor the similar phase pattern with its heterodimer partner 
PER3. For the relationship with PER3, CRY1 has been pre-
viously reported to have a known phase delay with the PER 
genes (PER1,2,3)(Fustin et al. 2009), which could be attrib-
uted to the multiple binding sites that CRY1 has for different 
circadian modulators, resulting in stimulus and tissue spe-
cific temporal dynamics. Based on the time patterns, changes 
in the expression of CRY1 appear to precede the expression 
of ARNTL by 4 to 8 h. Similar expression patterns between 
these genes were reported in a previous in vivo study of 

Fig. 4   sLDSC enrichment results for psychiatric disorders and a cir-
cadian trait: Results of partitioned sLDSC across 3 psychiatric dis-
orders and morningness trait across different genomic annotations. 
Shown are the enrichment for both the temporal ATAC-seq regions 
and extended genome windows; as well as annotations part of the 

baseline model of sLDSC, such as baseline for all the annotations, 
histone markers H3K9ac, H3K4me1, and conserved regions in mam-
mals. PTSD post-traumatic stress disorder, MDD major depressive 
disorder, ADHD attention-deficit/hyperactivity disorder. * indicates 
enrichment p-value below 0.01
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human skin cells (Olmo et al. 2022), indicating that this 
model was able to replicate some of the circadian temporal 
dynamics seen within tissue.

ATAC-seq data can provide an untargeted yet compre-
hensive view of chromatin accessibility changes over time. 
Within this fibroblast in vitro model, we mainly identified 
genomic regions with linear increases and decreases of 
chromatin accessibility. Although we did not found circa-
dian temporal patterns in chromatin accessibility, previ-
ous studies conducted in vivo have reported such patterns 
(Koike et al. 2012). Specifically, proteins such as CLOCK 
and BMAL1 have been found to associate and interact with 
chromatin remodeling and chromatin modifying enzymes 
(Zhu and Belden 2020), as well as act as pioneer factors 
by directly modifying chromatin accessibility (Menet et al. 
2014). The absence of anticipated oscillations in chromatin 
within our dataset, as opposed to our observations in genes, 
could be due to multiple reasons. One possibility is that the 
mechanisms governing oscillatory chromatin changes may 
be exclusive to in vivo conditions. Under a physiological set-
ting, cells within a tissue are exposed to multiple stimuli that 
act as Zeitgebers, such as sunlight (exposure), metabolic sig-
nals, temperature, and hormones like cortisol (Roenneberg 
and Merrow 2016). The exposure to these signals is under 
a rhythmic control, with levels cycling throughout the day 
(Chauhan et al. 2023). By using a single exposure to dexa-
methasone in this model, we are missing the cyclic aspect of 
cortisol response present in vivo, as well as other effects that 
could be due to the coupling of Zeitgebers. However, our 
ATAC-seq dataset does replicate previous findings on the 
broader role of glucocorticoids in the chromatin landscape. 
Within regions with decreasing accessibility post-dexameth-
asone, the motif enrichment analyses identified the motifs 
for the GRE as well as for members of the AP-1 transcrip-
tional complex. These regions may have initially opened due 
to the dexamethasone treatment (for synchronization of the 
cells), but are closing without further continued exposure of 
dexamethasone. Regions with increasing accessibility may 
have initially closed due to the dexamethasone treatment, 
and this is consistent with motif profiles that were unrelated 
to direct glucocorticoid receptor (GR) targets (Bothe et al. 
2021). The dataset, however, lacks a Chip-seq analysis for 
GR occupancy, and we are limited to confirm if the identi-
fied regions are indeed due to GR activity. The strong glu-
cocorticoid effects observed in our data underscore the need 
for further exploration of circadian influences on chromatin 
regulation in fibroblast cell culture models. Other methods 
for synchronizing these cells and studying the circadian 
rhythms, such as a switch to serum free media (Yamazaki 
and Takahashi 2005), Forskolin treatment (Yagita and Oka-
mura 2000), or temperature cycles (Saini et al. 2012), could 
result in different types of chromatin regulation and gene 
expression dynamics. This study raises questions about the 

context-dependent nature of chromatin remodeling events 
and emphasizes the need to evaluate different synchroniza-
tion methods to ascertain their implications for circadian 
rhythms.

The ATAC-seq data showed genome wide transient 
changes in chromatin conformation, with most of these 
changes occurring within regions of unknown functions. To 
evaluate the relevance of these genomic regions for BD and 
other psychiatric traits, we used partitioned sLDSC regres-
sion. This tool identifies genetic susceptibility enrichment 
for a particular trait across the whole genome and within 
specific genomic annotations. The partitioned sLDSC analy-
sis mainly showed a significant deflation for the chromatin 
regions that were decreasing in accessibility over time with 
ADHD. Although not significant, it mirrored the enrichment 
for the regions that were increasing in accessibility. When 
expanding the genomic regions by either 1 kb or 10 kb both 
the magnitude and the significance of the enrichment are 
lost, indicating that this effect could be highly localized 
for these regions. For the other traits that we examined, the 
enrichment from the ATAC-seq regions were also attenuated 
when the genomic region was extended. These results show 
that these regions with linear changes in chromatin acces-
sibility identified here may not play a relevant role for these 
neuropsychiatric traits. However the attenuation observed 
when expanding the genomic window suggests that any 
relevant signal may be specific to those genomic positions.

The lack of an overlap between the temporal regulatory 
regions identified in this study and the known genetic archi-
tecture of BD could indicate four different interpretations. 
First, although peripheral tissues capture the genome of an 
individual, they don’t recapitulate brain molecular physiol-
ogy, the main tissue implicated in the pathophysiology of 
BD. Second, it could be that the disruptions in the circa-
dian rhythm are not under strong genetic control and are 
actually influenced by other downstream processes, such 
as post-translational modifications and differences at the 
protein level. Third, the specific circadian pathways that 
are engaged in this in vitro model by dexamethasone (i.e.: 
glucocorticoids) are not part of the genetic architecture of 
BD. This however does not exclude other circadian pathways 
that could be engaged by a different synchronizing stimu-
lus, such as serum (Balsalobre et al. 1998; Iyer et al. 1999). 
Furthermore, there are other stimuli that also act in differ-
ent ways with the circadian system, such as temperature. 
Whereas dexamethasone acts through binding of the gluco-
corticoid receptor, temperature affects heat-shock proteins 
(Saini et al. 2012). Lastly, the disrupted circadian phenotype 
is an episodic state in BD patients, not a constant trait. This 
could indicate that rather than the regular circadian system 
being affected by BD, it is the ability to deal with circadian 
stressors and disruptors that is implicated in BD disease 
susceptibility.
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The circadian analysis of gene expression and chroma-
tin accessibility data faced limitations that could be attrib-
uted to variability among cell lines from different subjects. 
Human skin cell studies, both in vivo (Olmo et al. 2022) and 
in vitro (Brown et al. 2005), have demonstrated that genetic 
differences contribute to variations in circadian gene expres-
sion’s phase and amplitude. The variability observed in this 
dataset was therefore not unexpected, but remains a factor 
to be considered for this kind of studies. Another potential 
source of variability was the data collection scheme, involv-
ing 13 separate cell cultures for each individual cell line. 
Distinctions in cell cycle state and growth rates among these 
cultures might have influenced the data. Previous research 
has shown that cell cycle and circadian rhythms are coupled 
processes (Nagoshi et al. 2004; Farshadi et al. 2020), and 
that these rhythms can be impacted by cell density (Nogu-
chi et al. 2013). Our approach, utilizing a 5% FBS culture 
that minimizes cell growth, aimed to control for both of 
these factors. Our lab’s prior work also confirmed that the 
cell density used for our study allows for the production 
of rhythmic circadian cycles in these cells (Supplementary 
Fig. 2). Although various factors known to influence circa-
dian rhythms could have contributed to the variability in this 
dataset, certain circadian genes appeared resilient, consist-
ently producing rhythmic cycles across cultures and individ-
ual cell lines. This could highlight specific genes’ resilience 
to various sources of variation in this kind of studies.

Conclusions

With the knowledge of the specific features that this in vitro 
model is able to capture of the circadian system, we advise 
care when interpreting the results of such experiments, as 
they may be heavily influenced by genetics, cell culture 
factors, and, crucially, the circadian cycle synchroniza-
tion method. This can, inadvertently, lead to a narrowing in 
the scope of studies of circadian rhythms in the context of 
neuropsychiatric traits. While the biology that this model 
captures after circadian synchronization induced by dexa-
methasone treatment does not seem to be directly involved 
in the known genetic architecture of BD, this model can still 
be applied to scientific questions that cannot be explored 
directly in human subjects. For instance, this model could 
be employed to characterize the specific biological path-
ways that are engaged during circadian distress. Notably, 
the dysregulated circadian phenotype in BD patients is 
characterized by episodic events rather than a static state, 
emphasizing the dynamic nature of the subjects. Responses 
to circadian distress could be directly compared between 
fibroblast cell lines derived from BD patients and healthy 
subjects. Additionally, the accessibility that this in vitro 
model provides could be used to study the effect of lithium, 

the most commonly used prescribed drug treatment for BD, 
during such circadian distress.

Materials and Methods

Cell Lines and Culture

Fibroblasts were isolated by taking skin biopsies from the 
nether region from subjects without known psychiatric 
disorders. Fibroblast cultures were established following 
standard procedures (Villegas and McPhaul 2005) and stored 
as frozen aliquots in liquid nitrogen. 6 fibroblast cell lines 
matched for sex, age and passage number were thawed out 
and grown to confluence in T75 culture flasks in standard 
culture media (DMEM containing 10% fetal bovine serum 
(FBS) and 1 × Penicillin–Streptomycin).

Upon reaching confluence, 5 × 10^4 cells were plated per 
line into 13 different 6 well plates (1 well per line per plate). 
All 6 lines were collected in the same experiment for the 
RNA-seq experiment. Due to the labor-intensive nature of 
the ATAC protocol and the need to process cells fresh, the 
6 lines were split into 2 batches, so 3 lines per batch were 
processed.

Assessment of Circadian Expression In Vitro

In order to collect RNA or cells every 4 h for 48 h, cells 
were split into two batches, which were reset 12 h apart 
(see supplementary Fig. 9). Cells were reset 12 h before the 
first collection to exclude the acute effects of dexametha-
sone and variation in synchronization conditions (Brown 
et al. 2005). 5 days after being plated the cells from batch 
one were synchronized by treatment with 100 nM Dexa-
methasone for 30 min. Cells were then washed with PBS 
and switched to collection media (DMEM containing 5% 
FBS and 1 × Penicillin–Streptomycin). Lower concentration 
of FBS was used in this media to stop the cells from grow-
ing during the experiment, in order to keep all time points at 
approximately the same culture density. 12 h later cells from 
batch 2 were synchronized and switched to collection media 
and the RNA/cell collection was started (from batch one).

RNA and Cell Collection

For the collection of RNA, cells were lysed using 350uL 
RLT lysis buffer from the Qiagen RNeasy mini kit. Lysed 
cells were then scraped off the plate, transferred to a 
Qiaschredder (Qiagen 79,656) and centrifuged for 2 min at 
max speed to further homogenize. Cell lysates were kept in 
-80 until extraction.

For the collection of cells for the ATAC protocol, cells 
were dissociated using 500uL of prewarmed TrypLE 



441Fibroblasts as an in vitro model of circadian genetic and genomic studies﻿	

(ThermoFisher 12604013) and left for 5 min at 37℃. Try-
pLE was inactivated using 500uL of DMEM. Cells were 
then counted using the Logos Biosystems LUNA-FL auto-
mated cell counter, and 50 × 10^4 cells were used as input 
for tagmentation. Tagmented DNA for library preparation 
was collected following the previously described protocol 
(Buenrostro et al. 2015).

RNA Extraction

RNA from cell lysates was extracted using the Qiagen RNe-
asy mini kit (Qiagen 74106). Cell lysates were extracted 
in a randomized order to prevent batch effects in down-
stream analysis. In order to collect total RNA including 
small RNAs, the standard extraction protocol (Purification 
of Total RNA from Animal Cells using Spin Technology) 
was adjusted by making the following changes: (i) adding 
1.5 volumes of 100% ethanol, instead of 70%, after the lysis 
step (step 4 in handbook protocol) and (ii) adding 700 mL of 
buffer RWT (Qiagen 1067933) instead of the provided RW1 
(step 6 in handbook protocol).

RNA and ATAC Sequencing

For the RNA sequencing, library preps were made using 
the Lexogen QuantSeq 3’ mRNA-Seq Library Prep Kit and 
sequenced with 65-base single end reads, and sequenced at 
a targeted depth of 3.8 M reads per sample, which is well 
above the recommended minimum 1 M reads per sample 
read depth for these types of libraries. ATAC seq libraries 
were generated following the previously described protocol 
(Buenrostro et al. 2015) and sequenced with 75-base double 
end reads, and sequenced at a targeted depth of 61 M reads 
per sample. Library preparation and sequencing was per-
formed at the UCLA Neuroscience Genomics Core (https://​
www.​semel.​ucla.​edu/​ungc). All samples were sequenced on 
a Illumina HiSeq 4000 sequencer.

RNA‑seq Data Processing and Analysis

Fastqc (Andrews 2010) software was used to assess the qual-
ity of the read files. Low quality reads were trimmed using 
TrimGalore and Cutadapt.

Alignment of reads was performed with the STAR 
(Dobin et al. 2013) software and to human gene ensembl 
version GrCh38. STAR was indexed to the genome using 
the –runMode genomeGenerate function. For aligning, 
STAR was run with the parameters –outFilterType ByS-
Jout –outFilterMultimapNmax 20 –alignSJoverhangMin 8 
–alignSJDBoverhangMin 1 –outFilterMismatchNmax 999 
–outFilterMismatchNoverLmax 0.1 –alignIntronMin 20 
–alignIntronMax 1000000 –alignMatesGapMax 1000000.

Samtools was used to index the aligned files from STAR.

Read counts were associated with genes using feature-
Counts software with the NCBI GRCh38 gene annotation 
file.

Analysis of the RNA-seq data used the R packages 
limma, Glimma and edgeR, as previously described (Law 
et al., 2016). Genes with low read counts were removed and 
reads were normalized by CPM. GeneIDs were converted to 
Gene Symbols using the package Homo.sapiens.

WGCNA (Langfelder and Horvath 2008) software was 
used to classify genes with similar temporal expression pat-
terns. WGCNA was run using a power value of 12 obtained 
from diagnostic plots and with the "signed" argument. 
MetaScape was used for Gene Ontology analysis of the 
resulting gene sets from WGCNA.

Following the method described in Mei et al. (2021), 
MetaCycle (Wu et al. 2016) was used to run circadian detec-
tion tools such as ARSER, JTK (Hughes et al. 2010), LS and 
metacycle. In order to integrate results from the different 
individuals, the function meta3d was used from the Meta-
cycle R package. RAIN (Thaben and Westermark 2014) was 
run separately.

According to the EdgeR user guide, cubic splines were 
generated using the splines package in R, with the ns func-
tion and 5 degrees of freedom. Resulting p-values were cor-
rected using a false discovery rate of 0.05. Significant genes 
were then compared to a previously published dataset of cir-
cadian human skin gene expression, resulting in 267 genes 
that were classified according to their time series using the 
“dtwclust” R package. The resulting clusters are available 
in the supplementary material. This analysis was also per-
formed with only the known circadian clock genes that had 
consistent expression patterns across the cell-lines.

ATAC‑seq Data Processing and Analysis

Sequenced open chromatin data from the ATAC-seq assay 
followed the standard ENCODE Pipeline for the identifi-
cation of open chromatin regions (OCRs) of the genome. 
The steps included using fastqc to evaluate the quality of 
the sequenced library. Followed by trimming of low quality 
reads with Trimgalore and Cutadapt. Alignment of the raw 
reads data to human gene Ensembl version GRCh38 was 
performed using bowtie2 (Langmead and Salzberg 2012) 
with a 2 kb insert size and allowing up to 4 alignments. 
Reads within black-listed regions alongside PCR duplicates 
were removed with samtools. MACS2 (Zhang et al. 2008) 
software was used to identify OCRs with parameters -g hs 
-q 0.01 –nomodel –shift -100 –extsize 200 –keep-dup all -B. 
PCR. Quality control metrics for the ATAC-seq dataset such 
as peak counts, PCR bottlenecking coefficients, fraction of 
reads in peaks and enrichment of transcription starting site 
are provided in the supplementary material and supplemen-
tary Fig. 10.

https://www.semel.ucla.edu/ungc
https://www.semel.ucla.edu/ungc
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To compare the ATAC-seq signal across timepoints 
and subjects, we created a consensus bed file using the 
bedtools (Quinlan and Hall 2010) function merge func-
tion, combining all the overlapping peak regions across 
timepoints and subjects into a single file. The Feature-
counts software was then used to assign read counts to 
those regions. Read counts were normalized by RPM.

WGCNA (Langfelder and Horvath 2008) software was 
used to classify peaks with similar temporal accessibil-
ity patterns. WGCNA was run using a power value of 12 
obtained from diagnostic plots and with the "signed" argu-
ment, identifying 4 modules after merging.

HOMER (Heinz et al. 2010) findMotifsGenome.pllp 
program was used to identify enriched transcription fac-
tor motifs first individually in the peaks that belonged to 
the largest WGCNA modules, as well as in the resulting 
set of grouping all the modules that displayed a similar 
increasing or decreasing pattern of accessibility.

Stratified Linkage Disequilibrium Score Regression 
Analysis

Following the procedure described in Ori et al. (2019), 
we applied an extension to sLDSR, a statistical method 
that partitions SNP-based heritability(h2) from GWAS 
summary statistics (Finucane et al. 2015). We ran sLDSR 
(ldsc.py –h2), using an ancestry-match 1000 Genomes 
Project phase 3 release reference panel, for each anno-
tation of interest while accounting for the full baseline 
model, as recommended by the developers (Finucane et al. 
2015); (Gazal et al. 2017), and an extra annotation of all 
the ATAC-seq detected in our in vitro model (n = 3126 
for peaks that were decreasing in accessibility, n = 4415 
for peaks increasing in accessibility), as well as extension 
of these regions by 1 kb and 10 kb genomic windows in 
both directions.
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