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Abstract
Clinical trials seeking to delay or prevent the onset of type 1 diabetes (T1D) face 
a series of pragmatic challenges. Despite more than 100 years since the discov-
ery of insulin, teplizumab remains the only FDA-approved therapy to delay pro-
gression from Stage 2 to Stage 3 T1D. To increase the efficiency of clinical trials 
seeking this goal, our project sought to inform T1D clinical trial designs by de-
veloping a disease progression model-based clinical trial simulation tool. Using 
individual-level data collected from the TrialNet Pathway to Prevention and The 
Environmental Determinants of Diabetes in the Young natural history studies, 
we previously developed a quantitative joint model to predict the time to T1D 
onset. We then applied trial-specific inclusion/exclusion criteria, sample sizes 
in treatment and placebo arms, trial duration, assessment interval, and dropout 
rate. We implemented a function for presumed drug effects. To increase the size 
of the population pool, we generated virtual populations using multivariate nor-
mal distribution and ctree machine learning algorithms. As an output, power was 
calculated, which summarizes the probability of success, showing a statistically 
significant difference in the time distribution until the T1D diagnosis between the 
two arms. Using this tool, power curves can also be generated through iterations. 
The web-based tool is publicly available: https://​app.​cop.​ufl.​edu/​t1d/​. Herein, we 
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic disorder resulting from the 
dysfunction and immune-mediated destruction of insulin-
releasing beta cells in the pancreatic islets of Langerhans. 
The incidence of T1D as well as its prevalence is increas-
ing worldwide.1,2 The number of new-onset T1D cases per 
year is estimated at 65,000 children.3 Though it is not a cure, 
insulin replacement therapy continues to be the principal 
management tool for T1D. While the progression and patho-
physiology of T1D have been subject to extensive investiga-
tion over many decades, there exists only one FDA-approved 
therapy (i.e., teplizumab) to delay the onset of T1D.

A T1D disease progression joint model, using 
individual-level data from the TrialNet Pathway to 
Prevention and TEDDY natural history studies, was 
developed, externally validated, and published by 
Morales et al.4 This model's parameters were estimated 
for individuals at risk of developing T1D. It links the 
longitudinal glycemic measure to the timing of T1D di-
agnosis, quantitatively accounting for potential sources 
of variability. The longitudinal change in glycemic 
measures was modeled with a nonlinear mixed-effects 
modeling approach, and the time-to-T1D diagnosis uti-
lized a parametric time-to-event modeling approach. 
These modeling techniques allow running simula-
tions accounting for different sources of variability, 

approaching a real-world scenario. Therefore, a T1D 
Prevention clinical trial simulator (CTS) has been de-
veloped based on this disease progression model,4 le-
veraging its capacity and accessibility to inform T1D 
prevention trials through simulations. The web-based 
tool is publicly available and user-friendly: https://​app.​
cop.​ufl.​edu/​t1d/​.

KEY QUESTIONS AND 
ASSUMPTIONS

This manuscript presents the developed CTS tool along with 
two case examples to help users to navigate its use. The drug 
effects are based on proportional changes in model parame-
ters chosen by the user instead of real drug data. These clinical 
trial simulations are designed to assist in the development of 
strategies for trial enrichment, stratification, timing of clinical 
assessments, trial duration, and determination of sample sizes 
for studies assessing potential treatments for the prevention of 
T1D. However, these simulations are not intended to replace 
actual clinical trials for assessing drug safety and efficacy.

OVERALL LAYOUT

The graphical user interface (GUI) of the T1D CTS tool con-
tains four tabs: (i) Individual Characteristics, (ii) Clinical 

briefly describe the tool and provide instructions for simulating a planned clinical 
trial with two case studies. This tool will allow for improved clinical trial designs 
and accelerate efforts seeking to prevent or delay the onset of T1D.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Clinical trials seeking to delay or prevent the onset of type 1 diabetes (T1D) face a 
series of pragmatic challenges.
WHAT QUESTION DID THIS STUDY ADDRESS?
To increase the efficiency of T1D clinical trials, our project sought to inform T1D 
clinical trial designs by developing a disease progression model-based clinical 
trial simulation tool.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Using individual-level data from natural history studies, we previously developed 
a quantitative joint model to predict the time to T1D onset. Based on the model, 
we further developed a clinical trial simulation tool. This paper presents the tool 
with two case examples.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This tool will help optimize clinical trial designs through simulations and acceler-
ate efforts seeking to prevent or delay the onset of T1D.

https://app.cop.ufl.edu/t1d/
https://app.cop.ufl.edu/t1d/
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Trial Design, (iii) Power Curve, and (iv) Abbreviations 
(Figure  1a). In the first tab, users can specify the popu-
lation characteristics they want to simulate according to 
their inclusion/exclusion criteria. The next tab permits the 
users to specify other trial design components and define 
an assumed drug effect. In the third tab, power curves are 
generated using additional variables within a range on top 
of the pre-specified selections from the first two tabs. The 
last tab summarized the abbreviations used in the GUI.

Individual Characteristics Tab

The Individual Characteristics tab allows the users to 
define inclusion/exclusion criteria by selecting a sub-
population from three options: a population from the 

natural history studies used in the model4 and two vir-
tual populations (Figure  1b). The virtual populations, 
which mimic the original observed real-world dataset, 
were created using two different techniques: the MVND 
method5 and the ctree method.6 The MVND method cre-
ates synthetic individuals using a multivariate normal 
function, while the ctree method uses classification and 
regression trees (CART)/machine learning. The virtual 
populations enlarge the number of available individuals 
while maintaining the statistical properties of the covari-
ate distributions. The selected covariates in the T1D dis-
ease progression model were five: baseline presence of 
glutamic acid decarboxylase 65 autoantibody, baseline 
presence of insulinoma associated protein-2 autoanti-
body, baseline value of HbA1c, baseline value of 0 min 
of oral glucose tolerance test, and baseline value of the 

F I G U R E  1   Overall layout and available selection for inclusion/exclusion criteria.
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ratio of 2-h oral glucose tolerance test measurement and 
0 min of oral glucose tolerance test.4 Therefore, the sim-
ulation results could be more sensitive to this individual 
characteristics; however, since all the features are cor-
related, the other parameters could affect indirectly the 
simulation outcomes.

Clinical Trial Design Tab

The Clinical Trial Design tab can specify additional clini-
cal trial parameters. We implemented the options for the 
number of subjects as inputs for the placebo and treatment 
arms separately to add more user flexibility. Users can also 
add a dropout rate in each arm (Figure  S1A). Dropouts 
will be drawn from the user-selected distribution, either 
exponential or uniform, assuming a missing completely 
at random mechanism.7 Users can specify the total dura-
tion of follow-up after randomization and the assessment 
interval (Figure S1B). A significance level to compare the 
placebo and treatment arms statistically using a log-rank 
test can be defined as well (Figure S1C).

The predicted trajectories of the two arms can be differ-
entiated based on the user-defined Assumed Drug Effect 
(Figure S1D). Users can increase x-times of the magnitude 
of DP50 parameter value representing the time producing 
50% of the maximum change in GLU120. The increase in 
the DP50 parameter translates into a projected delay in 
the onset of T1D.4 The simulation will be repeated using 
the defined clinical trial design and assumed drug effect 
based on the chosen number of replicates (Figure  S1E). 
The power result indicates the ratio of the number of rep-
licates in which the placebo and treatment arms are statis-
tically different over the total number of replicates. Also, 
time-to-event plots and other simulation summaries will 
be shown.

Power Curve Tab

Users can further analyze the impact of changes in three 
parameters on the power of the simulated clinical tri-
als more continuously, with simultaneous simulation of 
multiple scenarios. On this tab, there are three dropdown 
boxes where users can select values from a series of op-
tions to explore (Figure S2A). Users will select a range of 
the values of each of the selected three parameters and 
the number of samples within the range (Figure S2B). The 
resulting stratified power curves are shown in a grid plot. 
The utility of the power curve function is the ability to 
look at multiple scenarios simultaneously based on sen-
sitivity to relevant patient characteristics and trial design 
parameters.

CASE STUDY I:  ORAL INSULIN 
TRIAL

The results from a phase III T1D prevention clinical trial 
were published in 2017, designed to test the efficacy of oral 
insulin in relatives of individuals with T1D.8 Although 
there was no significant difference between placebo and 
treatment groups, the trial nonetheless provided a frame-
work to explore different if-scenarios. We reproduced 
the trial using this developed CTS tool with the assump-
tion that there is a drug producing statistically significant 
efficacy.

Based on the oral insulin trial information, we set up 
the inclusion/exclusion criteria and other clinical trial 
design parameters under the first two tabs: Individual 
Characteristics and Clinical Trial Design (Figure 3). Using 
this setting, we ran several exploratory simulations with 
100 replicates by varying the drug effect slider bar under 
the Clinical Trial Design tab to find the value of the effec-
tive assumed drug (power cutoff: 85%). The value of 1.6 was 
chosen as the drug effect, which showed a power of 88%.

The inclusion criteria for the participants' baseline 
age range was 5.4–12.5 years in age. An exploratory anal-
ysis was performed to examine the impact of a wider 
age range on the power. In other words, this expanded 
inclusion criteria could help the recruitment phase of 
such trials since it is less restrictive and would reduce 
the time needed for recruiting. Baseline Age Interval 
(Years) was modified from 0 to 56 years of age as the 
new age range (cf. Figures 3 and 4a). The power for this 
proposed scenario was 89% when 100 replicates were 
simulated, meaning that there was no detrimental effect 
on the power. The results of the simulated trial suggest 
that the inclusion criteria could be modified to provide 
a simplified recruitment phase (Figure 4a: Go decision).

An additional exploratory analysis was performed by 
assessing the impact of enrolling subjects with dysglyce-
mia, on top of the broader inclusion criterion with respect 
to age. In this case, the 2-h oral glucose tolerance test 
value at baseline (GLU120) range was changed to include 
high values up to 199 mg/dL from previously 140 mg/dL 
(cf. Figures 3 and 4b). As a result, the power decreased 
to 78%, below the cutoff value of 85%. Therefore, in this 
example, the results with the CTS tool showed that add-
ing individuals with dysglycemia to the designed study 
would not be desired (Figure 4b: No-go decision).

CASE STUDY II:  ANTI- CD3 
MONOCLONAL ANTIBODY TRIAL

For this second case study, we reproduced the TN10 trial 
that was conducted to determine whether the anti-CD3 
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monoclonal antibody teplizumab can help prevent or 
delay the onset of T1D in relatives at high risk.9 As noted 
earlier, the FDA has approved teplizumab as an effective 
drug delaying the onset of stage 3 T1D. Under the first tab 
of the GUI, the ranges of the individual characteristics 
were adjusted according to the inclusion/exclusion crite-
ria used in the TN10 trial (e.g., dysglycemic individuals). 
When the “Real world population” option was selected 
(Figure  1b), the pop-up message warned that the num-
ber of individuals who met the criteria was below 50. To 
generate realistic simulation results assuring properly 
accounted variability, the virtual population generated 
using the ctree method was selected. In the next tab, the 
assumed drug effect was tuned by exploring different 
values. A desired power above 85% was established dur-
ing the search for the increment of the DP50 parameter. 
Finally, a 10-time increment was suitable for this sce-
nario, providing a power of 91% with 100 replicates.

Following this, a wider inclusion criterion was ex-
plored to simplify the recruitment phase. For this rea-
son, dysglycemic and normoglycemic individuals were 
included in this hypothetical virtual trial scenario by 
expanding the baseline HbA1c interval (4%–6.1%), 
GLU0 interval (47–124 mg/dL) and GLU120 interval 
(19–199 mg/dL). After changing the individual char-
acteristics, the power of the new trial design remained 
the same (91%). Therefore, a broader inclusion criterion 
could facilitate the recruitment phase without impact-
ing the trial output based on the simulation results (Go 
decision). In the Power Curve tab, we further explored 
changes in the study duration and the number of sub-
jects in the placebo and treatment arms. Figure 2 pres-
ents the resulting power curves. Our simulation results 
suggested that an increase of ~50 individuals in each 
arm could lead to a trial duration reduction to ~2.6 years, 
while maintaining a power value above 80%. Therefore, 

F I G U R E  2   Representative power curves from Case Study II.
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an increment of ~33% on the total number of partici-
pants could decrease the duration of the trial by ~48%. 
Providing such quantitative estimates holds consider-
able value for investigators in calculating benefit–risk 
calculation for trial design.

IMPACT ASSESSMENT AND 
CONCLUSION

We believe the presented web-based CTS tool developed 
based on disease-drug-trial modeling can help inform 

F I G U R E  3   Input parameters used for Case Study I.

F I G U R E  4   Results from Case Study I.
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decision-making for T1D drug developers through data-
driven simulations before actual trial execution. As part of 
our description, we provided two case examples using this 
tool with a walk-through instruction, starting from realis-
tic clinical trial scenarios. While we believe this represents 
a significant advance for clinical T1D research, some limi-
tations of this tool should be considered. Given that no 
data were available to quantify specific drug effects, we 
implemented a function that modifies the magnitude of 
disease progression model parameters based on a user-
selected drug effect value (Figure S1D). For optimal use 
of our application, users should adjust this value by com-
paring resulting plots from available data showing actual 
drug effects. In some cases, it will not be feasible to obtain 
a reasonable estimate of the drug effect, particularly in the 
early stages of drug development. Since this parameter 
strongly influences the interpretation of the simulated 
output, the sensitivity to it should be considered when 
performing simulations. In addition, this tool is limited 
to simulating scenarios for participants with two or more 
diabetes-related AAbs because the model parameters were 
estimated for those individuals at risk of developing T1D, 
which is the case for most T1D prevention trials focusing 
on this population.4

Despite these limitations, this T1D CTS tool will help 
pave the way for advancing drug development in settings 
seeking to delay/prevent this disease. We leveraged the 
available data from natural history studies and modeling 
and simulation approaches. The clinical trial designs can 
be evaluated using the tool, including inclusion/exclusion 
criteria, sample size, and study duration with go/no-go 
outputs. The power curve tab allows us to explore the out-
come more continuously. This information will increase 
confidence in planned clinical trials by reducing the risk 
of possible study failures and the overall costs of drug 
development.
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