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Elucidating the pan‑oncologic 
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The calcium-binding protein S100A9 has emerged as a pivotal biomolecular actor in oncology, 
implicated in numerous malignancies. This comprehensive bioinformatics study transcends traditional 
boundaries, investigating the prognostic and therapeutic potential of S100A9 across diverse 
neoplastic entities. Leveraging a wide array of bioinformatics tools and publicly available cancer 
genomics databases, such as TCGA, we systematically examined the S100A9 gene. Our approach 
included differential expression analysis, mutational burden assessment, protein interaction 
networks, and survival analysis. This robust computational framework provided a high-resolution 
view of S100A9’s role in cancer biology. The study meticulously explored S100A9’s oncogenic facets, 
incorporating comprehensive analyses of its relationship with prognosis, tumor mutational burden 
(TMB), microsatellite instability (MSI), DNA methylation, and immune cell infiltration across various 
tumor types. This study presents a panoramic view of S100A9 expression across a spectrum of human 
cancers, revealing a heterogeneous expression landscape. Elevated S100A9 expression was detected 
in malignancies such as BLCA (Bladder Urothelial Carcinoma), CESC (Cervical squamous cell carcinoma 
and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carcinoma), 
and GBM (Glioblastoma multiforme), while reduced expression was noted in BRCA (Breast invasive 
carcinoma), HNSC (Head and Neck squamous cell carcinoma), and KICH (Kidney Chromophobe). 
This disparate expression pattern suggests that S100A9’s role in cancer biology is multifaceted and 
context-dependent. Prognostically, S100A9 expression correlates variably with patient outcomes 
across different cancer types. Furthermore, its expression is intricately associated with TMB and MSI 
in nine cancer types. Detailed examination of six selected tumors—BRCA, CESC, KIRC (Kidney renal 
clear cell carcinoma), LUSC (Lung squamous cell carcinoma), SKCM (Skin Cutaneous Melanoma); 
STAD (Stomach adenocarcinoma)—revealed a negative correlation of S100A9 expression with the 
infiltration of most immune cells, but a positive correlation with neutrophils, M1 macrophages, and 
activated NK cells, highlighting the complex interplay between S100A9 and the tumor immune 
environment. This bioinformatics synthesis posits S100A9 as a significant player in cancer progression, 
offering valuable prognostic insights. The data underscore the utility of S100A9 as a prognostic 
biomarker and its potential as a therapeutic target. The therapeutic implications are profound, 
suggesting that modulation of S100A9 activity could significantly impact cancer management 
strategies.
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Abbreviations
S100A9	� S100 calcium binding protein A9
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
TME	� Tumor microenvironment
TMB	� Tumor mutational burden
DSS	� Disease-specific survival
HR	� Hazard ratios
PPI	� Protein–protein interaction
CR	� Complete response
PD	� Progressing disease
TCGA​	� The Cancer Genome Atlas
GEO	� Gene Expression Omnibus
GSEA	� Gene set enrichment analysis
MSI	� Microsatellite instability
OS	� Overall survival
CI	� Confidence intervals
TIICs	� Tumor-infiltrating immune cells
PFs	� Progression-free survival
PR	� Partial response
SD	� Stable illness

The relentless onslaught of cancer continues to undermine human health, precipitating an acute degradation 
in the quality of life for affected individuals. Among contemporary therapeutic strategies, cancer immuno-
therapy—most notably, immune checkpoint blockade—has risen to prominence, revolutionizing the treatment 
paradigm for numerous malignancies1. This urgency is driven by the need to improve patient outcomes and 
extend survival rates, given the limited efficacy and significant side effects of traditional cancer treatments. 
Cancer immunotherapy, particularly immune checkpoint blockade, has transformed the therapeutic landscape 
by leveraging the body’s immune system to combat cancer cells. The burgeoning field of cancer immunotherapy 
underscores the necessity for continuous exploration and validation of new targets. High-throughput screening 
techniques, combined with advanced bioinformatics tools, are instrumental in identifying and characterizing 
these targets2. The advent and maturation of public repositories such as The Cancer Genome Atlas (TCGA) 
and the Gene Expression Omnibus (GEO) have catalyzed a renaissance in the discovery of novel immuno-
therapeutic targets via pan-cancer gene expression analyses. By interrogating the nexus of gene targets, clinical 
prognostication, and signal transduction pathways, a rich tapestry of insights is being revealed. These databases 
provide extensive information on gene expression, genetic mutations, and epigenetic modifications, facilitating 
the identification of novel targets that could be exploited for cancer treatment. By linking these molecular targets 
to clinical outcomes, researchers can develop more precise prognostic models and tailor therapies to individual 
patients’ genetic profiles.

Within the expansive landscape of calcium and zinc-binding proteins, the S100 protein family stands out, 
represented in vertebrates exclusively. S100A9, a protein of relatively low molecular weight within this family, 
binds calcium with specificity. However, despite a breadth of studies scrutinizing its role across a diversity of 
neoplasms, the precise mechanistic contributions of S100A9 to oncogenesis remain enigmatic and subject to 
debate. The S100A9 gene, a member of the S100 family of proteins, encodes a calcium-binding protein involved 
in the regulation of a variety of cellular processes, including cell cycle progression and differentiation. S100A9, 
often found in a complex with S100A8 (calprotectin), plays a crucial role in the inflammatory response, immune 
regulation, and leukocyte trafficking3. A growing corpus of evidence indicates that S100A9 may play a facilitative 
role in the cascade of tumor metastasis4. Observational studies have detected heightened S100A9 expression 
levels in the context of metastatic melanoma and prostate cancer5, positing a correlation with the mechanistic 
intricacies of carcinogenesis and the attenuation of cellular differentiation6. Recent studies have highlighted 
the significant role of S100A9 in tumor biology. S100A9 is frequently overexpressed in various malignancies, 
including breast, prostate, colorectal, and lung cancers. This overexpression is associated with poor prognosis 
and increased tumor aggressiveness7. The protein contributes to the tumor microenvironment by promoting 
chronic inflammation, which supports tumor growth and metastasis8. Mechanistically, S100A9 facilitates tumor 
progression through several pathways. It can interact with the receptor for advanced glycation end products 
and Toll-like receptor 4, activating downstream signaling cascades such as NF-κB and MAPK9. These pathways 
lead to the secretion of pro-inflammatory cytokines and chemokines, enhancing the inflammatory milieu and 
promoting angiogenesis, tumor cell proliferation, and invasion. Moreover, S100A9 has been implicated in the 
modulation of the immune response within the tumor microenvironment10. It can recruit myeloid-derived sup-
pressor cells and regulatory T cells, which suppress anti-tumor immunity and facilitate immune evasion by cancer 
cells. This immunosuppressive environment enables tumor cells to thrive and evade detection by the immune 
system11. Given its multifaceted role in cancer progression, S100A9 is emerging as a potential biomarker for 
cancer diagnosis and prognosis. Targeting S100A9 and its signaling pathways holds promise for developing novel 
therapeutic strategies aimed at modulating the tumor microenvironment, enhancing anti-tumor immunity, and 
improving clinical outcomes for cancer patients.

Amid the landscape of oncologic intervention, where chemoradiotherapy, targeted therapy, and immunother-
apy constitute the modern therapeutic armamentarium, there exists a disquieting realization: survival outcomes 
for an array of clandestine or recalcitrant malignancies languish as suboptimal12. This underscores an imperative 
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for deeper mechanistic dissection of tumorigenesis to propel advances in early detection and intervention. The 
tumor microenvironment (TME) is a complex and dynamic milieu that surrounds and interacts with cancer cells, 
significantly influencing tumor development, progression, and response to therapy13. This intricate environment 
is composed of various cellular and non-cellular components, including immune cells, fibroblasts, endothelial 
cells, extracellular matrix, cytokines, and chemokines. A critical feature of the TME is its heterogeneity, reflecting 
the diverse cell types and the spatial and temporal variations within the tumor14. Immune cells within the TME, 
such as tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, often adopt 
immunosuppressive phenotypes that facilitate immune evasion by cancer cells. These cells can secrete immuno-
suppressive cytokines like IL-10 and TGF-β, which inhibit the activity of cytotoxic T lymphocytes and natural 
killer cells, undermining the body’s anti-tumor immune response15. Fibroblasts, particularly cancer-associated 
fibroblasts, are another vital component of the TME. They contribute to tumor progression by remodeling the 
ECM, promoting angiogenesis, and secreting growth factors and cytokines that support tumor cell proliferation 
and invasion16. The ECM itself, through its biochemical and mechanical properties, provides structural support 
and signaling cues that regulate tumor cell behavior. The TME is also characterized by an abnormal vascular net-
work, resulting in hypoxia and nutrient deprivation within the tumor17. Hypoxia-inducible factors are stabilized 
under low oxygen conditions, driving the expression of genes that promote angiogenesis, metabolic adaptation, 
and survival of cancer cells under stress. The hypoxic environment further contributes to the immunosup-
pressive nature of the TME by attracting immunosuppressive cells and altering their function18. The strategic 
delineation of immunophenotypes and the validation of emerging immune-centric targets remain critical for the 
advancement of tumor therapeutics. Despite this, the role of S100A9 across the cancer spectrum is inadequately 
understood. Addressing this knowledge gap, our investigation rigorously examines S100A9 expression across 
thirty-three disparate malignancies, seeking to elucidate its influence within the immune-oriented TME. By 
placing an analytical lens over pivotal immunomodulators and evolving immune biomarkers, we aim to deepen 
the understanding of the complex and dynamic tumor-immune crosstalk, as presented in Fig. 1 of our study.

Figure 1.   Framework. In this study, we extracted single gene expression data from TCGA database and 
performed differential analysis of S100A9. The differential expression data sets were obtained for clinical 
correlation analysis, survival prognosis analysis and immune correlation analysis. In addition, we also used the 
GEO dataset for validation and gene mutation analysis.
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Materials and methods
Data acquisition
Data processing
Genomic alterations, including copy number amplification, severe loss, unknown missense mutations, and 
mRNA overexpression, were identified through analysis of the S100A9 gene using the cBioPortal. The TCGA 
dataset provided information on the differential expression of S100A9 between tumor and matched normal tis-
sues. We obtained gene expression patterns and clinical information from The Cancer Genome Atlas (TCGA)19 
for 33 cancers. ACC (Adrenocortical carcinoma); BLCA (Bladder Urothelial Carcinoma); BRCA (Breast invasive 
carcinoma); CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma); CHOL (Cholangio-
carcinoma); COAD (Colon adenocarcinoma); DLBC (Lymphoid Neoplasm Diffuse Large B-cell Lymphoma); 
ESCA (Esophageal carcinoma); GBM (Glioblastoma multiforme); HNSC (Head and Neck squamous cell carci-
noma); KICH (Kidney Chromophobe); KIRC (Kidney renal clear cell carcinoma); KIRP (Kidney renal papillary 
cell carcinoma); LAML (Acute Myeloid Leukemia); LGG (Brain Lower Grade Glioma); LIHC (Liver hepatocellu-
lar carcinoma); LUAD (Lung adenocarcinoma); LUSC (Lung squamous cell carcinoma); MESO (Mesothelioma); 
OV (Ovarian serous cystadenocarcinoma); PAAD (Pancreatic adenocarcinoma); PCPG (Pheochromocytoma and 
Paraganglioma); PRAD (Prostate adenocarcinoma); READ (Rectum adenocarcinoma); SARC (Sarcoma); SKCM 
(Skin Cutaneous Melanoma); STAD (Stomach adenocarcinoma); TGCT (Testicular Germ Cell Tumors); THCA 
(Thyroid carcinoma); THYM (Thymoma); UCEC (Uterine Corpus Endometrial Carcinoma); UCS (Uterine 
Carcinosarcoma); UVM (Uveal Melanoma) were included in 33 types. The S100A9 status change was discov-
ered using the cBioPortal database20. The genomic changes include copy number amplification, severe loss, an 
unknown missense mutation, and mRNA overexpression. The TCGA provides data on S100A9 expression dif-
ferences between tumor and matched normal tissue. After extracting the S100A9 data with the limma package, 
we used log2 (TPM + 1) transformed expression data to illustrate the difference analysis findings in parameter 
selection.

Statistical analysis
In an endeavor to elucidate the expression dynamics of S100A9 across a spectrum of tissue types and pathologi-
cal states, we embarked on an exhaustive investigation encompassing 31 normal tissues and 33 discrete can-
cer specimens. The expression data underwent a meticulous log2 transformation, subsequently facilitating the 
implementation of a two-tiered comparative analysis designed to scrupulously assess the differential expression 
landscapes between tumor and normal tissues within each designated cancer typology. Differential expression 
analysis was meticulously conducted employing a criterion encapsulating an FDR < 0.05 and |log2FC| ≥ 1. The 
hazard ratio (HR) was judiciously utilized as a discriminant screening criterion, adopting values either exceed-
ing 1 or, conversely, residing below 1 as pivotal thresholds. The statistical analyses were conducted using the R 
programming language, and box plots were generated using the “ggpubr” package. In our comprehensive analysis 
of gene activities, we employed sophisticated computational methods facilitated by renowned packages such as 
plyr, reshape2, and ggpubr within the R ecosystem. This rigorous approach enabled us to accurately discern dif-
ferential gene activities. For enhanced clarity and effective communication of our findings, the activity patterns 
of each gene were elegantly represented as ranked boxplots. In contemplation of antecedent scholarly discourses 
encompassing pan-cancer and affiliated neoplastic entities, a pervasive adoption of a 65-year demarcation for age 
cutoff has been discerned. The rationale underpinning this demarcational choice predominantly resides in the 
substantive alteration observed in cancer-related mortality trajectories, which is conspicuously marked in patient 
cohorts upon attaining this particular chronological milestone. Additionally, the status changes in S100A9 were 
determined by examining the genomic alterations, including copy number amplification, severe loss, unknown 
missense mutations, and mRNA overexpression, observed in the S100A9 gene. This comprehensive analysis 
provides a nuanced understanding of S100A9’s role across various cancers and its potential as a biomarker and 
therapeutic target.

Relationship between S100A9 and survival and clinical stage
Overall survival (OS), disease-specific survival (DSS), disease-free survival (DFS), and progression-free survival 
(PFS) were employed to assess the impact of S100A9 on cancer survival. The log-rank test and univariate Cox 
proportional hazards models were utilized for the analyses. Clinical factors such as age, sex, and stage were 
taken into consideration for multivariate Cox regression analysis. The stage survival plot module was utilized to 
investigate the association between S100A9 expression and clinical stage. Specifically, two clinical phenotypes, 
tumor stage and patient age, were selected to explore their correlation with S100A9 expression. The patients 
were divided into two groups based on an age cutoff value of 65 years. Correlation analyses between clinical 
phenotypes and S100A9 expression were conducted using the R-packages “limma” and “ggpubr.” Statistical sig-
nificance was defined as P < 0.05. The Kaplan–Meier method and log-rank tests were applied to perform survival 
analyses for each cancer type, with significance defined as P < 0.05. Survival curves were plotted using the R 
packages “survival” and “survminer.” Furthermore, Cox analysis was conducted using the R packages “survival” 
and “forestplot” to examine the pan-cancer relationship between S100A9 expression and survival.

Relationship between S100A9 and the TME
In this study, we aimed to investigate and quantify the association between S100A9 expression and the gene 
markers of tumor-infiltrating immune cells (TIICs) in malignant tumors, as well as identify immune cell infil-
tration patterns. The tumor mutation burden (TMB) of each tumor sample was calculated as the total count 
of somatic mutations (excluding silent mutations) detected in the tumor genome. To assess the TME, we com-
puted the stromal score, immune score, and ESTIMATE score using the ESTIMATE algorithm. Tumor purity 
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was determined inversely relative to these scores. Subsequently, the limma package was employed to examine 
the differences in the TME among multiple cancer samples based on immunological, ESTIMATE, and stromal 
scores. Scatterplots were generated to evaluate tumor cell purity. Higher predicted immune or stromal scores 
indicated a greater proportion of immune or stromal components in the TME. Consequently, a higher associated 
score reflected the increased significance of the relevant component within the TME. The ESTIMATE score was 
calculated as the sum of these two components, representing their respective proportions within the TME. The 
TMB has gained recognition as a distinct and reliable biomarker for predicting the response to immunotherapy. 
It was calculated as the total number of mutations per DNA megabase, categorized into nucleotide insertions, 
base substitutions, or deletions21. Microsatellite instability (MSI), characterized by spontaneous nucleotide loss 
or gain in short tandem repeat DNA sequences, was also examined to explore its relationship with TMB22. The 
fmsb package was utilized for this analysis. By integrating these comprehensive methodologies, we aimed to 
elucidate the complex interplay between S100A9 expression, immune cell infiltration, and tumor mutational 
characteristics within the TME. This study provides valuable insights into the potential of S100A9 as a biomarker 
and therapeutic target in cancer immunotherapy.

Immunotherapeutic response
The assessment of immunotherapeutic response was conducted by compiling and evaluating datasets GSE78220, 
GSE67501, and IMvigor210. Inclusion criteria for the analysis involved patients who exhibited either a complete 
or partial response. To compare the levels of S100A9 between the respondent and non-respondent groups, the 
Wilcoxon test was employed.

Analysis of GSEA and comprehensive gene regulatory networks
To investigate the underlying biological signaling pathways, Gene Set Enrichment Analysis (GSEA) was per-
formed by segregating the high and low-expression groups based on the median level of S100A9 expression. GO 
and KEGG gene sets were obtained from the official GSEA website, while the gene set from the MSigDB was 
utilized for Gene Set Variation Analysis (GSVA). GSVA scores were calculated for all tumors, and subsequently, 
samples within each tumor were categorized into high and low expression groups using the median of differ-
entially expressed genes with the R-package “limma.” Enrichment analysis identified gene sets with significant 
findings indicated by |NES| > 1, NOM p < 0.05, and false discovery rate q-value < 0.0523. In addition, to unravel 
the fundamental mechanisms underlying S100A9, we constructed a comprehensive Gene regulatory networks 
from GeneMANIA.

Mendelian randomization analysis
To ensure the independence of exposure and outcome variables in our genome-wide association study (GWAS) 
summary data, we engaged in an association analysis via the TwoSampleMR package in R. Designating S100A9-
related expression as the some cancers (BLCA, CESC, COAD, etc.) as the outcome, we aimed to explore poten-
tial causal relationships. The analysis entailed: (1) Instrumental Variables (IVs) Configuration: S100A9-related 
expressions were screened with a P-value threshold of < 5 × 10−8 to identify strongly associated exposures. (2) 
Independence Configuration: Linkage disequilibrium (LD) between SNPs was calculated using the PLINK clus-
tering method, excluding SNPs with LD coefficient r2 > 0.001 and within 10,000 kb to ensure SNP independence 
and reduce pleiotropic biases. (3) Statistical Strength Configuration: The robustness of instrumental variables 
was assessed using the F-statistic (F = β2/SE2), with variables having F < 10 deemed inadequate to mitigate con-
founding effects.

Leveraging GWAS data, SNPs associated with the instrumental variables were identified, and through the 
“harmonise_data” function within TwoSampleMR, we aligned allelic directions of exposure and outcome, exclud-
ing incompatible SNPs. The inverse variance-weighted (IVW) method served as the cornerstone for causal 
inference, employing the variance of instrumental variables as weights to determine causal dynamics, thereby 
advancing our understanding of the genetic architecture underlying disease states.

Ethics approval and consent to participation
This manuscript is a Bioinformatics analysis, hence the ethics approval and consent to participation is not 
applicable.

Results
Clinical landscape of S100A9 expression
Given its remarkable sensitivity, S100A9 holds significant promise as a critical target and biomarker for cancer 
diagnosis. To evaluate S100A9 expression in tumors and adjacent normal tissues, we conducted a comprehen-
sive analysis of S100A9 mRNA expression levels. Our results revealed significantly elevated S100A9 mRNA 
levels in cancer samples from BLCA, BRCA, CESC, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LIHC, 
LUSC, PAAD, PRAD, THCA, and UCEC. These findings suggest a potential oncogenic role for S100A9 in the 
progression of these diverse cancers (Fig. 2a). Notably, S100A9 expression was particularly elevated in HNSC, 
CESC, LUSC, and ESCA, as highlighted in Fig. 2b. S100A9 activity was markedly enhanced in tumor categories 
including BLCA, CESC, CHOL, COAD, ESCA, GBM, KIRC, LUAD, LUSC, PAAD, READ, STAD, THCA, and 
UCEC, while it exhibited a significant reduction in BRCA, KICH, PCPG, and PRAD, as depicted in Fig. 2c. 
Furthermore, significantly higher activity levels were observed in HNSC, CESC, LUSC, and ESCA, as shown 
in Fig. 2d. Figure 3a illustrates distinct expression patterns of S100A9 in older patients with GBM, while lower 
expression levels were observed in BRCA, ESCA, LAML, SARC, STAD, and THYM. Gender disparities in 
S100A9 expression were significant in BRCA, HNSC, SARC, and SKCM, as depicted in Fig. 3b. Additionally, 
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associations between S100A9 expression and cancer grade were observed in several cancer types, including ESCA, 
HNSC, and LGG, as illustrated in Fig. 3c. Moreover, S100A9 expression was linked to tumor stage in multiple 
cancers, including HNSC, KICH, LIHC, LUAD, PAAD, TGCT, and THCA, as shown in Fig. 3d. These findings 
underscore the multifaceted role of S100A9 in cancer biology, emphasizing its potential utility as a diagnostic 
biomarker and therapeutic target.

Prognostic expression of S100A9 in cancers
Forest plots were constructed to evaluate the prognostic significance of S100A9 across various cancer types. The 
analysis revealed a favorable association between S100A9 expression and overall survival (OS) in LAML, LGG, 
LIHC, THYM, and UVM, as depicted in Fig. 4. Notably, a clear positive correlation between S100A9 expression 
and disease-free survival (DFS) was observed in LIHC and READ, whereas a negative correlation was evident in 
lung squamous cell carcinoma (LUSC). Regarding disease-specific survival (DSS), elevated S100A9 expression 
emerged as a risk factor in BLCA, COAD, KIRC, LGG, LIHC, and UVM. The forest plot for progression-free 
survival (PFS) further substantiated the risk associated with S100A9 expression in BLCA, COAD, KIRC, LGG, 
LIHC, and UVM. Moreover, the graphical representation facilitated the identification of additional malignancies 
where S100A9 expression was determined to be a concomitant risk factor, notably in THYM and UVM. While not 
directly interfacing with clinical attributes, S100A9 expression demonstrated a robust association with survival 
outcomes across diverse neoplastic entities, particularly in LAML, LGG, and LIHC. These findings underscore 
the critical role of S100A9 as a prognostic biomarker, highlighting its potential impact on the management and 
therapeutic stratification of various cancers.

S100A9 expression and immune infiltration levels in cancer
To evaluate the correlation between S100A9 expression and immune infiltration levels across various malignan-
cies, we calculated the coefficients of S100A9 expression and immune infiltration. Figure 5 provides an overview 
of the stromal and immunological scores. S100A9 expression demonstrated significant associations with stromal 
scores in DLBC, GBM, KICH, LAML, LGG, PCPG, SARC, TGCT, THCA, and UVM. Additionally, S100A9 
expression showed correlations with immune scores in COAD, GBM, KICH, KIRP, LAML, LGG, LIHC, PAAD, 
PCPG, PRAD, READ, SARC, THCA, and UVM (Table 1). Moreover, the analysis of immune cell infiltration 

Figure 2.   S100A9 activity. (a) Differential analysis of Tumor and normal. (b) Mean expression. (c) Activity 
analysis. (d) Mean activity.
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revealed significant associations between S100A9 expression and specific immune cell subsets. Notably, S100A9 
expression was negatively associated with CD4 memory resting T cells in ACC, monocytes in LAML, M1 mac-
rophages in DLBC, activated natural killer (NK) cells in DLBC and KICH, naive B cells in LAML and TGCT, 
and neutrophils in ACC, CHOL, COAD, GBM, KICH, KIRC, PCPG, READ, and STAD, as depicted in Fig. 6. 
These findings highlight the intricate relationship between S100A9 expression and the tumor microenvironment, 
suggesting its potential role in modulating immune infiltration and influencing cancer progression.

Analysis of S100A9 expression and immune modulators
To investigate the intricate relationship between S100A9 expression and immune modulators, a comprehensive 
analysis was conducted. As shown in Fig. 7, a meticulous examination was carried out on 24 distinct types of 
immune inhibitors. Notably, S100A9 exhibited significant associations with specific immune modulators in 
particular cancer types. Specifically, S100A9 demonstrated a correlation with IL10 in GBM, HAVCR2 in THCA, 
and LGALS9 in SARC, while no significant association was observed with CD160 in CHOL. Moving forward, 
a thorough exploration was undertaken to assess the relationship between S100A9 expression and 45 immune 
stimulators, as illustrated in Fig. 8. The findings revealed intriguing patterns of association. S100A9 expression 
displayed a positive correlation with IL6 in GBM, CD86 in THCA, and IL2RA in SARC. Conversely, a negative 
association was observed with TNFSF13 in ESCA, suggesting a potential regulatory role of S100A9 in modulating 
immune responses. Furthermore, it is noteworthy that S100A9 expression exhibited distinct associations with 
HLA genes. Figure 9 highlights these associations, where S100A9 showed a positive correlation with HLA-DPA1 
in KICH, HLA-DPB1 in THCA, and HLA-DRA in THCA. Conversely, a negative association was identified with 
HLA-A in CHOL, indicating potential intricate mechanisms underlying the interplay between S100A9 expres-
sion and HLA genes. These findings shed light on the complex interrelationships between S100A9 expression 
and immune modulators, providing valuable insights into the underlying mechanisms of immune regulation 
in various cancer types.

Immunotherapeutic markers and response
The present study aimed to investigate the correlation between S100A9 and two novel dynamic markers associ-
ated with immune checkpoint blockade, namely TMB and MSI. The analysis revealed that S100A9 expression 
exhibited a positive association with TMB in BRCA, CESC, KIRC, and LGG. However, this association was not 
observed in ESCA, LAML, PAAD, PCPG, and PRAD. Conversely, MSI demonstrated a positive relationship with 
S100A9 expression in BRCA, CESC, KIRC, and LGG, while exhibiting a negative relationship in ESCA, LAML, 

Figure 3.   Clinical information. (a) Age. (b) Gender. (c) Grade. (d) Stage.
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Figure 4.   Univariate Cox regression analyses.

Figure 5.   ESTIMATE analyses. (a) StromalScore. (b) ImmuneScore.
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PAAD, PCPG, and PRAD. The immune checkpoint pathway plays a pivotal role in cancer therapy, particularly 
the programmed cell death protein 1 (PD-1) pathway. Previous literature has reported the utilization of three 
commonly employed microarray datasets, namely GSE67501 (n = 11), GSE78220 (n = 28), and IMvigor210, to 
investigate the expression of individual genes in relation to PD-1. Accordingly, we investigated the association 
between S100A9 and immune checkpoints, specifically focusing on these three datasets. However, the analysis 
revealed no statistically significant differences in S100A9 expression between responder and non-responder 
groups in any of the three cohorts, implying that S100A9 may not be influenced by the microarray sets commonly 
employed in these immune checkpoint studies. Notably, patients exhibiting lower S100A9 expression displayed 
greater susceptibility to immunotherapy in the analyzed cohorts (Fig. 10). It is important to acknowledge that 
although the three GEO datasets used in this study are widely recognized and frequently employed in classic 
GEO microarray studies, they do possess certain limitations such as small sample sizes, which may introduce 
some inherent biases into the results. Consequently, future investigations should endeavor to employ larger 
datasets to validate these findings.

The association between changes in fatty acid metabolism regulating genes (CNV, SNP, and mutation) and 
clinicopathological characteristics in patients was investigated. Correlation study of S100A9 expression in the 
prognostic model and SNP revealed 6 SNP-driven cancers, including BLCA,STAD, BRCA,COAD, CSEC, BRCA 
(Fig. 11a–f). A correlation analysis of S100A9 expression in the prognostic model and CNV found numerous can-
cers driven by CNV. The expression of 6 cancers were upregulated in the single mutations group versus that of the 
non-mutations group. (P < 0.05), indicating that dysregulation of key genes might be driven by SNP in S100A9.

Comprehensive gene regulatory networks and GSEA
To unravel the fundamental mechanisms underlying S100A9, we constructed a comprehensive Comprehensive 
Gene Regulatory Networks (Fig. 12). Within this network, S100A9 exhibited a strong interaction with S100A8, 

Table 1.   The stromal and immunological ratings.

Cancer type Gene Stromal score Immune score

ACC​ S100A9 6.36E−03 1.22E−04

BLCA S100A9 4.67E−04 3.63E−10

BRCA​ S100A9 4.89E−11 0

CESC S100A9 7.71E−02 7.40E−11

CHOL S100A9 5.01E−03 1.79E−02

COAD S100A9 7.09E−16 0

DLBC S100A9 2.31E−04 2.06E−03

ESCA S100A9 1.19E−01 6.81E−01

GBM S100A9 0 0

HNSC S100A9 2.54E−06 8.44E−02

KICH S100A9 0 0

KIRC S100A9 8.48E−12 1.58E−17

KIRP S100A9 0 0

LAML S100A9 0 0

LGG S100A9 0 0

LIHC S100A9 2.28E−10 0

LUAD S100A9 9.97E−06 1.27E−07

LUSC S100A9 4.28E−02 1.37E−02

MESO S100A9 2.66E−01 8.81E−04

OV S100A9 1.36E−06 0

PAAD S100A9 1.96E−10 0

PCPG S100A9 0 0

PRAD S100A9 1.87E−15 0

READ S100A9 2.34E−04 0

SARC​ S100A9 0 0

SKCM S100A9 5.30E−09 1.37E−16

STAD S100A9 9.49E−01 1.65E−03

TGCT​ S100A9 0 1.43E−03

THCA S100A9 0 0

THYM S100A9 2.11E−01 8.76E−06

UCEC S100A9 4.80E−02 3.88E−09

UCS S100A9 8.55E−01 1.09E−02

UVM S100A9 0 0
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S100A12, CD33, CSTA, MMP9, S100A7, which has been implicated in cancer metastasis (Table 2). These pro-
teins exhibit diverse roles in tumor progression, inflammation, and immune response modulation, with their 
expression levels often being dysregulated in various malignancies. S100A8 and S100A9, members of the S100 
calcium-binding protein family, are known to form heterodimers and are markedly upregulated in several types 
of cancer. They function as damage-associated molecular patterns, promoting pro-inflammatory responses and 
enhancing the recruitment of myeloid-derived suppressor cells, which are known to facilitate tumor progression 
by suppressing anti-tumor immunity24. These proteins also contribute to the remodeling of the extracellular 
matrix, thus aiding in metastasis. S100A12, another member of the S100 family, shares functional similarities with 
S100A8 and S100A925. It is often co-expressed with these proteins and plays a role in inflammatory processes and 
cancer. Its interaction with the receptor for advanced glycation end products is particularly notable, as it activates 
key signaling pathways involved in tumor growth and metastasis. CD33, a transmembrane receptor expressed on 

Figure 6.   Immune infiltration analyses.

Figure 7.   Immune inhibitors.
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myeloid cells, plays a crucial role in modulating immune responses. In the context of cancer, CD33 is expressed 
on MDSCs and contributes to their immunosuppressive functions, thereby facilitating tumor immune evasion26. 
Targeting CD33-positive MDSCs has emerged as a potential therapeutic strategy to enhance anti-tumor immu-
nity. CSTA, a cysteine protease inhibitor, is implicated in cancer progression through its regulatory effects on 
proteolytic activity. CSTA can influence tumor invasion and metastasis by modulating the activity of cathepsins, 
a family of proteases involved in extracellular matrix degradation27. Its expression levels have been correlated 
with tumor aggressiveness in various cancers. Collectively, these investigations provide compelling support for 
the credibility and plausibility of our findings, suggesting that S100A9 could serve as a novel diagnostic and 
prognostic biomarker in human cancers.

Subsequently, we employed GSEA to identify functional enrichments related to S100A9 (Fig. 13). The analysis 
revealed that elevated levels of S100A9 were significantly associated with metabolic-related activities, including 

Figure 8.   Immune stimulators.

Figure 9.   MHC molecules.
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olfactory transduction, autophagy regulation, the rig I like receptor signaling pathway, systemic lupus ery-
thematosus, and taste transduction, as indicated by the KEGG pathway database. Moreover, based on the GO 
annotations, high levels of S100A9 were primarily associated with epidermis development, sensory perception 
of chemical stimulus, and sensory perception of smell.

Mendelian randomization analysis
In our exploration of the intrinsic connection between BLCA, CESC, COAD, ESCA, GBM, BRCA, HNSC, and 
S100A9, forest plots were meticulously employed to visually articulate the associations. Further dissecting the 
heterogeneity inherent in our analysis, the funnel plot tailored to KIRC revealed a deviation from the expected 
symmetrical distribution, albeit maintaining a general symmetry. This nuanced observation was further scru-
tinized through sensitivity analysis, employing a “leave-one-out” approach. Remarkably, the omission of any 
individual SNP from the analysis had a negligible effect on the results of the Inverse Variance Weighted (IVW) 
analysis, indicating that the remaining SNPs consistently mirrored the outcomes of the aggregate dataset. Sub-
stantiating the validity of our findings, the MR-Egger regression analysis was invoked, providing a solid foun-
dation that bolsters both the robustness and authenticity of our results and the methodologies applied. This 
Mendelian randomization analysis unequivocally confirms the intimate association of BLCA, CESC, COAD, 
ESCA, GBM, BRCA, HNSC with S100A9. Hence, it delineates a potential pathway to modulate the incidence, 
evolution, and progression of S100A9 by intervening in the functions of BLCA, CESC, COAD, ESCA, GBM, 
BRCA, HNSC, presenting a promising avenue for therapeutic intervention and a deeper understanding of the 
disease mechanism (Table 3, Fig. 14).

Figure 10.   Immunotherapeutic markers and response.
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Discussion
Cancer remains a formidable adversary in the pursuit of sustaining optimal quality of life and reducing mortal-
ity. Despite significant advances in cancer treatment, its meticulous management remains an intricate clinical 
challenge. The advent of cancer immunotherapy (CIT) has ushered in a transformative era in therapeutics, 
effectively leveraging the interactions between the immune system and malignant cells28. However, to fully 
realize the potential of CIT, there is a critical need to identify predictive biomarkers that can accurately evaluate 

Figure 11.   SNP and mutation analysis. (a–f) Prognostic signatures and SNP. (a) BLCA, (b) STAD, (c) BRCA, 
(d) COAD, (e) CSEC, (f) BRCA, (g) CNV analysis.

Figure 12.   Comprehensive Gene Regulatory Networks of S100A9.
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Table 2.   Comprehensive Gene Regulatory Networks.

Entity 1 Entity 2 Weight Network Network group

S100A8 S100A9 0.010898329 Wang-Maris-2006 Co-expression

S100A12 S100A9 0.009656164 Wang-Maris-2006 Co-expression

S100A12 S100A8 0.010239002 Wang-Maris-2006 Co-expression

LY96 CSTA 0.008640857 Wang-Maris-2006 Co-expression

NCF2 S100A9 0.007983062 Wang-Maris-2006 Co-expression

NCF2 S100A8 0.00862236 Wang-Maris-2006 Co-expression

MYD88 S100A12 0.011955294 Wang-Maris-2006 Co-expression

MMP9 CSTA 0.021860197 Wang-Maris-2006 Co-expression

S100A8 S100A9 0.015836732 Mallon-McKay-2013 Co-expression

S100A7 S100A9 0.010331557 Mallon-McKay-2013 Co-expression

S100A7 S100A8 0.010364546 Mallon-McKay-2013 Co-expression

CSTA S100A9 0.010270105 Mallon-McKay-2013 Co-expression

CSTA S100A8 0.01084239 Mallon-McKay-2013 Co-expression

CSTA S100A7 0.0082507 Mallon-McKay-2013 Co-expression

LY96 CD33 0.008912767 Mallon-McKay-2013 Co-expression

S100A8 S100A9 0.018620485 Roth-Zlotnik-2006 Co-expression

CSTA S100A9 0.00675074 Roth-Zlotnik-2006 Co-expression

CSTA S100A8 0.007893203 Roth-Zlotnik-2006 Co-expression

CSTA S100A7 0.006526161 Roth-Zlotnik-2006 Co-expression

TLR4 CD33 0.014051371 Roth-Zlotnik-2006 Co-expression

Figure 13.   GSEA. (a + c) Low expression. (b + d) High expression sample. (a + b) KEGG. (c + d): GO.
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Table 3.   Mendelian Randomization Analysis.

Categories BLCA CESC COAD ESCA GBM BRCA​ HNSC

id.exposure ieu-b-4874 ebi-a-GCST90018817 ebi-a-GCST90018817 ebi-a-GCST90018841 ebi-a-GCST90018841 ukb-b-16890 ukb-b-16890

id.outcome prot-a-2622 prot-a-2622 prot-a-2622 prot-a-2622 prot-a-2622 prot-a-2622 prot-a-2622

outcome Protein S100-A9 || 
id:prot-a-2622

Protein S100-A9 || 
id:prot-a-2622

Protein S100-A9 || 
id:prot-a-2622

Protein S100-A9 || 
id:prot-a-2622

Protein S100-A9 || 
id:prot-a-2622

Protein S100-A9 || 
id:prot-a-2622

Protein S100-A9 || 
id:prot-a-2622

exposure Bladder cancer || 
id:ieu-b-4874

Cervical can-
cer || id:ebi-a-
GCST90018817

Cervical can-
cer || id:ebi-a-
GCST90018817

Esophageal 
cancer || id:ebi-a-
GCST90018841

Esophageal 
cancer || id:ebi-a-
GCST90018841

Cancer code, self-
reported: breast 
cancer || id:ukb-
b-16890

Cancer code, self-
reported: breast 
cancer || id:ukb-
b-16890

method Inverse variance 
weighted

Inverse variance 
weighted

Inverse variance 
weighted MR Egger MR Egger MR Egger MR Egger

nsnp 2 2 2 4 4 18 18

b − 5.92853107 − 0.054249071 − 0.054249071 0.130385374 0.130385374 6.782006019 6.782006019

se 25.86691288 0.137252608 0.137252608 0.30647495 0.30647495 6.702240892 6.702240892

pval 0.818718441 0.692658519 0.692658519 0.711924378 0.711924378 0.326644066 0.326644066

lo_ci − 56.62768032 − 0.323264183 − 0.323264183 − 0.470305528 − 0.470305528 − 6.354386129 − 6.354386129

up_ci 44.77061818 0.214766042 0.214766042 0.731076276 0.731076276 19.91839817 19.91839817

or 0.00266239 0.947196158 0.947196158 1.139267343 1.139267343 881.835931 881.835931

or_lci95 2.55E−25 0.723782618 0.723782618 0.624811342 0.624811342 0.001739102 0.001739102

or_uci95 2.77736E+19 1.239571855 1.239571855 2.077315169 2.077315169 447,147,094.2 447,147,094.2

Figure 14.   Mendelian randomization analysis. (a) BLCA, (b) CESC, (c) COAD, (d) ESCA, (e) GBM, (f) BRCA, 
(g) HNSC.
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responses to various immunotherapeutic modalities and determine early therapeutic efficacy for patients. While 
previous studies have highlighted several factors influencing CIT response, the precise and reliable identifica-
tion of biomarkers remains an elusive goal29. S100A9, a pivotal transcription factor intricately woven into the 
immunological fabric of TME, emerges as a promising candidate for immunotherapeutic targeting. It is essential 
to meticulously explore the interplay between S100A9 and various facets of the TME, including immune cellular 
components, immunomodulators, and responses to immunotherapy. This study aimed to conduct a comprehen-
sive examination of S100A9 expression across 33 malignancies, focusing on its impact on the immunological 
TME. Emphasis was placed on vital immunomodulators and dynamic immunological biomarkers. Our initial 
analysis of the relationship between S100A9 expression and clinical variables revealed no significant differences in 
age, gender, or tumor stage across most cancer types, consistent with previous findings. Although the prognostic 
value of S100A9 expression was only marginally significant in several cancers, including breast cancer, S100A9 
has been identified as a proto-oncogene in various malignancies, such as bladder, colorectal, and pancreatic 
cancers30. In pancreatic cancer, S100A8 and S100A9 proteins create a paracrine feedback loop between cancer 
cells and monocytes31. Tumor-infiltrating monocytes/macrophages enhance tumor invasion and migration, 
driven by upregulated S100A8 and S100A9 expression within cancer cells32. Based on the compelling evidence 
presented in this study, we propose that therapeutic modulation of S100A9 activity across diverse tumor types 
may represent a viable clinical strategy.

Moreover, a comparison between the S100A9 activity score and transcriptional levels revealed partial con-
cordance in the overall activation of S100A9 across various malignancies, including BLCA, CESC, CHOL. How-
ever, discrepancies between S100A9 expression and activity were observed in certain cancers, such as HNSC, 
KIRP, LIHC, CHOL, LUAD, READ, STAD, and PCPG. These perturbations in S100A9 functional activity might 
be attributed to post-transcriptional modifications or shifts in protein metabolism, revealing inconsistencies that 
necessitate deeper exploration. Strikingly, in LIHC and READ, S100A9 demonstrated a positive association with 
DFS, while presenting a negative association in LUSC. Additionally, concomitant elevations in the blood levels 
of both S100A8/A9 and CA15-3 were observed in breast cancer patients, with these augmentations positively 
correlating with tumor size. This suggests the S100A8/A9 heterodimer as a potential dual-purpose biomarker, 
offering both diagnostic and prognostic utility for BRCA. Transcriptome profiling of KIRP, which exhibited 
significantly elevated S100A9 expression levels, unveiled an association with disease progression33. Given its 
pivotal role in activating inflammatory pathways that fuel cancer progression, S100A9 has emerged as a promis-
ing target for anticancer therapeutic research34. Thus, S100A9 may be implicated in the oncogenic processes of 
GBM, KIRP, BRCA, and LIHC, further underscoring its potential as a critical biomarker and therapeutic target 
in these malignancies.

Additionally, a comparison between transcriptional levels and S100A9 activity scores revealed partial con-
cordance, suggesting that transcriptional levels partially reflect the overall activation of S100A9 in various tumors, 
including BLCA, CESC, CHOL, COAD, ESCA, GBM, KIRC, LUAD, LUSC, PAAD, READ, STAD, THCA, and 
UCEC. The transcriptional level serves as a paradigmatic indicator of S100A9 activation within these tumor 
categories. However, discrepancies between S100A9 expression and activity have been observed in several can-
cers, including HNSC, KIRP, LIHC, CHOL, LUAD, READ, STAD, and PCPG. These inconsistencies may stem 
from post-transcriptional protein modifications or perturbations in protein metabolism, influencing S100A9 
expression. Aurora De Ponti et al. highlighted the pivotal role of S100A8 in the progression of non-inflammatory 
liver tumors, suggesting S100A8 as a promising therapeutic target in managing LIHC35. Concurrently, Paul R. 
Gielen et al. documented a notable elevation of MDSCs in the blood of glioma patients, correlating with tumor 
grade. The presence and activation status of MDSCs were assessed via the quantification of S100A8/A9 and 
arginase levels36. Furthermore, elevated levels of both S100A8/A9 and CA15-3 were identified in the serum of 
breast cancer patients, with these levels positively correlating with tumor size. This observation suggests that the 
S100A8/A9 heterodimer could serve as a biomarker for the diagnosis and prognosis of BRCA​37. In the context of 
KIRC, transcriptome profiles revealing markedly elevated S100A9 expression levels have been implicated in the 
progression of this cancer subtype. S100A9 has emerged as a significant target for anticancer therapeutic research 
due to its integral role in initiating inflammatory pathways that promote cancer metastasis38. The evidence from 
these studies collectively supports our findings, indicating a potential association between S100A9 and oncogenic 
processes in patients with GBM, KIRC, BRCA, and LIHC. Thus, our findings suggest that S100A9 may function 
as an oncogene in these specific cancer populations.

This study aimed to explore the potential utility of S100A9 by investigating its relationship with immune cell 
infiltration. In ACC, CHOL, and COAD, S100A9 exhibited a significant correlation with neutrophils. Previous 
research suggests that S100A9 influences tumor growth and immune responses through its interaction with 
TME-associated macrophages39. Specifically, S100A9 may modulate neutrophils and subsequent activation of 
an immunosuppressive response40. Notably, in CHOL, S100A9 displayed a significant negative association with 
CD160. Apart from ESCA, most immune stimulants and MHC molecules exhibited a positive relationship with 
S100A9. This intriguing finding may uncover a novel regulatory mechanism in the context of ESCA immu-
notherapy. Enrichment analysis revealed that elevated levels of S100A9 were predominantly associated with 
metabolic-related activities. Metabolic inflammation is characterized by dysregulated expression of cytokines 
and adipocytokines in adipose tissue41. S100A9 has the potential to promote phagocytosis, induce neutrophil 
chemotaxis and adhesion, and enhance neutrophil bactericidal activity through the activation of SYK, PI3K/
AKT, and ERK1/2 signaling pathways42. Furthermore, its extracellular proinflammatory activity involves leu-
kocyte recruitment, promotion of cytokine and chemokine production, and regulation of leukocyte adhesion 
and migration43. Increased S100A9 levels in certain malignancies may disrupt innate immunity by activating 
metabolic-related pathways. These findings highlight the multifaceted role of S100A9 in cancer progression and 
immune modulation, suggesting its potential as a biomarker and therapeutic target in various malignancies.
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In general, tumors with a higher number of somatic mutations tend to exhibit increased neoantigen pro-
duction, making TMB a reasonable estimate of the tumor-neoantigen burden44. MSI, characterized by defec-
tive DNA mismatch repair, is considered a potent mutator phenotype and a potential prognostic indicator for 
immunotherapy45. Within a spectrum of neoplasias, including ESCA, LAML, PAAD, PCPG, and PRAD, S100A9 
delineated a negative correlation with both TMB and MSI. In stark contrast, in BRCA, CESC, KIRC, and LGG, a 
positive relationship with both biomarkers was discerned. These observations suggest that S100A9 might indi-
rectly modulate immunotherapeutic responses within these cancers. While the exploration into the relationship 
between S100A9 and immunotherapeutic responses was meticulously undertaken, discernible disparities were 
not evident among the populations under scrutiny. Nonetheless, the present study unveils pivotal insights into the 
nexus between S100A9 and tumor immunology, highlighting its potential as a biomarker in oncology. However, 
the investigation into immunotherapeutic responses was constrained to a limited number of cohorts, inhibiting 
the derivation of unequivocal conclusions regarding the specific immunotherapeutic responses associated with 
S100A9. Future research should focus on probing larger cohorts within immunotherapeutic contexts to further 
unravel its clinical relevance.

This investigation enhances the existing understanding of S100A9’s role in cancer immunotherapy, providing 
an initial framework elucidating potential correlations between S100A9 and key immunological markers. How-
ever, the present study has limitations that warrant discussion. Primarily, the derivation of a validated predictive 
signature for S100A9 was based solely on public data repositories, such as TCGA, limiting the extent of external 
validation. Secondly, although bioinformatic analyses provide valuable insights into S100A9’s role in oncology, 
these findings should be considered preliminary. The complexity of protein expression, often divergent from 
RNA expression, necessitates further validation using larger, more comprehensive datasets. To corroborate and 
enhance the therapeutic applicability of our findings, biological evaluations through in vitro or in vivo stud-
ies are imperative46. Additionally, considering the pivotal role of post-translational modifications in modulat-
ing intracellular signaling and regulatory factor functionality, further meticulously designed investigations are 
required to fully understand these aspects. Overall, while this study establishes a foundational understanding 
of S100A9’s involvement in cancer immunotherapy, extensive validation and additional research are essential to 
confirm and expand upon these findings.

Conclusions
S100A9 emerges as a molecule of profound prognostic and therapeutic significance, demonstrating substantive 
associations across numerous malignancies and positioning itself as a promising therapeutic target. This study 
elucidates the pivotal role of S100A9 in oncogenesis, while also shedding light on potential mechanisms through 
which it influences tumor immunology and metabolic activity. Notably, we have developed a predictive model 
based on the distinctive S100A9 signature, which holds potential for forecasting the clinical trajectory of specific 
malignancies. This model underscores the critical importance of S100A9 as both a biomarker and a therapeutic 
target in cancer treatment.

Data availability
Patients who granted informed consent to use their data have been uploaded to the public-accessible TCGA 
databases. The datasets generated and/or analysed during the current study are available in the [TCGA] reposi-
tory [https://​portal.​gdc.​cancer.​gov/].
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