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Opinion Statement
Anthracycline (ANT)-induced cardiotoxicity (AIC) is a particularly prominent form of cancer therapy-related cardiovascular 
toxicity leading to the limitations of ANTs in clinical practice. Even though AIC has drawn particular attention, the best 
way to treat it is remaining unclear. Updates to AIC therapy have been made possible by recent developments in research 
on the underlying processes of AIC. We review the current molecular pathways leading to AIC: 1) oxidative stress (OS) 
including enzymatic-induced and other mechanisms; 2) topoisomerase; 3) inflammatory response; 4) cardiac progenitor 
cell damage; 5) epigenetic changes; 6) renin-angiotensin-aldosterone system (RAAS) dysregulation. And we systematically 
discuss current prevention and treatment strategies and novel pathogenesis-based therapies for AIC: 1) dose reduction and 
change; 2) altering drug delivery methods; 3) antioxidants, dexrezosen, statina, RAAS inhibitors, and hypoglycemic drugs; 
4) miRNA, natural phytochemicals, mesenchymal stem cells, and cardiac progenitor cells. We also offer a fresh perspective 
on the management of AIC by outlining the current dilemmas and challenges associated with its prevention and treatment.
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Introduction

Since the 1990s, the mortality rate of cancer has gradually 
decreased, while the incidence rate has steadily increased. 
Consequently, the side effects related to malignant tumor 
treatment have increasingly gained attention. According to 
epidemiological data, two of the main causes of illness and 
death globally are cardiovascular diseases and cancer [1]. 
Anti-cancer therapies, including chemotherapy, targeting, 
immunotherapy, and radiotherapy, can elevate the risk of 
cardiovascular diseases during and post-treatment, leading to 
cancer therapy-related cardiovascular toxicity (CTR-CVT) 
[2].

Anthracycline (ANT)-induced cardiotoxicity (AIC) is a 
particularly prominent form of CTR-CVT. Many cancers, 
including leukemia, lymphoma, sarcoma, and breast can-
cer, are commonly treated with ANTs, such as doxorubicin 
(DOX), epirubicin, daunorubicin, and norerythromycin [3]. 
However, the safety of ANTs has been a topic of ongoing 
concern, with the most significant clinical adverse events 
being the increased incidence of cardiovascular toxicity 
[3]. The occurrence of congestive heart failure associated 
with ANTs is 2–4%, sub-clinical structural changes occur 
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in approximately 10%, arrhythmias occur in 12%, and car-
diac-related biomarker positivity is observed in 30–35% of 
patients [4]. Moreover, the cardiac dysfunction caused by 
ANTs is often progressive and irreversible, with notice-
able ultrastructural abnormalities in the myocardium. As 
new anti-tumor drugs emerge and AIC garners more atten-
tion, particularly in patients at high cardiovascular risk, the 
National Comprehensive Cancer Network (NCCN) guide-
lines have begun to restrict the use of ANTs chemotherapy 
regimens [5]. Nonetheless, ANTs remain a vital component 
in the clinical treatment of cancer. Therefore, it is of great 
importance to delve into the molecular mechanisms and 
clinical prevention and treatment of AIC.

To date, the precise mechanisms underlying AIC are not 
fully understood. However, it is crucial for the treatment of 
AIC. To determine effective clinical prevention and treat-
ment methods, we have reviewed the latest advancements in 
the pathogenesis and therapeutic strategies for AIC.

Overview of Mechanisms of AIC

The potential mechanisms of AIC have not been com-
pletely elucidated, oxidative stress and the action of 
topoisomerases are two well-established mechanisms.. In 
addition, other mechanisms of AIC are continually being 

explored. The cardiac toxicity caused by ANTs may be due 
to complex and multi-factors, with cross-talk and syner-
gistic effects among various mechanisms contributing to 
AIC (Fig. 1).

Oxidative Stress

The most well-researched mechanism of AIC, Oxidative 
stress (OS), is caused by an imbalance between the body's 
deteriorating antioxidant defense system and the increased 
production of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS). One-electron reduction products 
of oxygen, or ROS, are produced when electrons escape 
the respiratory chain and take up to 2% of the oxygen 
in the body before failing to reach the terminal oxidase. 
These include the one-electron reduction product super-
oxide anion (O2·-), the two-electron reduction product 
hydrogen peroxide (H2O2), and the three-electron reduc-
tion product nitric oxide (NO) and hydroxyl radical (·OH). 
Although enzymes play a major role in the creation of 
ROS, additional processes can also contribute to the devel-
opment of ROS and OS. Overexposure to ROS oxidizes 
lipids, proteins, and nucleic acids, leading to permanent 
damage to biological components including DNA and cell 
membranes [6] (Fig. 2).

Fig. 1   Mechanisms of AIC with pharmacologic targets (Created with BioRender.com)
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Enzymatic Oxidative Stress

ANTs promote the formation of ROS through a variety of 
enzyme pathways,including actions on nitric oxide syn-
thase (NOS), nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase (NOX), and the reduced form of nicoti-
namide-adenine dinucleotid (NADH) dehydrogenase (ND) 
of mitochondrial electron transport chain complex-I.

The majority of energy in all tissues of the human body 
comes from oxidative phosphorylation of aerobic metabo-
lism inside the mitochondria, especially the cardiac tissue 
[7]. Complex-I/ ND is the first enzyme in the respiratory 
chain. The ANTs redox cycle mainly occurs on Complex-I 
in the mitochondrial respiratory chain [8, 9]. ND partly con-
verts the quinone moiety of ANTs to semi-quinone radical 
production in cardiomyocytes. Semi-quinones auto-oxidize 

to create parent ANTs and superoxide anions when molecu-
lar oxygen is present [4]. The buildup of superoxide anions 
and decreased adenosinetriphosphate (ATP) synthesis are 
the outcomes of this self-sustaining redox cycle of ANTs in 
ND. Superoxide dismutase (SOD) has the ability to spon-
taneously convert superoxides to H2O2. This mechanism 
explains how ANT-induced mitochondrial-associated ROS 
production can result in heart failure and cellular death [7].

The NOX, is a complex multicomponent protein, and it 
is closely related to the production of ROS in the cardio-
vascular [10]. There are seven subtypes of NOX [11]. The 
two main NOX subtypes that are expressed in cardiomyo-
cytes are organel-bound NOX4 and cell-membrane-bound 
NOX2, which is a mechano-sensor in cardiomyocyte fur-
thermore [12]. NOX2 is made up of the guanosine triphos-
phate binding protein (Rac1), the cytoplasmic regulatory 

Fig. 2   Mechanisms of oxidative stress in AIC (Created with BioRender.com)
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subunits p47phox, p67phox and p40phox, a heterodimer of 
gp91phox and p22phox, and membrane-bound cytochrome 
b-558 [13]. These enzymes facilitate the semi-quinone radi-
cal's formation, which is essential to AIC, by transferring an 
electron from NADPH to ANTs, and the leading to the pro-
duction of ROS [14]. Studies have shown that NOX2-lacking 
or gp91phox knockout mice are resistant to DOX-induced 
cardiotoxicity (DIC), exhibiting a decrease generation of 
superoxide radicals in heart tissue. In contrast, wild-type 
mice exhibited cardiac dysfunctions, including myocardial 
atrophy, programmed cell death of cardiomyocytes, and 
interstitial fibrosis [10, 15, 16].

Three subtypes of the NOS enzyme class—neuronal NOS 
(nNOS), endothelial NOS (eNOS), and injury-inducible 
NOS (iNOS)—catalyze the production of NO from L-argi-
nine in vivo [17]. The majority of eNOS is present in vas-
cular endothelial cells. OS can be caused by ANTs binding 
to the reductase region of eNOS and reducing the quinone 
moiety to semi-quinone radicals. This produces superoxide 
radicals and hydrogen peroxide. Nitrosation stress is the 
outcome of this as well as decreased NO synthesis and the 
production of peroxynitrite (reactive nitrogen species, or 
RNS) [18–23]. RNS have been shown to be a trigger for 
DIC death [18]. In addition to its association with cardio-
myocytes, eNOS plays a particularly significant role in the 
pathophysiology of ANT-associated endothelial toxicity.

Other Mechanisms of Oxidative Stress

A important contributing factor to AIC is iron imbalance. 
ANTs cause ROS generation go through a number of redox 
processes, and generate semi-quinone metabolites or Doxo-
rubicinol Hydrochloride, increasing the level of DOX-Fe2+ 
complexes and then OH- [24]. Lipid peroxidation caused 
by DOX can result in cardiotoxicity [25], wihle ferropto-
sis is the outcome of lipid oxidation. The ROS generated 
from ANTs metabolism can form several products, such as 
4-hydroxynonenal (4-HNE), through the lipid peroxidation 
of unsaturated fatty acids [26]. 4-HNE is a critical marker 
of ferroptosis. Glutathione peroxidase 4 (GPX4) serves 
as an endogenous lipid peroxidase scavenger and is a piv-
otal regulator of ferroptosis. Research indicates that ANTs 
down-regulates GPX4, leading to untimely clearance of lipid 
oxidation and further inducing mitochondria-dependent fer-
roptosis [24]. On the other hand, ANTs contribute to the 
accumulation of iron in cardiomyocytes. DOX regulates the 
ATP-binding box ABCB8 protein (a mitochondrial iron-
exporting protein) [27], resulting in decreased protein lev-
els and consequently impeding the iron export process in 
mitochondria [28].

ANTs can cause disruptions in calcium homeostasis and 
cardiac systolic dysfunction [29]. ANTs cause endoplasmic 
reticulum (ER) stress, decrease mitochondrial respiration, 

produce ROS from mitochondria and NOX, change Ca2+ 
signaling, and cause DNA damage in cardiomyocytes [30]. 
Mitochondrial dysfunction, decreased ATP synthesis, and 
decreased Ca2+ uptake are the results of ANTs' effects on 
the electron transport chain and increased creation of ROS. 
An increase in ROS causes ER stress, and when cytoplasmic 
Ca2+ concentration rises due to ER Ca2+ leakage, intracel-
lular Ca2+ homeostasis is upset, cardiac triggering activity 
increases, and atrial fibrillation occurs Furthermore, phos-
phorylation of calcium regulatory protein, which causes 
sarcoplasmic reticulum calcium leakage, and activation of 
calcium/calmodulin-dependent protein kinase II increase 
late sodium current and L-type calcium current in atrial 
myocytes are significant factors in the development of atrial 
fibrillation [31].

Inhibition of Topoisomerase

As a topoisomerase inhibitor, ANTs (e.g. DOX) could 
inhibit Top 2 by forming a covalent Top2-DOX complex, 
resulting in double-stranded DNA breaks [32, 33]. Top 2 
consists of isoenzymes Top 2α and Top 2β. Top 2α is highly 
expressed in proliferating (malignant and non-malignant) 
cells during G2/M phase [34–36] and is essential for chro-
mosome separation [37]. ANTs chemotherapy has shown 
high efficacy because Top 2α is up-regulated in cancer cells, 
in contrast, Top 2β is the sole Top 2 present in cardiac tissue 
[38]. ANTs are inserted into cardiomyocyte DNA by Top 2β, 
leading to DNA damage in cardiac tissue. Moreover, ANTs 
downregulates the expression of multiple genes through 
inhibiting Top 2β, including those involved in mitochon-
drial biogenesis and antioxidant function, which can protect 
cardiomyocyte from damage [39–41]. So the inhibition of 
Top2β can promote the AIC.

Inflammatory Response

ANTs causes oxidation and ER stress, which results in cell 
necrosis and apoptosis. It also encourages the release of 
damage-associated molecular patterns, which increases the 
expression of markers associated with pyroptosis (cysteiny 
l aspartate specific proteinase 1 [caspase-1], Interleukin-1β 
[IL-1β], and IL-18), inflammatory body markers (Toll-like 
receptor 4 [TLR4] and NOD-like receptor thermal pro-
tein domain associated protein 3), cell signaling proteins, 
tumor necrosis factor (TNF), and proinflammatory M1 mac-
rophages [42–44]. These lead to pyroptosis of cardiomyo-
cytes and the formation of AIC.

Cardiac Progenitor Cell Damage

Cardiac progenitor cells (CPC) can differentiate into smooth 
muscle cells, endothelium cells, and cardiomyocytes, and 
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they also exhibit the stem cell antigen c-kit (proto-onco-
gene protien) and are capable of self-renewing, clonality, 
and pluripotency [45]. ANTs promote oxidative stress, and 
DOX causes an average 30% shortening of CPC telomeres 
and inhibition of cell cycle through p53 activation, collec-
tively inhibiting CPC growth and survival [46]. Further-
more, DOX has been found to induce the rapid transloca-
tion of nucleolar protein and nuclear phosphoprotein to the 
nucleoplasm and inhibit the synthesis of new pre-ribosomal 
RNA, resulting in CPC damage through nucleolar stress 
[47]. CPC damage may be a essential cause of impaired 
cardiomyocyte renewal, accumulation of senescent cells, 
apoptosis, and the onset of ventricular dysfunction, support-
ing the notion that progenitor cell dysfunction may influ-
ence the development of cardiomyopathy in vivo.

Epigenetic Changes

Epigenetics refers to modifications in gene expression 
or cellular phenotype that occur without altering the 
DNA sequence. These modifications include histone 
modification, DNA methylation, and non-coding RNA 
(ncRNA). Histone modifications, ncRNA expression, 
and DNA methylation have all been linked to AIC [48, 
49]. Research has found that rats lacking methyl donors 
developed cardiomyopathy, with a breakdown in mito-
chondria arrangement in heart muscle [50]. In rat hearts 
treated with DOX, global hypomethylation of DNA has 
been detected, along with dysregulated expression of 
the mitochondrial gene products encoded by the nuclear 
and mitochondrial genomes [51]. Histone modification 
is also involved in AIC [52–54]. Furthermore, the con-
trol of ncRNAs, such as microRNA (miRNA), circle 
RNA (circRNA) and long non-coding RNA (lncRNA), is 
another known epigenetic modification. miRNA regulates 
the cardiovascular system and may contribute to DIC by 
causing damage to the cardiomyocytes via a number of 
different mechanisms. Recent research has demonstrated 
that deregulation of miRNA expression might worsen the 
pathological processes associated with DIC, such as OS 
induction, apoptosis, ion channel failure, and microvascu-
lar dysfunction. A meta-analysis found that the following 
genes have been associated with AIC during chemother-
apy in breast cancer patients: miR-1, miR-133, miR-126, 
and let-7f, etc. [55].

RAAS System Dysregulation

Numerous forms of cardiovascular remodeling are associated 
with activation of the renin–angiotensin–aldosterone system 
(RAAS). Elevated levels of angiotensin II (Ang II) have the 
ability to cause OS in cardiomyocytes, which in turn promotes 
necrosis and apoptosis via the mitochondrial route. Research 
has demonstrated that AngII-1A receptor (AT1) knockout mice 
had much better cardiac function than WT mice. Histological 
analysis has revealed that DOX causes the loss of myofibrillar 
fibers in WT mice and increase the number of apoptotic cells, 
with the AT1-mediated Ang II signaling pathway playing a 
significant role in DOX-induced heart damage [56]. Moreover, 
Ang II can worsen cardiac function and exacerbate cardiac 
fibrosis in DOX-exposed mice, with a significant increase in 
multiple inflammatory and fibrosis markers [57].

Current Prevention and Treatment Strategies 
of AIC

Some of the strategies that have been studied include reduc-
ing the probability of AIC by adjusting the infusion timing, 
delivery mode (e.g., liposomal DOX), and dosage of ANTs. 
Dexrazoxane (DEX) is a cardioprotective agent approved for 
patients at high risk for AIC or those who have received sub-
stantial cumulative doses of ANTs [58]. Additionally, drugs 
targeting RAAS system and glucose-lowering drugs are uti-
lized for secondary prevention of AIC [59].

Dose Reduction and Change of Single Infusion Dose

Dosage is a critical factor influencing AIC. A previous 
study observed a clear correlation between the occurrence 
of DIC and the total dose administered, and it is therefore 
recommended that the dose of DOX-based regimens should 
not exceed 550 mg/m2 and that of epirubicin should not 
exceed 900 mg/m2 [60]. The 2022 European Society of 
Cardiology (ESC) Guidelines consider DOX or equivalent 
doses ≥ 250 mg/m2 as high risk (Table 1 shows the high-risk 
doses of other ANTs based on equivalent doses of DOX in 
the ESC guidelines) [61]. Because of the linear relation-
ship between ANT infusion rate and AIC, slower continu-
ous infusion doses may reduce the risk of AIC compared 
with rapid administration [62], and a meta-analysis showed 
that ANTs with infusion intervals of six hours or more were 
associated with a reduced risk of heart failure (RR: 0.27, 

Table 1   High-risk doses of 
other ANTs at the same dose of 
DOX conversion

Doxorubicin Epirubicin Daunorubicin Mitoxantrone Idarubicin

AIC dose ratio 1.0 0.8 0.6 10.5 5
Isoequivalent dose 100 mg/m2 125 mg/m2 167 mg/m2 9.5 mg/m2 20 mg/m2
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95% CI: 0.09–0.81) and subclinical AIC (RR: 0.35, 95% 
CI: 0.15–0.9) compared with high-dose administration [63].

Altering Drug Delivery Methods

Due to the irreversibility of AIC, researchers have made 
some efforts to address these problems and have tried to 
establish a number of novel drug delivery systems (DDSs) 
to develop delivery methods, among which liposomes are 
an advantageous DDS. Compared with direct administra-
tion, liposomal delivery systems have significantly improved 
the efficacy and safety of chemotherapeutic drugs, such as 
pegylated liposomal DOX, DOX hydrochloride liposomes, 
etc. [64]. A meta-analysis showed a significant increase in 
cardiotoxicity in conventional DOX compared to liposome-
encapsulated DOX (RR: 3.75, 95% CI: 2.46–5.70) [65]. 
Polymeric nanoparticles (NPs) are also being explored 
for drug delivery to malignant tumors, where DOX, when 
loaded onto NPs, is targeted to tumour tissue and prevented 
from accumulating in non-target organs to reduce its adverse 
effects. For example, Live Macrophage-Delivered DOX-
Loaded Liposomes further increases the cumulative concen-
tration of ANTs at the tumor site compared to conventional 
liposome delivery, allowing the drug to penetrate deeper into 
the tumor tissue, and in addition, the delivery system uses 
highly biocompatible materials with a lower incidence of 
AIC without compromising anti-tumor efficacy [66]. San-
tin et al. [67] designed poly(lactic-co-glycolic acid)-grafted 
silica NPs (PLGA-NPs). In terms of mechanism, PLGA-
NPs reduce DOX-induced lysosomal alkalinization in car-
diomyocytes in the presence of DOX, thereby improving 
cardiomyocyte lysosomal function and autophagic flux, and 
alleviating DOX-related mitochondrial dysfunction and OS.

Antioxidants

A number of studies have indicated that multivitamins (e.g., 
B vitamins, vitamin C, vitamin D, etc.) may act as anti-
oxidants in the mitigation of AIC. Vitamin B6 can coun-
teract OS caused by ANTs by reducing the expression of 
the Na + /H + exchanger, lowering serum malondialdehyde 
(MDA) and elevating serum SOD levels, and lowering the 
ratio of B-cell lymphoma-2 (Bcl-2)-associated X protein 
(Bax) [68]. Nicotinamide adenine dinucleotide, nicotina-
mide adenine dinucleotide phosphate, and its reduced form 
NAD(P)H are two common functional cofactors for vita-
min B3. Known as the NAD(P)(H) pool, these cofactors 
are closely linked to every vital bioenergetic, anabolic, and 
catabolic pathway [69]. Furthermore, via controlling many 
intracellular Ca2+ signaling pathways, mitochondrial respira-
tion, and ATP synthesis, the NAD(P)(H) pool also plays a 
critical role in cellular metabolism and cell signaling [70]. It 
has been established that vitamin C can guard against AIC, 

and that sodium-dependent vitamin C transporter-2 is less 
expressed and localized in cardiac tissue when exposed to 
DOX. But it has been shown that taking supplements of 
vitamin C can undo this alteration [71]. Simultaneously, 
vitamin C can inhibit the levels of cardiac pro-inflammatory 
cytokines IL-1β, TNF-α, and IL-6, as well as the inflamma-
tory response in cardiac tissue. It can also downregulate the 
increase in the expression of pro-apoptotic proteins Bax, 
Bcl-2/adenovirus E1B19kDa interacting protein 3, Bcl-2 
antagonist killer, and caspase-3, NO and NOS activities, 
protein nitrosylation, and inducible NOS protein expres-
sion caused by DOX [72]. 4-HNE, NAD(P)H dehydrogenase 
quinone 1 (NQO1), and other lipid peroxidation markers of 
ferroptosis are of significant importance. The simultaneous 
use of vitamin D and DOX (10 mg/kg) has been observed to 
result in a reduction in the phosphorylation levels of 4-HNE 
and NQO1 in heart tissues when compared to DOX alone.
This has been demonstrated to inhibit OS and ferroptosis 
[73].

Glutathione (GSH) is the most crucial antioxidant in 
redox homeostasis. It does this by using both enzymatic 
and non-enzymatic antioxidants, such as glutathione trans-
ferases, catalase (CAT), SOD, and GPX, which are in charge 
of detoxifying endogenous substances like lipid hydroper-
oxide, superoxide, etc. [74]. The administration of DOX in 
mice has been shown to significantly enhance left ventricu-
lar ejection fraction (LVEF) and reduce the level of brain 
natriuretic peptide (BNP) when combined with GSH [75].

Coenzyme Q10 is a potent antioxidant and free radical 
scavenger. Following coenzyme Q10 treatment, the activ-
ity of SOD was significantly increased. Additionaly, hema-
toxylin–eosin staining demonstrated a notable reduction in 
the number of autophagosomes in rats following coenzyme 
Q10 treatment, when compared with rats treated with DOX 
alone [76]. In a separate study, the DOX plus Q10 group 
exhibited increased CAT activity (P < 0.05) and decreased 
MDA concentrations (P < 0.05) in comparison to the DOX 
group, thereby antagonizing OS levels [77].

Dexrezosen and its Analogues

The only cardioprotective medication licensed by Food and 
Drug Administration to decrease AIC is the iron chelator 
bisdioxopiperazine agent DEX [78]. DEX has been offi-
cially approved for adult patients with advanced or meta-
static breast cancer who have received DOX or equivalent 
drugs with a minimum cumulative anthracycline dose of 
300 mg/m2 [79] and as a primary prevention strategy for 
AIC. The antagonism of AIC by DEX is generally based 
on 3 mechanisms: First, DEX protects cardiomyocytes by 
hydrolyzing into the iron-chelating metabolite ADR-925 
(N, N'-[(1S)-1-methyl-1,2-ethanediyl]-bis [(N-(2-amino-
2-oxoethyl)]glycine) [80]. This metabolite can then be 
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intracellularly converted into a ring-opening chelator. This 
is the mechanism of action of DEX. For instance, in DIC, 
ADR-925 displaces iron within the DOX-Fe3+ complex and 
binds to iron, which can impede iron-mediated free radical 
production, obstruct the inactivation of respiratory enzymes 
by iron complexes, and reduce DIC. Secondly, DEX is a topo 
IIβ inhibitor, and DEX treatment results in a near complete 
loss of topo IIβ in cardiomyocytes, a process that approxi-
mates exponential decay (t1/2 = 2.7 h) [81]. The action of this 
mechanism results in the reduction of ANT-induced forma-
tion of topo IIβ-hidden DNA double-strand breaks, thereby 
reducing cardiomyocyte damage. DEX analogues also 
have antagonistic AIC effects, such as meso-derivative 11 
(ICRF-193), a DEX analogue, which inhibits and depletes 
topo IIβ in cardiomyocytes more effectively than DEX and 
shows the highest cardioprotective efficiency. Notably, the 
cardioprotective effect of ICRF-193 does not interfere with 
the antitumor activity of ANTs [82]. Nevertheless, there is 
still a lack of consensus regarding the inhibition of ADR-
925 hydrolysate on topo IIβ. For example, Jirkovský et al. 
[83] demonstrated that DEX inhibits and depletes topo IIβ, 
thereby preventing daunorubicin-induced heart damage. In 
contrast, ADR-925 does not alleviate daunorubicin-induced 
heart damage. Thirdly, DEX has been demonstrated to 
antagonize programmed cell death of cardiomyocytes (e.g., 
ferroptosis). Research has revealed that when cardiomyo-
cytes are treated with DOX, there is a considerable rise in 
p38(a kind of MAPK) mitogen-activated protein kinase 
(MAPK) phosphorylation [84]. DEX has been shown to 
inhibit DOX-induced phosphorylation of p38MAPK and 
p65, and to down-regulate the expression of the p38MAPK/
nuclear factor-k-gene binding (NF-κB) pathway in mouse 
hearts [85], inhibiting DOX-induced cardiomyocyte necrosis 
and apoptosis.

Statins

As hydroxymethylglutaryl coenzyme A (HMG-CoA) inhibi-
tors, statins have long been considered one of the most effec-
tive treatments for lowering cardiovascular events [86]. Clin-
ical studies and mechanistic studies on statin prophylaxis 
and treatment of AIC are ongoing. In a clinical trial with 300 
lymphoma patients receiving ANT therapy, patients on ator-
vastatin experienced a decreased frequency of AIC (9% ver-
sus 22%, P = 0.002) and a higher rate of loss in LVEF in the 
placebo group (RR: 2.9; 95% CI: 1.4–6.4) [87]. In terms of 
mechanism, survivin is a member of the apoptosis inhibitory 
protein family and achieves cardioprotective effects through 
the Forkhead box O1 /signal transducer and activator of tran-
scription 3 (STAT3) /surfactant protein 1 transcriptional net-
work. Statins reduce DIC by transcriptionally regulating the 
anti-apoptotic protein survivin [88]. According to a different 
research, atorvastatin also reduced myocardial fibrosis and 

myocardial apoptosis via modifying phosphorylated protein 
kinase B (p-Akt), heat shock 70 kDa protein, phosphoryl-
ated c-Jun amino-terminal kinase (p-JNK), and phosphoryl-
ated extracellular signal-regulated kinase (p-ERK) signaling 
[89]. Rosuvastatin, as another commonly used inhibitor of 
HMG-CoA, downregulates the levels of cTnI and LDH and 
inhibits OS and inflammatory processes such as MDA and 
IL-17 [90].

RAAS Inhibitors

The 2022 ESC guidelines additionally advocate the use of 
beta-blockers (BBs), angiotensin receptor blockers (ARBs), 
and angiotensin-converting enzyme inhibitors (ACEIs) for 
the secondary prevention of ANT cardiotoxicity in patients 
with AIC [61]. These drugs have been demonstrated to facil-
itate ventricular recovery by inhibiting ventricular remodel-
ling mediated by adrenergic and neuroendocrine disorders. 
Furthermore, several meta-analyses have indicated that pro-
phylactic use reduces the incidence of AIC [91, 92]. In terms 
of mechanism, Lódi et al. [93] showed that in animal mod-
els treated with DOX, both ACE inhibitors (bisoprolol) and 
BB (perindopril) inhibited cardiomyocyte apoptosis, while 
preventing DOX-induced fibrotic remodeling and DOX-
induced increase in caspase-3 levels, which allowed for the 
preservation of myocardial ultrastructure [93]. Benazepril 
hydrochloride pretreatment counteracts DOX-induced OS 
and inhibits the activation of apoptosis via the phosphati-
dylinositol 3-kinase(PI3K)/Akt signalling pathway [94]. 
DOX increased the production of ROS in H9c2 cells and 
up-regulated the expression of AngII type I receptor, NOX2, 
NOX4, caspase-3, caspase-9, and MAPK signalling proteins, 
including p-p38, p-JNK, and p-ERK. The administration of 
valsartan was found to attenuate these effects [95]. Besides, 
valsartan markedly reduced the expression levels of several 
proteins linked to ER stress and apoptosis, such as caspase-3, 
activating transcription factor (ATF)-6, ATF-4, eukaryotic 
initiation factor (eIF)-2α, Bax, C/EBP homologous protein 
(CHOP), pancreatic endoplasmic reticulum kinase (PERK), 
iron responsive element-1α, and glucose-regulated protein 
78 (GRP78) [96]. However, the clinical evidence supporting 
the use of ACEIs/ ARBs/ BBs to prevent the cardiovascular 
toxicity of ANTs remains inconclusive. In particular, the 
basic assessment of whether the application of cardiopro-
tective therapy in low-risk patients is beneficial remains a 
matter of contention [97–100].

Hypoglycemic Drugs

The use of hypoglycemic drugs can mitigate the risk of AIC 
in diabetic patients to a certain extent. Metformin (MET) 
could exerts its cardioprotective effects by acting on the 
adenosine monophosphat-activated protein kinase (AMPK) 
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pathway, which regulates the occurrence of mitochondrial 
biological processes through peroxisome proliferator-acti-
vated receptor gamma coactivator 1α signaling, reduces 
apoptosis by inhibiting the mammalian target of rapamycin 
(mTOR) signalling, increases autophagy through Unc-51-
like kinase 1, and reduces fibrosis by inhibiting transform-
ing growth factor (TGF)-β signalling. In vivo and in vitro 
studies have demonstrated that MET prevents DOX-induced 
cleavage of caspase-3 and Bax increases. MET also prevents 
the downregulation of Bcl-2, activates the AMPK pathway, 
while inhibiting ferroptosis and improving cardiac function 
by activating AMPKα2 phosphorylation [101, 102]. How-
ever, the results of clinical studies appear to be conflict-
ing, with a 143-person RCT showing that metformin did 
not prevent the development of AIC compared with placebo 
[103]. Nevertheless, a different clinical trial revealed that 
after a year of starting ANT medication, patients treated 
with metformin had a reduced incidence of heart failure 
(3.6% vs. 10.5%; P = 0.022), and metformin (HR: 0.71; 95% 
CI: 0.50–1.00; P = 0.049) was also linked to a lower death 
rate [104]. Consequently, further validation is required with 
regard to the benefits of MET in patients with ANTs.

On the other hand, research on the prevention and treat-
ment of AIC using sodium-glucose cotransporter 2 (SGLT-2) 
inhibitors has shown that dapagliflozin (DAPA) can counter-
act AIC by reducing OS through PI3K/Akt/nuclear respira-
tory factor (Nrf) 2 signalling and by preventing the down-
regulation of markers linked to fibrosis (phosphorylated 
collagen I, α-smooth muscle actin, fibronectin, and Small 
mothers against decapentaplegic [SMAD] 3) and hypertro-
phy (atrial natriuretic peptide and BNP) [105]. Furthermore, 
another in vivo study showed that DAPA decreased cardiac 
expression of Bax and caspase-3,while increasing Bcl-2 
expression. Additionally, DAPA also significantly reduced 

ER stress-related proteins, including ATF-4, PERK, CHOP, 
eIF-2α, and GRP78 [106]. Nevertheless, there is a paucity 
of clinical studies on SGLT-2 inhibitors.

Novel Therapies for Pathogenesis‑Based AIC

As ncRNAs have emerged as a research focus in transcrip-
tomics in recent years, and cell therapies and natural phar-
maceutical ingredients have also been demonstrated to be 
effective in intervening in AIC, it may be concluded that 
these approaches could be effective in preventing and treat-
ing AIC.

miRNAs

The most extensively researched role in AIC is that of miR-
NAs, and the expression of certain miRNAs is dependent on 
the regulatory function of other ncRNAs, including circR-
NAs and lncRNAs. It has been demonstrated that miRNAs 
are essential to the cardiovascular system and can either 
directly or indirectly control the onset and progression of 
AIC. miR-1, miR-133 family are the most explored ncRNAs 
in cardiovascular system, [107, 108], In addition, some miR-
NAs, such as miR-15, miR-22, miR-30, miR-34 family are 
important for the physiology and pathology of the cardio-
vascular system. In addition to acting as regulators of AIC, 
miRNAs also serve as regulatory targets for other ncRNAs, 
such as lncRNAs and circRNAs, which promote or inhibit 
the occurrence of AIC by acting as sponges for multiple 
miRNAs. The specific roles played by miRNAs in AIC are 
presented in Table 2.

Table 2   Therapeutic role of miRNAs in AIC

ncRNAs Promote/inhibit AIC Target Effect References

miRNA regulates AIC directly
  miR-15b-5p promote Bcl-2, Bax, Akt, Bmpr1a exacerbate DOX-induced apoptosis [109]
  miR-22 promote SIRT 1, exacerbate cardiomyocyte apoptosis [110]
  miR-30 inhibit GATA-6 lead to dilated, hypertrophic cardiomyopathy [111]
  miR-34-5p promote SIRT3 lead to pyroptosis by regulating autophagy and mitochon-

drial ROS
[112, 113]

  miR-130a promote PPARγ exacerbate cardiomyocyte apoptosis, inflammation [114]
  miR-140-5p promote Nrf2, Sirt2 OS [115]
  miR-146a inhibit P53, TAF9b inhibits apoptosis and partially reverses DIC [116]

regulate AIC indirectly through miRNAs
  lncRNA NEAT1 inhibit miRNA let-7f-2-3p - [117]
  lncRNA MALAT1 inhibit miR-92a-3p, ATG4a improve mitochondrial metabolism [118]
  circITCH inhibit miR-330-5p regulate Ca2+ [119]
  circArhgap12 promote miR-135a-5p stimulate OS and apoptosis [120]
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Natural Phytochemicals

Natural substances found in herbs and plants called phyto-
chemicals have been identified as possible treatments for 
AIC [121]. Research has demonstrated that when paired with 
DOX, the multi-activity and multi-targeting of phytochemi-
cals including ginsenoside Rg1, paeonol, and tanshinone 
I can provide greater clinical benefits. The specific roles 
played by different types of natural phytochemicals in AIC 
are presented in Table 3.

Cell Therapy

Mesenchymal Stem Cells

Heart tissue regeneration has been the subject of much 
research on mesenchymal stem cell (MSC)-based tissue 
regeneration treatments. MSCs are more receptive to cell-
based cardiac tissue regeneration therapy because they can 
differentiate into a range of cell lineages, including cardio-
myocytes, skeletal muscle cells, osteoblasts, chondrocytes, 
and adipocytes. This is because mesenchymal stem cells 
secrete VEGF, which is secreted by mesenchymal stem cells 
via paracrine hepatocyte growth factor to stabilize endothe-
lial cell barrier function [140]. DOX causes MSCs to senes-
cence, which lowers their viability, proliferation, and parac-
rine actions and is linked to the development of AIC [141]. 
Zaki et al.’s [142] studies conducted in vitro verified that 
MSCs markedly decreased MDA and TNF-α while increas-
ing VEGF, IL-10, and the Bcl2/Bax ratio. MSCs can also act 
on the miR-34a-SIRT1 axis, inhibit the expression of miR-
34a, upregulate SIRT1, and produce the anti-aging effect of 
H9c2 cells. In addition, MSCs can also inhibit the expres-
sion of cell cycle-related proteins p53 and p16, increase tel-
omere length, and telomerase activity [143]. MSCs activate 
the Jagged-1/Notch-1 signalling pathway by upregulating 
VEGF expression, resulting in inhibition of TGF-β1 release, 
further inhibiting DOX-induced senescence in H9c2 cells 
[144]. Another phase II clinical trial of BMSCs infusion 
(2 million cells/kg at 20, 4 and 16 months after AIC, 2 mil-
lion cells/kg, 4 million cells/kg) in 3 patients with AIC at 
different time points (LVEF < 40%), showed a significant 
improvement in LVEF at 4 and 16 months after AIC [145]. 
Cell therapy with MSC/bone marrow mononuclear cells is 
effective in attenuating AIC and ameliorating cardiovascular 
events caused by ANT use [146].

Cardiac Progenitor Cells

Crucial regulators of cardiomyocyte homeostasis [147], 
CPCs were found to have upregulated expression of p16 
inhibitor of cyclin-dependent kinase 4a [148], a well-known 
aging marker, in the heart tissue of the majority of DIC 

patients who died [149]. Additionally, the study revealed that 
CPCs' functional properties, including migration and differ-
entiation, were adversely impacted. To sum up, DOX expo-
sure significantly reduces the number of CPCs and perma-
nently impairs their function. Premature aging of CPCs and 
their progeny causes the heart to have a lower capacity for 
regeneration, and may represent the cellular basis of DOX-
induced human cardiomyopathy. Injecting enhanced green 
fluorescent protein-labeled CPCs into failing myocardium 
encourages the regeneration of cardiomyocytes and vascular 
structures, which improves ventricular function and animal 
survival [46]. Furthermore, intravenous injection of cardiac 
progenitor cell-derived exosomes prevents increased ROS, 
myocardial fibrosis, CD68 + inflammatory cell infiltration, 
nitric oxide synthase expression, left ventricular dysfunc-
tion, and inhibits miR-146a-5p target genes to prevent AIC. 
CPC exosomes also contain a variety of proteins involved 
in redox processes [150]. But as of right now, AIC therapy 
based on CPC and CPC is still in the experimental stage.

The Current Dilemma and Challenges of AIC 
Prevention and Treatment

However, as far as the current research is concerned, the 
treatment strategies for AIC are relatively limited, the cur-
rent guidelines do not strongly recommend any therapy, and 
the approved treatments often show conflicting results and 
collateral effects, which are reflected in many aspects [151].

Due to the awareness of the adverse cardiac events caused 
by ANTs, the use of ANTs has been restricted in clinical 
practice to avoid ANT-containing regimens. For example, in 
a randomized controlled trial of 5924 patients, no significant 
difference in DFS and OS was observed between docetaxel/ 
cyclophosphamide (TC) and doxorubicin/ cyclophospha-
mide/ docetaxel chemotherapy (AC-T) [152], and the latest 
NCCN breast cancer guidelines also eliminated epirubicin/ 
cyclophosphamide/ docetaxel (EC-T) regimens in favor of 
TC regimens. However, for patients with lobular pN2/pN3 
tumors, ANT-containing chemotherapy regimens remain the 
preferred option.

Changing the way drugs are delivered is a fundamen-
tal way to avoid AIC, and at the same time clinical trials 
have also shown that the delivery method of liposome-
encapsulated ANTs can avoid AIC to the greatest extent 
possible without compromising anti-tumor efficacy, which 
is currently the most mature solution. But the price is steep. 
Furthermore, liposomal preparations have been linked to a 
higher chance of a few adverse consequences, such as hand-
foot syndrome and mucositis [153].

Although antioxidants are used in the prevention and treat-
ment of AIC, there is increasing evidence that antioxidants 
may attenuate the anti-cancer activity of chemotherapeutic 
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drugs [154], so it is recommended that the combination of 
GSH is contraindicated during chemotherapy unless ANTs 
causes severe hepatotoxicity and cardiotoxicity.

Statins, ACEIs/ARBs, BBs, and glucose-lowering drugs 
are recommended by guidelines for secondary prevention 
of AIC [61], but their clinical efficacy is still limited in cur-
rent clinical trials, such as a previous study that evaluated 
2625 patients with tumors who were scheduled to receive 
ANTs, and showed that close monitoring of LVEF after 
chemotherapy can detect almost all (98%) cases of cardio-
toxicity during the first 12 months of follow-up. In addition, 
early treatment with ACEIs (enalapril) and receptor block-
ers (carvedilol or bisoprolol) normalizes cardiac function 
in most cases (82%), but only 11% of patients with LVEF 
renormalization recover completely [155]. As far as the cur-
rent study is concerned, the secondary prevention of AIC 
is still based on studies with small samples, retrospective 
designs, short follow-up, or case reports.

Although DEX is considered to be the only drug for the pre-
vention and treatment of AIC, the clinical use of DEX is limited 
due to the risk of secondary malignancies induced by clinical 
therapeutic doses [156]. And DEX may increase the risk of 
acute myeloid leukemia and myelodysplastic syndrome [157]. 
A retrospective cohort study showed that the addition of DEX 
to DOX resulted in a higher incidence of myelosuppression in 
all blood components in adjuvant patients [158]. Therefore, cur-
rent clinical guidelines recommend it only as a cardioprotective 
agent in patients receiving high-doses of DOX [61].

At present, there is still no ideal prevention or treatment plan 
for AIC, but with the development of precision medicine, new 
therapies such as ncRNAs mesenchymal stem cell therapy and 
cardiac progenitor cells in the treatment of AIC are also being 
explored, but based on the current research, the application of 
ncRNAs in the field of AIC is more focused on the diagnosis 
of AIC, and the application in treatment is relatively limited. At 
the same time, the research on ncRNAs in oncology and car-
diology is still at the mechanistic level, and clinical research is 
still limited, and the same dilemma can be seen in cell therapy. 
In recent years, the successful example of artemisinin in the 
treatment of malaria has attracted more attention to this abun-
dant phytochemical resource [159]. And the application of phy-
tochemicals in oncology and cardiology is also being explored. 
Due to their complex composition and numerous targets, some 
monomeric components have been used in the treatment of AIC 
and are a very promising therapeutic measure.

Summary and Future Prespective

As the pathogenesis of AIC is gradually revealed, preci-
sion intervention methods based on this understanding are 
also updated. However, it is crucial to emphasize that cau-
tion should be exercised to ensure that cardiotoxicity is not 

diminished at the expense of efficacy in the development of 
future therapeutics and therapies before the optimal alterna-
tive drugs and regimens are utilised in clinical practice. At 
the same time, it is imperative to accelerate the development 
of alternative chemotherapy drugs for ANTs with the objec-
tive of fundamentally eliminating AIC.
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