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Assessing the causal relationship 
between metabolic biomarkers 
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The development of coronary artery disease (CAD) is significantly affected by impaired endocrine 
and metabolic status. Under this circumstance, improved prevention and treatment of CAD may 
result from knowing the connection between metabolites and CAD. This study aims to delve into the 
causal relationship between human metabolic biomarkers and CAD by using two-sample Mendelian 
randomization (MR). Utilizing two-sample bidirectional MR analysis, we assessed the correlation 
between 1400 blood metabolites and CAD, and the metabolites data from the CLSA, encompassing 
8299 participants. Metabolite analysis identified 1091 plasma metabolites and 309 ratios as 
instrumental variables. To evaluate the causal link between metabolites and CAD, we analyzed three 
datasets: ebi-a-GCST005195 (547,261 European & East Asian samples), bbj-a-159 (29,319 East Asian 
CAD cases & 183,134 East Asian controls), and ebi-a-GCST005194 (296,525 European & East Asian 
samples). To estimate causal links, we utilized the IVW method. To conduct sensitivity analysis, 
we used MR-Egger, Weighted Median, and MR-PRESSO. Additionally, we employed MR-Egger 
interception and Cochran’s Q statistic to assess potential heterogeneity and pleiotropy. What’s more, 
replication and reverse analyses were performed to verify the reliability of the results and the causal 
order between metabolites and disease. Furthermore, we conducted a pathway analysis to identify 
potential metabolic pathways. 59 blood metabolites and 27 metabolite ratios nominally associated 
with CAD (P < 0.05) were identified by IVW analysis method. A total of four known blood metabolites, 
namely beta-hydroxyisovaleroylcarnitine (OR 1.06, 95% CI 1.027–1.094, FDR 0.07), 1-palmitoyl-2-
arachidonoyl (OR 1.07, 95% CI 1.029–1.110, FDR 0.09), 1-stearoyl-2- docosahexaenoyl (OR 1.07, 95% 
CI 1.034–1.113, FDR 0.07) and Linoleoyl-arachidonoyl-glycerol, (OR 1.07, 95% CI 1.036–1.105, FDR 
0.05), and two metabolite ratios, namely spermidine to N-acetylputrescine ratio (OR 0.94, 95% CI 
0.903–0.972, FDR 0.09) and benzoate to linoleoyl-arachidonoyl-glycerol ratio (OR 0.87, 95% CI 0.879–
0.962, FDR 0.07), were confirmed as having a significant causal relationship with CAD, after correcting 
for the FDR method (p < 0. 1). A causal relationship was found to be established between beta 
-hydroxyisovalerylcarnitine and CAD with the validation in other two datasets. Moreover, multiple 
metabolic pathways were discovered to be associated with CAD. Our study supports the hypothesis 
that metabolites have an impact on CAD by demonstrating a causal relationship between human 
metabolites and CAD. This study is important for new strategies for the prevention and treatment of 
CAD.
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Coronary artery disease (CAD) is the predominant form of cardiovascular disease, responsible for 9.14 million 
deaths globally in 20191 CAD poses a significant burden on modern societies, with morbidity and mortality rates 
comparable to those of cancer2. Despite advancements in pharmacologic and surgical interventions, mortality 
rates resulting from CAD remain unacceptably high. Effective prevention and treatment of CAD are crucial 
in reducing morbidity and disability. The exploration of biological mechanisms is essential for achieving this 
goal, with lifestyle, environmental, and genetic factors being identified as risk factors for cardiovascular disease 
development3. Over the past decade, significant progress has been made in identifying alleles that increase the 
risk of CAD4. However, the fundamental mechanisms underlying this complex disease remain incompletely 
understood. Although etiologic studies of cardiovascular disease have greatly benefited from genetic advance-
ments, particularly genome-wide association studies (GWAS)5–8, there are still substantial obstacles in linking 
these genetic discoveries to biological processes.

Recent advancements in genomics tools, such as metabolomics, have provided new opportunities to inves-
tigate disease pathways. Metabolomics, by identifying intermediate metabolites and altered metabolic path-
ways, can offer new insights into the molecular mechanisms underlying diseases9,10. Global genomic studies of 
metabolites have recently identified loci associated with diseases, proposing mechanisms for disease onset and 
disease-related traits11–13. Moreover, the importance of metabolites in disease is progressively gaining attention, 
with studies establishing causal relationships between metabolites and delirium, osteoarthritis, bone fracture, 
thyroid cancer, and type 2 diabetes14–18.Several studies have also shown the utility of metabolite intermediates 
in elucidating potential molecular pathways associated with cardiovascular disease19–23.

In metabolomics research, a metabolic pathway refers to the ordered series of metabolic reactions involved in 
an organism’s normal functioning. The analysis of interactions and correlations between metabolites can uncover 
potential metabolic pathways, which may play critical roles in the occurrence and progression of CAD. The most 
recent and comprehensive GWAS, the Canadian Longitudinal Study of Aging, with a sample size of 8299 partici-
pants, identified 1091 plasma metabolites and 309 plasma metabolite ratios as metabolite instrumental variables. 
Among the 1091 plasma metabolites tested, 850 had known identities within eight super pathways, including 
lipids, amino acids, exogenous substances, nucleotides, cofactors, vitamins, carbohydrates, peptides, and energy. 
This study has advanced our understanding of the genetic regulation of human metabolism24. However, there is 
still a lack of analyses utilizing these instrumental variables to explore the biological mechanisms and pathways 
of CAD, necessitating further in-depth studies to determine the roles played by genetic variants and the effects 
among 1091 plasma metabolites and 309 plasma metabolite ratios in the biological mechanisms of CAD.

Mendelian Randomization (MR) studies provide a genetics-based approach to epidemiologic research. 
MR studies offer several advantages over other epidemiologic research methods, including the avoidance of 
problems such as reverse causality and genetic polymorphisms, resulting in a more accurate assessment of the 
causal relationship between metabolites and disease. Our study design aims to assess the causal impact between 
metabolites and CAD, utilizing three datasets. The preliminary analysis utilized the first dataset, identified as 
ebi-a-GCST005195, which included 547,261 European and East Asian samples, with a total of 7,934,254 single-
nucleotide polymorphisms (SNPs) identified. The second CAD cohort, labeled bbj-a-159, included 29,319 cases 
of East Asian ancestry and 183,134 controls of East Asian ancestry, identifying a total of 8,881,048 SNPs. The third 
cohort, ebi-a-GCST005194, consisted of 296,525 European and East Asian samples and identified 7,904,237 SNPs. 
By employing MR research methods, we aim to obtain more accurate estimates of the impact of metabolites on 
disease risk and identify potential metabolic pathways. Furthermore, utilizing the results of MR studies can aid 
in understanding disease mechanisms and evaluating potential therapeutic strategies. Through these analyses, 
we hope to provide novel perspectives on the etiology and mechanisms of CAD and contribute valuable insights 
for prevention and treatment.

Materials and methods
MR design
The study design followed the STROBE-MR checklist to ensure a logical approach. In MR analyses, instrumental 
variables (IVs) must satisfy three assumptions: (1) IVs should be associated with the exposure (metabolite); (2) 
IVs should be associated with the outcome (CAD) solely through the exposure (metabolite); and (3) IVs should 
be independent of any confounding factors25. The research design ideas are illustrated in Fig. 1.

Data source
Three CAD datasets were utilized in this study. The initial dataset, tagged with accession number ebi-a-
GCST005195, was used for preliminary analysis. This dataset originated from a meta-analysis conducted by 
Harst et al26, which included 547,261 individuals and identified 7,934,254 SNPs. Two additional datasets, labeled 
bbj-a-159 and ebi-a-GCST005194, were employed for replication analysis and meta-analysis. Instrumental vari-
ables for 1091 plasma metabolites and 309 plasma metabolite ratios were obtained from a comprehensive study 
by Chen et al.24, which explored metabolic genetic influences in humans. The study included 8299 individuals 
from the Canadian Longitudinal Study of Aging cohort and reported outcomes such as body mass index (BMI), 
ischemic stroke, and type 2 diabetes mellitus (T2D) affected by metabolism.

Selection of instrumental variables (IVs)
First, genetic variations were extracted using an association threshold of P < 1 × 10−527,28 to ensure the inclusion 
of more significant variations. Next, independent variants were identified using the clumping program in the R 
software, with an r2 threshold of < 0.001 and a kilobase pair (kb) distance of 10,000 to account for linkage dis-
equilibrium (LD) effects. The potency of IVs, representative of metabolite levels, was assessed based on explained 
variance (R2) and F-statistical parameters. A threshold of F > 10 was utilized for MR analysis.
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MR analyses
The causal effects in two-sample MR analyses were assessed using the instrumental variable weighted (IVW) 
approach. The IVW fixed-effects model was applied in the absence of heterogeneity, while the IVW random-
effects model was used when heterogeneity was present. The IVW method allows for consistent evaluation of 
exposure causality when all variables fulfill the three assumptions. Slope estimates from weighted linear regres-
sion were used for IVW analysis25. The weighted median method was employed when at least 50% of instrumental 
variables were valid29. For causal inference in the presence of potential pleiotropy or a large number of invalid 
instrumental variables, MR Egger regression analysis was conducted30. In addition, the weighted mode and simple 
mode are two methods that relax the assumptions further, but they possess lower testing efficacy compared to 
the previous three methods31. At the same time, in order to verify whether the research results are affected by 
multiple tests, the study also uses Q-value program to correct the False Discovery Rate (FDR) when the q value 
of FDR is < 0.1, a significant association is indicated32,33.

Sensitivity analysis
Sensitivity analyses were performed using the MR-Egger method, which provides consistent estimates even when 
the instrument is not valid. MR-Egger can detect violations of IV assumptions and estimate effects unaffected 
by these violations30,34. Heterogeneity of SNPs was assessed using the Cochran Q test. MR-PRESSO was utilized 
to identify significant outliers in the study results and exclude them if necessary. The leave-one-out sensitivity 
test was conducted to observe any significant changes after removing each SNP.

Metabolic pathway analysis
Metabolic pathways were analyzed using the web-based Metaconflict 5.0 tool (https://​www.​metab​oanal​yst.​ca/)35. 
Functional enrichment analysis and pathway analysis modules were utilized to identify potential metabolite 
groups or pathways associated with CAD biological processes. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database was used in this study, with a significance level set at 0.10 for pathway analysis. Additionally, 
the obtained pathways were further categorized and searched within their higher-level belonging pathways.

Ethical approval 
No experiments involving patients and/or animals have been performed.

Consent to participate
Data were obtained from public databases and did not involve clinical participants.

Figure 1.   The research design ideas of the study.

https://www.metaboanalyst.ca/)
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Result
Strength of the instrumental variables
A two-sample MR analysis utilizing GWAS summary statistics evaluated the causal role of 1091 plasma metabo-
lites and 309 ratios in CAD. After rigorous screening, the final number of instrumental variables (IVs) ranged 
from 12 to 93 for metabolites and 13–39 for ratios. X-15523 and X-12462 respectively had the highest and 
lowest IVs among metabolites, while the glutamine/alanine and ADP/uridine ratios had the most and fewest 
IVs. The F-statistic range (19.50-5308.35) suggested low likelihood of weak IVs and validity for MR analyses 
(Supplementary Table 1).

Causal relationship between metabolites and CAD
Five MR analysis methods were employed to determine the causal association between the blood metabolites 
and metabolite ratios and CAD. A total of 224 exposures showed significant associations with CAD (P < 0.05 for 
at least one MR analysis method), including 167 blood metabolites (139 unique metabolites) and 57 metabolite 
ratios. This result was visualized using a circos plot (Fig. 2).

Figure 2.   Circos plot of MR analysis results for 167 blood metabolites and 57 metabolite ratios. Notes: The 
specific name of the Exposure ID is in Supplementary table 1.
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To identify the risk factors more strongly associated with CAD, we focused on the most rigorous IVW 
analysis, which identified 86 blood metabolites and metabolite ratios that may have a causal relationship with 
CAD (P < 0.05). After correction based on the false discovery rate (FDR) method (P < 0.1)32,33, four known 
blood metabolites (beta-hydroxyisovaleroylcarnitine, 1-palmitoyl-2-arachidonoyl, 1-stearoyl-2-docosahexaenoyl, 
linoleoyl-arachidonoyl-glycerol) and two metabolite ratios (spermidine to N-acetylputrescine ratio, benzoate to 
linoleoyl-arachidonoyl-glycerol ratio) were found to have a significant causal relationship with CAD (P < 0.05). 
All six exposures were known (Table 1, Fig. 3). The results were further visualized using scatterplots (Fig. 4–9).

In the IVW analysis, beta-hydroxyisovaleroylcarnitine (OR 1.06, 95% CI 1.027–1.094, FDR 0.07), 1-palmitoyl-
2-arachidonoyl (OR 1.07, 95% CI 1.029–1.110, FDR 0.09), 1-stearoyl-2-docosahexaenoyl (OR 1.07, 95% CI 
1.034–1.113, FDR 0.07), and linoleoyl-arachidonoyl-glycerol (OR 1.07, 95% CI 1.036–1.105, FDR 0.05) showed 
significant and causal associations with CAD. Additionally, the spermidine to N-acetylputrescine ratio (OR 
0.94, 95% CI 0.903–0.972, FDR 0.09) and benzoate to linoleoyl-arachidonoyl-glycerol ratio (OR 0.87, 95% CI 
0.879–0.962, FDR 0.07), two metabolite ratios, were also significantly and causally associated with CAD.

Sensitivity analysis
Although the IVW approach is effective in inferring causal relationships, it is susceptible to weak instrumental 
bias. Therefore, we conducted sensitivity and multicausality analyses to assess the robustness of the causal rela-
tionships. No significant outlier SNPs were found through the MR-PRESSO outlier test. Neither the MR-Egger 
intercept test nor the MR-PRESSO Global test indicated the presence of considerable pleiotropy (p > 0.05). The 
Cochran Q test showed low heterogeneity between SNPs from the IVW and MR-Egger methods. The “leave-
one-out” method and analysis of individual SNP effects demonstrated that the MR analysis was responsible, 
and individual SNPs did not influence the results. The funnel plot showed no horizontal multidirectionality or 
heterogeneity in our MR study. These results suggest that the causal effect of beta-hydroxyisovaleroylcarnitine 
(OR 1.06, 95% CI 1.027–1.094) on CAD is likely reliable. Additionally, a reverse MR analysis found no causal 
relationship between CAD (exposure) and beta-hydroxyisovaleroylcarnitine (OR 1.06, 95% CI 1.027–1.094) 
(outcome) (Supplementary Table 4, 5, 6).

Replication analysis
To validate our results, we performed MR analysis on additional GWAS data for CAD (bbj-a-159: 29,319 cases 
and 183,134 controls; ebi-a-GCST005194: 34,541 cases and 261,984 controls) and found a potential causal rela-
tionship between beta-hydroxyisovaleroylcarnitine (OR 1.06, 95% CI 1.027–1.094) and CAD (Supplementary 
Table 3). A reverse MR analysis also showed no causal relationship between CAD (exposure) and beta-hydrox-
yisovaleroylcarnitine (OR 1.06, 95% CI 1.027–1.094) (outcome) (Supplementary Table 4).

Metabolic pathway analysis
Metabolic pathway analysis revealed that the “arginine and proline metabolism” pathway (Fig. 10A) may be 
associated with CAD occurrence (P = 0.004). Additionally, the majority of metabolites and pathways associated 
with CAD were related to “amino acid metabolism” (Fig. 10B), involving 13 metabolites. (Supplementary Table 7).

Discussion
The unbiased evaluation of the causal association between 1400 metabolites and CAD was conducted through 
a Mendelian randomization (MR) study using three CAD-related GWAS datasets. The study utilized genetic 
variants as instruments to identify 224 metabolites nominally associated with CAD. To avoid false positives, 
the results obtained through the IVW method were further investigated by looking at FDR values. Six metabo-
lites that showed strong associations with CAD (P < 0.1) were identified. Validation with three different GWAS 
datasets confirmed beta-hydroxyisovaleroylcarnitine as having the most reliable causal relationship with CAD. 
Furthermore, pathway enrichment analysis revealed the “arginine and proline metabolism” pathway as the main 
metabolic pathway associated with CAD. Most of the identified metabolites and pathways were related to amino 
acid metabolism, which is closely linked to CAD.

In recent years, the impact of family genetic history on CAD has gained increasing attention. GWAS studies 
have identified more than 60 common variants highly associated with CAD, including familial hypercholes-
terolemia (FH)36, hyperlipidemia37, and other disorders that significantly increase the risk of CAD38. Clinical 
risk factors for CAD, such as plasma total homocysteine (tHcy)39 and lipoproteins40, have also been identified. 

Table 1.   IVW results for four blood metabolites and two metabolite ratios. Notes: The specific name of the 
Exposure ID is in Supplementary Table 1.

Exposure ID Outcome nSNP P OR (95%CI) FDR

GCST90199802 CAD 28  < 0.001 1.060 (1.027, 1.095) 0.0748

GCST90200054 CAD 15 0.001 1.069 (1.029, 1.11) 0.0998

GCST90200065 CAD 27  < 0.001 1.073 (1.034, 1.113) 0.0748

GCST90200109 CAD 27  < 0.001 1.07 (1.036, 1.105) 0.0502

GCST90200797 CAD 16 0.001 0.937 (0.903, 0.972) 0.0998

GCST90200988 CAD 11  < 0.001 0.92 (0.879, 0.962) 0.0748
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However, the association of hydroxyisovaleroylcarnitine with CAD has not been previously reported. Hydrox-
yisovaleroylcarnitine and beta-hydroxyisovaleroylcarnitine refer to the same substance but have different 
nomenclatures41. Previous studies have primarily focused on the association of hydroxyisovalerylcarnitine with 
3-methylcrotonyl-coenzyme carboxylase deficiency42,43, a rare metabolic disorder, and its diagnostic significance. 
However, its role in CAD remains unknown. Interestingly, hydroxyisovaleroylcarnitine levels can reflect leucine 
intake41, and abnormal leucine catabolism can impact protein homeostasis, energy balance, and signaling path-
ways, which are closely related to CAD mechanisms44.

Other conditions, such as inflammatory bowel disease (IBD), have been associated with elevated hydroxy-
isovalerylcarnitine levels45,46. Patients with IBD are more susceptible to CAD-related diseases due to systemic 
inflammation47,48, hypercoagulability, and impaired coronary microvascular and left ventricular function49. The 
underlying mechanisms of how IBD affects CAD development are not fully understood but may involve gut 
microbiome dysfunction50. Considering the close association between metabolic markers and the gut flora, 
discovering effective metabolites can elucidate the mechanisms between these diseases. Moreover, diet has been 
increasingly recognized as a factor that affects CAD outcomes51. Ketone body metabolism, as an essential meta-
bolic modality, has demonstrated its impact on cardiovascular-related diseases. Ketone bodies can potentially 
affect fatty acid and glucose utilization in healthy myocardium and may influence functional recovery after 
ischemic episodes52. Hydroxyisovaleroylcarnitine has begun to be used as a promising biomarker for evaluat-
ing adverse clinical outcomes in heart failure management53. Studies have shown that elevated levels of this 

Figure 3.   MR results for 4 blood metabolites and 2 metabolite ratios. Notes: The specific name of the Exposure 
ID is in Supplementary Table 1.
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metabolite are associated with an unfavorable prognosis54, particularly in the context of sildenafil-based thera-
peutic interventions for heart failure.

The MR analysis in this study identified specific metabolites, some of which have been reported in previous 
studies. For example, 1-palmitoyl-2-arachidonic acid, a phosphatidylcholine and major metabolite of glycer-
ophospholipids, has a well-established role in atherosclerotic disease. It has been found that oxidized phospho-
lipids promote atherosclerotic inflammation55, and antibodies to 1-palmitoyl-2-arachidonoyl have been used as 
autoimmune markers for cardiovascular disease diagnosis56. On the one hand, the accumulation of 1-palmitoyl-
2-arachidonoyl can contribute to atherogenesis by activating endothelial cells and inducing vascular barrier 
disorders56. On the other hand, clinical observations have found elevated levels of 1-palmitoyl-2-arachidonoyl 
in smokers, hypertensive individuals, and patients with myocardial infarction, which suggest that there is a 
close relationship between 1-palmitoyl-2-arachidonoyl and cardiovascular disease57. The role of 1-palmitoyl-
2-arachidonoyl in coronary artery disease (CAD) warrants further attention and exploration.

In this study, metabolic pathway analysis revealed that the pathways “arginine and proline metabolism,” “glu-
tathione metabolism,” and “amino acid metabolism” were primarily associated with CAD. Arginine and proline 
metabolism have been identified as key metabolic pathways during the systemic immune and low-grade inflam-
matory states of CAD58. Asymmetric dimethylarginine, in particular, is thought to be associated with common 
cardiovascular factors. Elevated levels of dimethylarginine have been linked to endothelial dysfunction and the 
occurrence of adverse events in CAD patients59. Studies on the improvement of cardiovascular disease through 
L-arginine supplementation have yielded positive results. For instance, Rodionov et al. found that high arginine 
supplementation prevented left ventricular dilatation and preserved contractile capacity in a CAD model60. On 
one hand, L-arginine has been shown to prevent atherosclerosis in coronary arteries in hypercholesterolemic 
rabbits61. On the other hand, oral L-arginine reduces monocyte adhesion to endothelial cells and improves 
endothelial function in stable CAD patients62,63. Nutrients like L-arginine also play an essential role in preventing 
and halting the progression of heart failure and arrhythmia through supplementation64.

Progress has also been made in the exploration of proline in cardiovascular disease. High cholesterol and 
LDL serve as risk factors for CAD. Karvonen et al. found a correlation between proline and serum cholesterol 
and LDL levels, and administration of proline resulted in elevated levels of both65. Proline has been shown to 
promote atherosclerosis. The CAD-associated junctional protein, with a proline-rich region located between 
endothelial cells, plays a crucial role in CAD66. In CAD, the substitution of serine with proline in ADAMTS7 
was found to promote atherogenesis by increasing vascular endothelial cell migration and angiogenesis67. Pro-
line also protects against myocardial infarction injury through oxidative modulation, improves post-infarction 

Figure 4.   Scatterplot of causal association between beta-hydroxyisovaleroylcarnitine levels and CAD.
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myocardial remodeling, and attenuates cardiomyocyte apoptosis68. GWAS has identified that proline/serine-rich 
coiled-coil 1 (PSRC1) encodes a protein associated with lipid levels and coronary artery disease69. PSRC1 pre-
vents the development of atherosclerosis and enhances plaque stability by regulating cholesterol transport and 
inflammation in macrophages and in the livers of apoE mice70. These findings suggest that arginine and proline 
metabolism may play an essential role in the biological mechanisms of CAD.

Limitation
The study faced several challenges in elucidating intricate CAD subtypes due to categorical constraints in raw 
data, necessitating a holistic CAD analysis approach that precluded nuanced classification. This limitation high-
lights the importance of larger datasets to refine the precision of the 1,091 plasma metabolites and 309 metabolite 
ratios identified through GWASs.

Mendelian randomization emerged as a powerful tool to uncover causal relationships between blood metabo-
lites and CAD. However, empirical validation of these findings through subsequent studies is crucial to strengthen 
our understanding. The fidelity of MR analyses depends heavily on the accurate interpretation of exposure-related 
instrumental variables, emphasizing the need for sample size expansion to precisely assess genetic impacts on 
metabolite profiles.

Our study identified numerous metabolites associated with CAD risk, but a deeper exploration into their 
mechanistic roles in CAD pathogenesis requires further research. Given the complexity of our data with 1,400 
exposures, we employed the FDR method for multiple testing, aiming to balance the need to minimize false 
positives while still capturing meaningful positive metabolites. Notably, the choice of FDR is not standardized, 
and our use of a broader range may have limitations but also potentially increased the significance of our positive 
findings. It is noteworthy that in the meticulous process of screening instrumental variables, a stringent criterion 
of 1 × 10−8 is conventionally employed to safeguard the robust correlation and specificity of the selected SNPs, 
thereby mitigating the potential confounding effects of horizontal gene pleiotropy on the outcomes. Nevertheless, 
confronted with the constraint of sample size, we adopted a more lenient threshold of 1 × 10−5 to encompass a 
broader spectrum of SNPs as instrumental variables. Anticipating future studies with enlarged sample sizes or 
enhanced statistical prowess, we intend to reassess the implications of varying p-value thresholds on MR results, 
aiming to further substantiate and consolidate our current findings.

Figure 5.   Scatterplot of causal association between 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) levels and 
CAD.
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Conclusion
In conclusion, we found multiple putative metabolites with causal effects on CAD by doing MR analysis within 
the spectrum of accessible plasma metabolites. Among these, beta-hydroxyisovaleroylcarnitine was confirmed 
in multiple datasets. These potential metabolites require additional experimental research to confirm their status 
as biomarkers and clarify the underlying mechanisms.

Figure 6.   Scatterplot of causal association between 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) levels and 
CAD.
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Figure 7.   Scatterplot of causal association between linoleoyl-arachidonoyl-glycerol (18:2/20:4) [2] levels and 
CAD.
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Figure 8.   Scatterplot of causal association between spermidine to N-acetylputrescine ratio and CAD.
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Figure 9.   Scatterplot of causal association between benzoate to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) 
[1] ratio and CAD.
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Figure 10.   Secondary and tertiary metabolic pathways from enrichment analysis.
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Data availability
The data required for our analysis were obtained from publicly available data. Data were obtained from IEU 
OpenGwas (https://​gwas.​mrcieu.​ac.​uk/).

Code availability
All code and software are open source and free of charge. If you need it, you can contact Kai Yang or Yongmei 
Liu to get.
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