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Adolescent development of human brain structural and functional networks is
increasingly recognized as fundamental to emergence of typical and atypical adult
cognitive and emotional proodal magnetic resonance imaging (MRI) data collected
from N ∼ 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly
in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural
scans and 448 functional MRI scans. We estimated the morphometric similarity
between each possible pair of 358 cortical areas on a feature vector comprising six
macro- and microstructural MRI metrics, resulting in a morphometric similarity
network (MSN) for each scan. Over the course of adolescence, we found that
morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate
cortex, but generally decreased in neocortical areas, and these results were replicated
in an independent developmental MRI cohort (N ∼ 304). Increasing hubness of
paralimbic nodes in MSNs was associated with increased strength of coupling between
their morphometric similarity and functional connectivity. Decreasing hubness of
neocortical nodes in MSNs was associated with reduced strength of structure–
function coupling and increasingly diverse functional connections in the corresponding
fMRI networks. Neocortical areas became more structurally differentiated and
more functionally integrative in a metabolically expensive process linked to cortical
thinning and myelination, whereas paralimbic areas specialized for affective and
interoceptive functions became less differentiated, as hypothetically predicted by a
developmental transition from periallocortical to proisocortical organization of the
cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct
neurodevelopmental programs during typical adolescence.
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Magnetic resonance imaging (MRI) studies of human brain structure during adolescence
and childhood have already identified two major developmental processes that are on
going during the maturational transition from birth to adult brain organization: i) after
peaking in early childhood, cortical gray matter volume and thickness monotonically
decrease during adolescence; while ii) protracted myelination of the cortex sees peak white
matter volumes reached in early adulthood (1). Anatomical MRI maps of cortical thinning
and myelination markers like magnetization transfer (MT) are highly (negatively)
correlated, indicating that these may be technically and/or biologically confounded mea-
surements of the same underlying process of synaptic pruning and consolidation (2, 3).
These and other large-scale, long-term neurodevelopmental programs are thought to be
fundamental to the emergence of adult cognitive functions and social behaviors (4–6).

To date, neurodevelopmental MRI data have largely been studied using models
of change in brain structure measured globally, or one region at a time (5, 7, 8).
It is now timely to understand more about developmental change in brain structure
measured by network or connectomic metrics, given the dominant known adolescent
process of pruning and consolidation of (synaptic) connectivity between neurons and
regions. A technical challenge for developmental network neuroscience has been the
estimation of anatomical or structural connectivity between hundreds of regional (cortical
and subcortical) nodes in each individual’s brain scan. Previous studies have used
structural covariance analysis of a single MRI metric measured at each region in a
large group of scans (2, 4); or tractography algorithms to reconstruct the fascicles and
tracts of white matter projections between cortical areas (9). However, both approaches
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are problematic in different ways. Structural covariance analysis
does not resolve the network organization of an individual scan,
which is obviously crucial for within-subject developmental mod-
eling of repeated measures in a longitudinal design. Tractography
networks can be reconstructed from an individual’s diffusion-
weighted imaging (DWI) data; but the resulting connectomes
generally suffer from underestimation of long-range connections,
e.g., between bilaterally symmetric cortical areas (10–12), and
have been unfavorably benchmarked against structural covariance
and newer methods for estimating the anatomical connectome
in a single scan (13, 14).

An alternative approach has emerged recently based on the
concept that cytoarchitectonically similar regions are more likely
to be axonally connected, as articulated in more detail by the
structural model of Barbas and colleagues (15, 16). On this
basis, estimating the similarity between cortical or subcortical
areas, each structurally phenotyped by one or more MRI
metrics, could provide a tractable and plausible proxy for their
axonal interconnectivity (17). This principle of homophily—
“like connects with like”—has been demonstrated in nervous
systems across scales and species. At the microscopic (cellular)
level, synaptic connections are more likely to form between
two functionally and developmentally similar neurons; at the
macroscopic (whole brain) level, animal models have shown that
there is greater interareal connectivity via large-scale axonal tracts
between regions that have similar laminar structure and cellular
composition (18). Last, generative modeling approaches have
shown that a simple two-parameter model of distance-penalized
homophily (19, 20) simulates many aspects of human brain
network organization as an economic trade-off between wiring
cost and topological complexity (21).

Morphometric similarity translates this invasive or in silico
work to in vivo human brain networks by estimating all pair-
wise interregional correlations of a multimodal MRI feature
vector measured at each region. morphometric similarity network
(MSN) can be built from any combination of structural MRI
metrics (Fig. 1A), including i) macrostructural metrics, like
cortical thickness (CT), gray matter volume (GM), and surface
area (SA), which aggregate data from multiple voxels representing

an anatomical region to estimate its geometric properties on
the centimeter scale; and ii) microstructural metrics, which
are representative of some aspect of brain tissue composition
on the millimeter scale of a single voxel, e.g., MT is widely
regarded as a proxy for cortical myelination (Fig. 1 B and C ).
MSNs have been shown to correlate with the “gold standard” of
anatomical connectivity, axonal tract tracing data, in the macaque
monkey (13, 17), thus validating morphometric similarity as
a proxy for axonal connectivity. Network phenotypes, like the
degree of connectivity or “hubness” of each regional node in
the connectome, have also been used to predict individual
differences in intelligence (22), to track normative brain network
development in the first decade of life (using longitudinal data
from the ABCD cohort) (23), and to discover case–control
differences in brain network phenotypes across a range of rare
genetic and other neurodevelopmental (24), psychiatric (25, 26),
and neurological disorders (27).

Here, we used MSNs to integrate multiple macro- and
microstructural MRI phenotypes, including features like cortical
thickness and MT that have previously been linked separately
to adolescent brain structural maturation (2), to measure de-
velopmental changes in individually estimated brain networks.
We analyzed structural MRI scans in an accelerated longitudinal
design (N = 291, age range 14 to 26 y; 51% female), stratified by
age and balanced for sex per age stratum, with each participant
scanned between one and three times at 6 to 18 mo intervals (SI
Appendix, Fig. S1). From the six macro- and microstructural
MRI metrics measured at each of 358 cortical areas, we
estimated the morphometric similarity network for each of 469
individual scans. We used linear mixed effects models to estimate
developmental change in MSN edge weights and nodal degree (a
measure of hubness), and we compared these structural network
results to functional networks constructed from 448 functional
MRI scans in a large subset (N = 283) of the Neuroscience in Psy-
chiatry Network (NSPN) sample. Recognizing the importance
of replicability, we endeavored to reproduce key results from the
NSPN cohort in an independent dataset, using N = 304 cross-
sectional scans from subjects 14 to 21 y collected as part of the
Human Connectome Project Development sample (HCP-D).

B

C

A

E

D G

F

Fig. 1. Modeling of adolescent changes in morphometric similarity. We estimated morphometric similarity networks (MSNs) from multimodal MRI brain
scanning data. (A) These images were parcellated into 358 predefined cortical regions. (B) Macrostructural MRI phenotypes, like CT, GM, and SA, were estimated
for each cortical area overall. (C) Additionally, depth-dependent profiling was used to construct multiple cortical surfaces between the white matter surface
and the pial surface for estimation of MT, a microstructural MRI phenotype, with fine-grained laminar resolution at 70% of cortical depth. (D) We constructed a
feature matrix of multiple features estimated at each region for each individual subject, resulting in a subject-specific {Regions× Features}multimodal MRI data
matrix. (E) We estimated the similarity between each pair of cortical areas in terms of the pairwise correlations between regional feature vectors comprising
multiple normalized macro- and microstructural MRI features estimated at each region. (F ) We compiled all possible interareal similarity measures in a subject-
specific {Regions × Regions} association matrix or morphometric similarity network. (G) We estimated adolescence-related changes in weighted degree, i.e., the
mean weight over all of each node’s edges: the baseline functional connectivity, as the predicted nodal degree at age 14, and the rate of change of hubness, as
the slope of a linear regression of age on weighted degree.
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We hypothesized i) that there would be developmental changes
in MSN phenotypes, e.g., some regional nodes might become
more or less hub-like over the course of adolescence, and ii) that
cytoarchitectonically distinct zones of the cortex, e.g., paralimbic
cortex compared to the neocortex or isocortex, might have
different trajectories of MSN development. We also predicted iii)
that adolescent changes in structural networks should be related
to concomitant changes in functional network organization.

Results
Analyzable Sample. The final sample of morphometric feature
data from the NSPN cohort after quality control consisted of
469 scans from 291 subjects in 358 regions. The fMRI sample
included 448 scans from 283 subjects at 330 regions (SI Appendix,
Table S1). We conducted each analysis on the largest possible
dataset, thus analyses of brain structure were conducted on
291 subjects across 358 regions, whereas analyses of structure–
function relationships were conducted on a subsample of 283
subjects across 330 regions (SI Appendix, Table S2). After quality
control and age-matching, replication analyses were conducted
using structural MRI data from N = 304 subjects of the HCP-D
cohort.

Adolescent Changes in Global and Regional MRI Metrics. We
first estimated adolescent changes at global and regional scales for
six morphometric features: i) three macrostructural MRI metrics:
cortical thickness, gray matter volume, and surface area; and ii)
three microstructural metrics: magnetization transfer, fractional
anisotropy, and mean diffusivity. We estimated the effect of age
on these features using linear mixed effects (LME) models with
a fixed effect of age, sex, and site, and a random effect of subject
(Fig. 1G).

Globally, we found that all macrostructural metrics signifi-
cantly decreased during adolescence: SA, tage = −2.33, PFDR <
0.05; GM, tage = −5.23, PFDR < 0.01); and CT, tage =
−7.29, PFDR < 0.01. Of the microstructural metrics, MT
significantly increased (tage = 3.19; PFDR < 0.01) while
fractional anisotropy (FA) (tage = 1.78) and mean diffusivity

(MD) (tage = −0.42) showed no significant changes after
correction for multiple comparisons (Fig. 2A and SI Appendix,
Table 3). We also found that there were significant sex differences
in one feature, GM, tsex = 2.85, PFDR < 0.05. For the subset
of subjects with both baseline and 1-y follow-up scans, we also
confirmed that these global trends were generally observed in
the within-subject differences in global mean value of each MRI
feature. The exception was FA, which was marginally increased
on the group level, but on average, within-subject change was
negative (for details, see SI Appendix, Fig. 4).

Mirroring the global developments, regionally, we found that
macrostructural MRI metrics tended to decrease, and microstruc-
tural metrics tended to increase (Fig. 2B and SI Appendix, Fig.
S5); We found that this effect was strongest for MT, where 289
regions significantly (PFDR < 0.05) increased in weighted degree
over the course of adolescence, and in CT and GM, where 336
and 296 regions, respectively, significantly decreased (for a map of
change relative to a feature’s global development see SI Appendix,
Fig. S6). We found some variability between cytoarchitectonic
zones of the cortex in terms of their age-related changes in
each of the MRI metrics, e.g., all cortical zones had decreased
macrostructural metrics but the magnitude of shrinkage was
consistently less in the paralimbic cortex compared to neocortical
zones (SI Appendix, Fig. S7 and Table S4).

Adolescent Change in Morphometric Similarity. We con-
structed MSNs from each participant’s set of T1 and DWI MRI
scans, at each time-point, by estimating the Pearson correlation
between all pairwise regional feature vectors comprising the six
MRI metrics, resulting in a {358× 358} symmetric morphomet-
ric similarity matrix or weighted, undirected MSN. The weighted
degree, k, of each regional node in each MSN is a measure of its
morphometric similarity with all other regions, and high-degree
nodes or hubs are morphometrically similar to many other nodes
in the brain.

Because we constructed a MSN model of the connectome for
each scanning session completed by each participant, we could
estimate developmental changes in MSN parameters using the

A B

Fig. 2. Adolescent changes in regional macrostructural and microstructural MRI metrics. We modeled the linear effect of age on six morphometric features.
(A) Globally, the three macrostructural MRI metrics (GM, CT, and SA), all decreased over the course of adolescence (PFDR < 0.05 for each), while one of the three
microstructural MRI metrics was significantly increased during adolescence (MT, PFDR < 0.05), but not MD or FA. (B) We modeled the linear effect of age on six
morphometric features at each of 358 cortical areas to resolve the anatomical patterning of developmental changes in macro- and microstructural MRI metrics
during adolescence. We generally observed increases (t > 0) in microstructural features, and decreases (t < 0) in macrostructural features.
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Fig. 3. Adolescent change in degree of morphometric similarity, Δk. We estimated morphometric similarity networks for each subject by correlating the
standardized morphometric feature vectors for each possible pair of regions. (A) We estimated linear changes in morphometric similarity with age, Δk, at each
region and found that morphometric similarity decreased in neocortical (frontal, occipital) regions, and increased in medial and temporal cortical regions.
These changes were significant after correction for multiple comparisons in 33 regions. (B) We estimated the mean effect of age on all regions within each of
the Mesulam cytoarchitectonic zones (28, 29) and found that morphometric similarity increased in the paralimbic cortex and decreased in all other zones. (C)
We also found that within-network similarity decreased for all zones, marginally in unimodal and idiotypic zones and significantly after correction for multiple
comparisons in heteromodal and paralimbic zones (PFDR < 0.05), while between-network connectivity increased between paralimbic and heteromodal, as well
as idiotypic zones (PFDR < 0.05) and decreased otherwise. (D) Next, we assessed the correlation between adolescent effects on individual MRI features at each
region and the adolescent effect on degree of morphometric similarity, or “hubness,” of each regional node in the cortical connectome. We found that MT and
other microstructural MRI features were negatively correlated with adolescent change in MSN degree, i.e., cortical myelination increased in areas that become
more morphometrically dissimilar, or less hub-like with Δk < 0, during adolescence. Conversely, macrostructural MRI features were positively correlated with
adolescent change in MSN degree, i.e., cortical thickness, volume, and surface area all decreased in regions that became less hub-like during adolescence. Here,
we highlight regions that are significant (PFDR < 0.05) Δk with gray outlines. (E) We estimated the correlation between the age effect on morphometric similarity
and several prior maps of brain organization. We found a negative correlation between the effects of age on MSN nodal degree and several brain maps of
metabolic rates, meaning that regions that showed decreases in degree of morphometric similarity tended to have increased metabolic rates. Conversely, the
positive correlation between the age effect on MSN nodal degree and a map of cerebral blood volume means that regions that had decreased morphometric
similarity over the course of adolescence had lower cerebral blood volume.

same LME as previously used for analysis of age-related change
in global and regional MRI metrics (Fig. 1G). We found that
weighted degree generally decreased with age, i.e., Δk < 0, in
heteromodal and other neocortical zones, meaning that these
areas became more morphometrically dissimilar from the rest of
the brain; whereas degree increased with age, i.e., Δk < 0, in
paralimbic areas such as the insula and cingulate cortex, meaning
they became more morphometrically similar to the rest of the
brain (Fig. 3A).

We did not find evidence for widespread sex differences in
morphometric similarity during adolescence (SI Appendix, Fig.
S8), and while some regions showed significant effects of scanning
site, these regions did not overlap extensively with regions
that showed significant developmental changes in morphometric
similarity (SI Appendix, Fig. S9), the effects of site and age were
not correlated (� = −0.07, P = 0.16). To address the potential
impact of site-specific factors on internal replicability of our
results, we split the sample by site into three internal replication
datasets (347 scans acquired at Wolfson Brain Imaging Center,
98 at University College London, and 33 at the MRC Cognition
and Brain Sciences Unit). Despite the differences in site-specific
sample size, we found a high spatial correspondence between

our principal results on the whole NSPN cohort and the site-
specific results derived from each of the three subcohorts (SI
Appendix, Fig. S10). 33 regional MSN nodes, primarily located
in transmodal areas of the paralimbic (N = 18) and heteromodal
(N = 10) cortex, had significant changes in weighted degree
after correction for multiple comparisons (PFDR < 0.05; see SI
Appendix, Table 5 and Fig. 3 A, Top). We further confirmed
that the directionality of significant age effects on morphometric
similarity degree (k) was robust: i) to sample size, using an ablation
analysis which left out iteratively larger fractions of the data; and
ii) to composition of the sample, using a permutation approach
that resampled subjects with replacement (SI Appendix, Fig. S11).
Last, we wanted to confirm that these between-subject, age-
related changes in MSN degree were related to the developmental
process of within-subject change in degree of similarity. However,
we could not estimate within-subject linear rate of change
as a random effect, because this would require at least three
repeated measures per participant. Instead, we simply estimated
the difference in MSN degree at baseline and 1-y follow-up
at each cortical area for each of N = 172 participants and
found that this measure of within-subject longitudinal change
was significantly positively correlated with between-subject age-
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related changes in MSN degree (Δk; � = 0.41, Pspin < 0.001;
see SI Appendix, Fig. 12).

To test our hypothesis that development of morphometric
similarity should be conditioned by the cytoarchitectonic features
of the cortex, we estimated the mean effect of age on weighted
degree of all regions within each of four known cytoarchitectonic
zones of the cortex (28, 29) (Fig. 3B). We found that isocortical
or neocortical zones (idiotypic, unimodal, and heteromodal) had
decreased MSN degree, i.e. Δk < 0, whereas paralimbic cortical
areas had increased degree, i.e. Δk > 0 (Fig. 3B and SI Appendix,
Table S6; for a breakdown of results by predefined functional
subnetworks (30) and further cytoarchitectonic classes (31) refer
to SI Appendix, Fig. S13). We further observed overall decreasing
within-zone similarity, whereas between-zone similarity was
specifically and significantly increased between the paralimbic
and idiotypic cortex, as well as between the paralimbic and
heteromodal cortex (Fig. 3C ). Moreover, we estimated changes in
the connectivity between each individual cytoarchitectonic zone
and the rest of the brain (SI Appendix, Fig. S15A) and observed
zone-specific patterns of reorganization in connectivity to the rest
of the brain (SI Appendix, Fig. S11B).

Last, we endeavored to replicate our main findings from the
NSPN cohort in an independent cohort. There was no other MRI
dataset available to us that was directly comparable to NSPN
in terms of providing repeated measures on MT. We instead
used the HCP-D cohort (32) as an approximate replication
sample, which provides measures of the T1w/T2w ratio as an
alternative proxy of intracortical myelination (33). We found
consistent age-related decreases in cortical thickness, surface area,
and volume, and age-related increases in MT or T1w/T2w,
across both HCP-D and NSPN cohorts (Pspin < 0.05 for all
correlations between original and replication maps). We note
that one metric, fractional anisotropy, showed a diverging trend
in the replication compared to the original sample (Pspin = 0.12):
FA showed no significant change over the course of adolescence
in the NSPN cohort, but significantly decreased with age in the
HCP-D cohort (t = −2.5, PFDR < 0.05). Most importantly,
we found consistent results between cohorts in terms of age-
related changes in degree of morphometric similarity, Δk, across
different cytoarchitectonic classes of the cortex (� = 0.5, Pspin <
0.001, SI Appendix, Figs. S16 and S17). In MSNs derived from
HCP-D data, as in MSNs from NSPN data, cortical areas in the
paralimbic zone became increasingly similar, whereas areas of the
heteromodal association cortex became increasingly dissimilar,
over the course of adolescence (see SI Appendix, Text for details).

In an effort to understand the contribution of each of the
six individual morphometric features to the adolescent change
in morphometric similarity, we correlated the effect sizes of
age (regional t-statistics) on the individual MRI phenotypes
(Fig. 2B) with the age effects (regional t-statistic) on MSN
weighted degree (Fig. 3A). We observed a divergent pattern: age-
related changes in microstructural MRI markers were negatively
correlated with adolescent changes in weighted degree (MD:
r = −0.4, Pspin < 0.05; MT: r = −0.15, Pspin < 0.05; FA:
r = −0.1), whereas macrostructural changes were positively
correlated with adolescent changes in weighted degree (GM:
r = 0.32, Pspin < 0.05; CT: r = 0.31, Pspin < 0.05; SA:
r = 0.26, Pspin < 0.05) (Fig. 3D and SI Appendix, Fig. S18).
This result indicates that regions of unimodal, heteromodal, and
idiotypic cortex which became less morphometrically similar
(or more morphometrically differentiated from the rest of the
brain), as indexed by decreasing MSN degree during adolescence,
tended also to become thinner and smaller, and more strongly
myelinated (Fig. 3D). Thus the well-known adolescent processes

of cortical thinning and increased myelination appeared to
drive increasing morphometric dissimilarity or differentiation of
neocortical nodes. Regions of the paralimbic cortex that had
increased MSN degree over the course of adolescence showed
a similar pattern of decreased macrostructural and increased
microstructural metrics, but of smaller magnitude compared to
isocortical areas, as indicated by t-values closer to zero (Fig. 3D).

Biological and Psychological Context of Adolescent Changes in
Anatomical Connectomes. We were interested in contextualiz-
ing age-related changes in MSNs in relation to prior maps of
transcriptional and functional gradients, evolutionary change,
and metabolic requirements (34). We found that the whole
brain map of adolescent change in weighted degree of each
node was significantly negatively correlated with commensurate
maps of aerobic glycosis (r = −0.32; Pspin < 0.05) and the
rates of oxygen (r = −0.44; Pspin < 0.001) and glycolysis
metabolism (r = −0.48; Pspin < 0.001). Thus association and
other isocortical nodes that had decreased MSN degree during
adolescence tended to have increased metabolic demands in
adulthood (Fig. 3E). Conversely, we found a positive correlation
with a map of cerebral blood volume (r = 0.19; Pspin < 0.05),
meaning that paralimbic regions that had increased MSN degree
during adolescence tended to have decreased cerebral blood
volume (Fig. 3E).

We also explored the psychological relevance of age-related
changes in morphometric similarity. We conducted automated
meta-analytic referencing using the NeuroSynth database of task-
related fMRI activation coordinates (35). This analysis revealed
that isocortical regions that showed decreases in MSN degree
(t < 0) were typically activated by tasks related to visual
processing and imagery, motor control, and working memory.
Conversely, paralimbic regions that showed increases (t > 0) in
MSN degree were associated with self-evaluation of emotional
content, nociception, and pain (SI Appendix, Fig. S14).

Adolescent Development of Structure–Function Coupling. We
hypothesized that adolescent changes in brain structure, mea-
sured as increases or decreases of morphometric similarity, might
change the strength of coupling between structural and functional
brain networks (Fig. 4A). To test this hypothesis, we first
estimated global structure–function coupling as the correlation
between the ranked elements of the functional connectivity
matrix and the morphometric similarity matrix for each subject,
at each time-point (Fig. 4B). We modeled the linear effect of age
on structure–function coupling using the same LME model as
previously used for global, local, and MSN metrics. We found
that global structure–function coupling decreased over the course
of adolescence (t = −5.04, P < 0.001; Fig. 4C ), indicating
a decoupling of functional connectivity from morphometric
similarity.

We also tested this hypothesis regionally, estimating the
correlations between the ranked elements of each row of the
functional connectivity and morphometric similarity matrices
(Fig. 4B), and then using the same LME to estimate age effects
on regional structure–function coupling. From this analysis, we
derived a map of baseline coupling, or the predicted coupling
at age 14 y (Fig. 4 D, Left), as well as a map of adolescent
changes in regional coupling (Fig. 4 D, Right). Baseline coupling
was high in most isocortical areas, but lower in paralimbic areas
(Fig. 4D and SI Appendix, Fig. S19A and Table S7). Coupling
decreased most strongly in isocortical regions, and decreased less
or increased slightly in paralimbic cortical regions (Fig. 4E and SI
Appendix, Fig. S19B and Table S7). It is notable that the majority
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Fig. 4. Adolescent development of structure–function coupling. (A) We derived a functional connectivity (FC) matrix, or functional connectome, for each scan
by estimating the pairwise correlations between resting-state fMRI time series averaged over all voxels in each of all possible pairs of two regions defined by the
parcellation template. (B) We estimated global structure–function coupling by correlating the ranked edgewise structural and functional connectivity vectors
derived from each participant’s FC matrix and MSN, respectively; and regional structure–function coupling as the correlation between the ranked vector of a
region’s edges derived from the FC matrix and the MSN, respectively. (C) We estimated the linear effect of age on global structure–function coupling and found
that there was a significant decline in coupling over the course of adolescence (t = −5.04, P < 0.001). We next estimated the linear effect of age on regional
structure–function coupling using linear mixed effects models. From this analysis, we derived (D) a map of baseline structure–function coupling as the predicted
coupling at age 14, and (E) a map of the rate of change in coupling, or the t-value of the effect of age on structure–function coupling. We found that 10 regions
showed significant changes in structure–function coupling during adolescence, after correction for multiple comparisons (PFDR < 0.05; SI Appendix, Fig. S12A).
(E) We found that the age effect on morphometric similarity was significantly positively correlated with the rate of change in coupling (r = 0.36, Pspin < 0.01).
Thus, isocortical regions that become more morphometrically dissimilar (structurally differentiated) tended to have decreased strength of structure–function
coupling over the course of adolescence.

of regions decreased in coupling over the course of adolescence
(blue in Fig. 4D). We also found that structure–function coupling
at baseline and the rate of change in coupling were negatively
correlated (r = −0.35; Pspin < 0.001; SI Appendix, Fig. S20C ),
thus regions that were more strongly coupled at baseline tended to
have greater decreases in coupling over the course of adolescence.

We further investigated how baseline regional structure–
function decoupling and its adolescent changes were related
to baseline and adolescent changes in morphometric similarity.
We found that baseline MSN degree at age 14 y (SI Appendix,
Fig. S21) was weakly correlated with baseline structure–function
coupling (r = 0.15, Pspin < 0.05; SI Appendix, Fig. S20B),
such that regional hubs at baseline had stronger structure–
function coupling. There was also significant positive correlation
between adolescent changes in MSN degree and structure–
function coupling (r = 0.36, Pspin < 0.01; Fig. 4F ), meaning
that isocortical regions which became more dissimilar from the
rest of the brain during adolescence had weaker structure–
function coupling, whereas paralimbic regions which became
more morphometrically similar had stronger coupling (Fig. 4F
and SI Appendix, Fig. S20).

Codevelopment of Structural and Functional Network
Changes. In order to further understand how adolescent changes
in structural brain networks relate to concomitant changes in
brain functional networks, we estimated age-related changes in
multiple network metrics (Fig. 5A). We did not find significant
associations between adolescent changes in morphometric sim-
ilarity and adolescent changes in weighted degree of functional
connectivity (r = −0.05, Pspin = 0.4; SI Appendix, Fig. S22 and
Fig. 5A) or multiple other network metrics, including within- and
between-network connectivity, eigenvector centrality, clustering
coefficient, and efficiency (Fig. 5A). However, motivated by
prior work (9), we were particularly interested to assess whether
developmental changes in morphometric dissimilarity were asso-
ciated with changes in participation coefficient, a measure of the
topological diversity of functional connectivity between modules
(Fig. 5B). Regions with a high participation coefficient have a
relatively high proportion of intermodular connections to nodes

in other modules, thus they may have the capacity to integrate
information across multiple subgraphs or modules of the whole
brain connectome and have been designated as “connector hubs.”
Conversely, regions with a low participation coefficient have more
locally segregated connectivity within their respective modules
and have previously been designated “provincial hubs” because
of their important role in communication between modules (36).
We found that adolescent increases in regional participation
coefficient were largely located in isocortical regions and decreases
were more concentrated in paralimbic regions, as well as medial
prefrontal regions (Fig. 5C ). Further, we found that adolescent
changes in MSN degree were correlated with adolescent changes
in PC (r = −0.24, Pspin < 0.01, Fig. 5 A, Bottom), such that
isocortical regions that became more morphometrically dissimilar
over the course of adolescence had increased PC over the same
period (Fig. 5D and SI Appendix, Fig. S23 and Table S8),
whereas paralimbic regions that became more morphometrically
similar had decreased PC during adolescence. We thus estab-
lished that increases in morphometric dissimilarity, or structural
differentiation from the rest of the brain, were associated with
increasing diversity of functional connectivity, measured as a
relative strengthening of intermodular connectivity, potentially
representing an increased ability to integrate information across
multiple, structurally differentiated modules.

Discussion
We set out to investigate the hypothesis that there are devel-
opmental changes in human brain structural networks during
adolescence, and that cortical areas may become more or
less hub-like in the connectome depending on their maturing
cytoarchitectonic differentiation from the rest of the cortex. We
used morphometric similarity analysis of multiple MRI metrics
to measure brain anatomical networks from repeated structural
MRI assessments of a large cohort of healthy young people. We
found that there were indeed significant developmental changes
in the hubness of cortical areas during adolescence, and that the
regional trajectories of adolescent change in MSN hubness or
degree, Δk, were remarkably distinct between paralimbic and all
other (isocortical) zones of the cortex.
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Fig. 5. Morphometric dissimilarity was associated with functional participation. (A) We estimated age-related changes in multiple network metrics of regional
nodes in fMRI connectomes over the course of adolescence. We then correlated the adolescence-related changes in these fMRI network phenotypes with
changes in morphometric similarity. We found that only the participation coefficient (PC), a measure of intermodular connectivity, showed adolescent changes
that were significantly associated with adolescent changes in MSN degree. (B) We then estimated the regional participation coefficient (PC) at each node
for each connectome. PC is measured as the ratio between a node’s intramodular degree (edges connecting to other nodes in the same module) and its
intermodular degree (edges connecting to nodes in other modules). (C) We estimated the linear effect of age on PC. Functional participation increased
over the course of adolescence in association cortical regions and decreased in primary motor and sensory regions, as well as medial prefrontal regions.
(D) We estimated Spearman’s correlation between regional age-related changes in morphometric similarity and regional age-related changes in functional
participation coefficient. We found that regions that became more morphometrically dissimilar over the course of adolescence tended to increase in their
functional participation.

According to the cytoarchitectonic scheme defined by
Mesulam (28, 29), the isocortex or neocortex is defined by
six cortical layers, it encompasses the majority of the human
cortex, and it can be subdivided into three zones of the idiotypic,
unimodal, and heteromodal cortex. We found that almost all
such isocortical areas became less similar or more dissimilar
from the rest of the cortex during adolescence, and therefore
less hub-like in morphometric similarity networks. The most
likely interpretation of this process of “dehubification” is that
each of these areas is becoming more structurally differentiated
from the rest of the brain, more unique in its cytoarchitectonic
or myeloarchitectonic organization. We found that isocortical
regions with decreasing hubness typically had more rapidly
shrinking cortical thickness, volume, and surface area, and
greater increases in myelination indexed by MT. Coupled
changes in cortical shrinkage and cortical myelination have
been well replicated in prior neurodevelopmental MRI studies
of childhood and adolescence (2, 5) and can be interpreted
as a process of pruning connections at a cellular level, and
consolidating those connections that survive by myelination.
It therefore seems likely that the increasing dissimilarity of
isocortical nodes in morphometric similarity networks reflects
their increasingly selected and distinctive profile of (myelinated)
anatomical connections to the rest of the brain.

The paralimbic zone is defined by having less than six
cortical layers and lacking a well-defined layer four of granule
cells. It represents a minority of the total cortex, including
insular, orbito-frontal, temporal polar, and cingulate cortices.
Cytoarchitectonically and connectionally, the paralimbic zone
is regarded as transitional or intermediate between the most
phylogenetically primitive, 3-layered regions of allocortex, e.g.,
hippocampus or pyriform cortex , and the 6-layered neocortex or
isocortex. We found that almost all paralimbic areas became more
morphometrically similar, or more hub-like, over the course of
adolescence. There are at least two plausible interpretations of this
result: local (absolute) or contextual (relative) change in cortical
structure. Locally, it could be that the paralimbic cortex becomes
“less primitive” or cytoarchitectonically more similar compared
to the isocortex during adolescence. Across the insula of the
primate brain , for example, there is an antero-posterior gradient
of cortical architectonics from the agranular, periallocortical

organization of anterior (rostral) insula, continuous with the
3-layered pyriform cortex, to the dysgranular, proisocortical orga-
nization of posterior (caudal) insula, continuous with 6-layered
heteromodal and unimodal association areas of the temporal and
parietal cortex (37). This cytoarchitectonic gradient has evolved
phylogenetically from reptiles to primates, and it is conceivable
that this process might be recapitulated ontogenetically, with an
increasing proportion of the insula becoming organized more like
isocortex and less like allocortex over the course of development.
This would be consistent with our observations of greater
morphometric similarity between isocortical (idiotypic and
heteromodal) and paralimbic zones, and therefore higher degree
of paralimbic cortical nodes, over the course of adolescent MSN
development. An alternative interpretation is that the paralimbic
cortex becomes relatively more similar to the isocortex, as
the isocortical areas become relatively more dissimilar to
(differentiated from) each other. In other words, there may be
no local cytoarchitectonic maturation of progressively more
isocortical lamination but paralimbic areas could nonetheless
appear to become more similar “on average” across the brain
as the corollary of isocortical or neocortical differentiation
associated with adolescent shrinkage and myelination. Further
studies linking MRI metrics and morphometric similarity to
underlying cellular changes in development of the mammalian
cortex will be required for definitive mechanistic resolution of the
increasing hubness of the paralimbic cortex, as well as to confirm
the pruning-and-myelination mechanism proposed to account
for decreasing hubness of the isocortex during adolescence.
Indeed, prior work in children has linked morphometric
dissimilarity between isocortical and paralimbic zones to better
cognitive performance, suggesting that structural differentiation
is a prerequisite for healthy development in the preadolescent
period, a finding which supports the relevance of understanding
changes in morphometric similarity during development (23).

We proceeded to investigate the consequences for brain
functional connectivity of this cytoarchitectonically aligned
divergence in structural network development, and made two
interesting observations. First, we found that morphometric
similarity and functional connectivity, measured in the same
scanning session, were significantly but modestly coupled at
baseline (r ≤ 0.25 at 14 y) and the strength of structure–
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function coupling globally declined over the course of ado-
lescence, as previously reported (38). However, at a regional
level, there was again some evidence for cytoarchitectonically
aligned divergence in developmental trajectories. Isocortical
areas tended to have reduced structure–function coupling over
the course of adolescence compared to paralimbic areas. And
adolescent change in structure–function coupling at each region
was positively correlated with the adolescent change in MSN
degree that was previously shown to be cytoarchitectonically
aligned. Second, we found that the participation coefficients for
each regional node in the fMRI connectomes were also devel-
opmentally divergent on cytoarchitectonic lines: most isocortical
areas had increased participation and most paralimbic areas had
decreased participation; and adolescent change in participation
was positively correlated with the cytoarchitectonically aligned
adolescent change in MSN degree. Collectively these results
suggest that as isocortical areas become less hub-like or more
structurally differentiated their pattern of functional interactions
with other cortical areas becomes less constrained or more diverse.
Morphometric similarity is a proxy for (often reciprocal) monosy-
naptic connectivity between areas of same cytoarchitectonic class,
whereas functional connectivity is often regarded as a proxy for
polysynaptic connectivity. Low strength of structure–function
coupling and high participation means that mature isocortical
areas can interact functionally with other areas even if they are
cytoarchitectonically dissimilar or affiliated to different modules
of the fMRI connectome, possibly relying more on polysynaptic
(indirect) axonal connections or circuit-level modulation of
neuronal activity (9). Given prior theories on the importance
of network integration and segregation to different aspects of
cognition (9), this developmental shift of heteromodal and other
isocortical nodes to increasing diversity of functional connectivity
and increasing differentiation of cortical structure could be
relevant to the emergence of a wide range of domain-general
or “higher-order” cognitive skills which depend on integrative
network properties (39). The opposite trend demonstrated by
some (mostly paralimbic) areas—toward increased structure–
function coupling and decreased participation—convergently
suggests consolidation of intramodular interactions between
morphometrically similar areas specialized for a specific function,
e.g., interoception, that emerges during adolescence. Further
work will be needed to test these predictions of the cognitive
consequences of cytoarchitectonically aligned changes in MSN
and fMRI network connectivity.

There are some notable methodological issues. First of all, the
test–retest reliability of MSNs has not previously been assessed.
Here, we estimated the longitudinal (between-visit or within-
subject) rank stability of global and regional MSN degree as a
proxy for test–retest reliability and found generally high levels
of rank stability. Rank of regional MSN degree was significantly
positively correlated between baseline and follow-up scans in
241 regions (SI Appendix, Text and Fig. S24). We found that
21 of the 33 regions that showed significant changes in MSN
degree also had high rank stability, indicating that the majority
of developmental changes in MSN degree are not in less reliable
regions (SI Appendix, Fig. S24). Future work will have to assess
test–retest reliability of MSNs more directly. Only a minority
of cortical areas demonstrated significantly nonzero changes in
similarity during adolescence yet most of our analysis has included
data from all cortical areas, e.g., to investigate differences in devel-
opment of similarity between cytoarchitectonic classes or cortical
types. In doing so, we assumed that developmental change in
similarity was widespread throughout the brain but our statistical
power to demonstrate significant change at a regional level was

constrained by the number of participants, the number of scans
per participant, the nominal degrees of freedom for estimation of
similarity in each scan, and the multiple comparisons correction
needed to control FDR < 5% for all 358 cortical regions tested.
We expect that future studies of brain similarity development will
achieve greater statistical power by addressing some or all of these
constraints. A notable strength of this analysis was the generally
convergent results from two independent datasets. However, it is
noteworthy that not all individual analyses were replicated. For
example, we observed discrepancies in the global development
of FA between the NSPN and HCP-D (replication) samples.
A number of reasons may have contributed to this discrepancy,
including differences in sample size and preprocessing pipelines
between the two cohorts. Even taking this specific discrepancy
into account, age-related trends in adolescent development of
morphometric similarity were largely replicated between the two
cohorts, which supports the robustness of our methods and
these results. Further, to date, there is no consensus on how
best to estimate the coupling between structural and functional
connectivity, and various methods have been used to define
both structural and functional networks (9, 38, 40), which may
contribute to the lack of consistency in the overall pattern of
previously reported results. Notably, structure has so far been
defined from DWI networks (9) or graph theoretical properties
of such networks (38). However, it is conceivable that new
insights can be gained into how structure constrains function
by employing different structural network modeling approaches,
including more directly modeling relevant maturational processes
of increasing myelination paired with cortical thinning, as is
possible using morphometric similarity networks.

Overall, we conclude that adolescence is associated with
an extensive developmental program of increasing structural
differentiation and functional integration of isocortical zones ,
and increasing structural similarity and functional segregation of
the paralimbic cortex.

Materials and Methods

This study included data from an accelerated longitudinal study (41) of
adolescents ages 14 to 26 y (51 % female) who were invited to undergo functional
and structural neuroimaging assessments on at least two occasions: at baseline
and at a 1-y follow-up assessment, with a subset of the sample invited to come
in 6 mo after baseline for an additional scan (SI Appendix, Fig. S1). Participants
provided informed written consent for each aspect of the study, and parental
consent was obtained for those aged 14 to 15 y. The study was ethically approved
by the National Research Ethics Service and conducted in accordance with U.K.
National Health Service research governance standards (see SI Appendix, Text
for further details).

Structural MRI Acquisition and Preprocessing. The MRI data were acquired
using a multiparametric mapping sequence (42) at three sites, on three identical
3T Siemens MRI scanners (Magnetom TIM Trio, VB17 software version) with a
standard 32-channel radio-frequency (RF) receive head coil and RF body coil for
transmission. The anatomical, diffusion weighted, and functional imaging data
were collected during the same session. The anatomical MRI data were acquired
using a single-shot echo planar imaging sequence (63 gradient directions with
b-value = 1,000 mm/s2 and 5 unweighted B0 images) was used to acquire a
HARDI with the following scanning parameters: slice number = 70 consecutive;
slice thickness = 2 mm; field of view = 192 × 192 mm; TE = 90 ms; TR =
8,700 ms; and voxel size = 2.0 mm isotropic.

We preprocessed the anatomical data using the recon-all command in
Freesurfer v5.3.0 (43). In short, the pipeline included the following steps:
nonuniformity correction, projection to Talairach space, intensity normalization,
skull stripping, automatic tissue, and subcortical segmentation, and construction
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of smooth representations of the gray/white interface and the pial surface.
Subsequently, the DWI volumes were aligned to the R1 image for each subject.
Last, we parcellated the anatomical and DWI scans into 360 bilateral parcels,
using the Human Connectome Project (HCP) parcellation atlas (44).

fMRI Acquisition and Preprocessing. The functional MRI data were acquired
using a multiecho (ME) echo-planar imaging sequence with the following
scanning parameters: TR = 2.42 s; GRAPPA with acceleration factor = 2; flip
angle = 90°; matrix size = 64 × 64 × 34; field of view = 240 mm by 240
mm; in-plane resolution = 3.75 mm by 3.75 mm; slice thickness = 3.75 mm
with 10% gap, with sequential acquisition of 34 oblique slices; bandwidth =
2,368 Hz/pixel; and TE = 13, 30.55, and 48.1 ms.

The preprocessing pipeline has been described in depth in prior publi-
cations (45, 46). Briefly, this included ME-ICA to remove non-BOLD com-
ponents (47, 48); CSF regression using Analysis of Functional NeuroImages
software [AFNI; (49)]; parcellation into 360 bilateral cortical regions using the
HCP template (44); band-pass filtering (frequency range 0.025 to 0.111 Hz);
removal of 30 dropout regions, defined by a low Z score of mean signal intensity
in at least one participant (Z < −1.96); functional connectivity estimation using
Pearson’s correlation between all possible combinations of regional timeseries;
and Fisher’s r − Z transformation. Finally, to remove any residual effects of
head motion on functional connectivity, we regressed each pairwise correlation
between regions on the time-averaged head motion of each participant (mean
framewise displacement). We retained the residuals of this regression, i.e.,
motion-corrected Z scores, as the estimates of functional connectivity for this
analysis.

Morphometric Feature Estimation and Quality Control. We derived
FreeSurfer’s standard morphometric features: CT, GM, SA. Previous work on
this sample had indicated that MT adolescent changes with age were most
pronounced at 70% cortical depth from the pial surface (2); thus regional MT
values were estimated at that depth. Last, regional volumes for FA and MD were
derived from the DWI scans.

We excluded 11 subjects due to outliers in at least one morphometric feature
(MAD ≥ 5; see SI Appendix, Fig. S2 and Text for further details). Two regions
were excluded due to a local signal dropout, defined as MAD = 0 in at least one
morphometric feature across subjects, which led to the exclusion of two regions
(L_H, R_H), such that the total number of regions analyzed henceforth was 358
(see SI Appendix, Fig. S3 and Text for further details).

Modeling of Developmental Change in Morphometric Features. We
estimated linear age-related changes or development in six morphometric
features at global scale, i.e., on average for each feature over all regions, and
locally, for each feature f at each region (i = 1...N = 358), using linear mixed
effects models, with a fixed effect of age, sex and site, and a random effect for
the repeated measures on each participant, as follows:

fi ∼ 1 + �age ∗ age + �sex ∗ sex + �site ∗ site

+ subject ∗ (1|subject) + �, [1]

where fi refers to the morphometric feature value at region i, � refers to the
coefficients for the fixed effects, subject refers to the coefficients for the random
effect, and � represents the residual error.

Adolescent Changes in Morphometric Similarity. We derived subject-
specific structural connectomes, i.e. morphometric similarity networks. To this
end, we standardized each morphometric feature within each subject using
MAD (50). We then estimated morphometric similarity networks for each subject
by calculating the Pearson correlation between their standardized feature vectors
for each possible pair of regions. This resulted in a 358× 358 symmetric matrix,
indicative of morphometric similarity between cortical regions.

We first estimated regional morphometric similarity, or weighted degree k
as the mean across a region’s edges. Then we estimated the linear effect of age
on MSN weighted degree, using linear mixed effects models (Fig. 1G) with a

fixed effect of age, sex, and site and random effect of subject, as follows:

ki ∼ 1 + �age ∗ age + �sex ∗ sex + �site ∗ site

+ subject ∗ (1|subject) + �, [2]

where ki refers to the morphometric similarity strength, or weighted degree, of
regional node i, � refers to coefficients for the fixed effects, subject refers to the
coefficients for random effects, and � represents the residual error. From this
model, we estimated the adolescent rate of change in morphometric similarity,
or the age effect on weighted degree at each node of MSN, as the t-statistic of
the age effect.

We tested for the robustness of the derived age-related changes in
morphometric similarity using two sensitivity analyses: First, we estimated
the correlation between age effects derived using an ablation analysis of ever-
decreasing sample sizes, i.e. we randomly sampled decreasing numbers of
subjects and re-estimated the effect of age on the smaller samples. Second, we
derived CIs around the estimated age effects in a leave-N-out bootstrap analysis,
where we randomly left out 10% of the sample in 1,000 permutations and
re-estimated the age effects on morphometric similarity (see SI Appendix, Fig. 8
for details).

Inordertodecodetheregionalchangesinmorphometricsimilaritybycell type
and functional modules, we averaged weighted degree over all regions within
each cytoarchitectonic zone and functional network of cortical areas defined a
priori by the respective reference brain atlas (28–31).

We then estimated the correlation between age-related changes (t-values) in
individual morphometric features, estimated by Eq. 1, and age-related changes
(t-values) in morphometric similarity, estimated by Eq.2. Each analysis of spatial
colocation or correlation between two cortical maps was reported with both
the parametric P-value corresponding to the Pearson correlation (r), as well as
a P-value derived from the more conservative “spin-test” permutation. Spatial
autocorrelation of statistical brain maps can cause inflated estimates of the
probability of spatial colocation or correlation between two maps (4, 51). The
spin test procedure addresses this issue by conserving the spatial autocorrelation
of the maps by randomly “spinning” or spherically rotating each map 1,000 times
over the surface of the brain and calculating the spatial colocation statistic after
each spin permutation.

We estimated the anatomical colocation of the map of age-related changes
in morphometric similarity with various maps of cortical organization, including
metabolic rates, blood volume, and functional hierarchy (34). To do this, we
correlated the ranked map of age-related changes in morphometric similarity
with each prior map, and then estimated the significance of the correlation while
controlling for spatial autocorrelation using a spin-test (4).

We further assessed the psychological relevance of the map of age-
related changes in morphometric similarity using Neurosynth, an automated
meta-analytical tool (35). We generated a volumetric version of the regional
map of adolescent changes in morphometric similarity (code available at
https://github.com/LenaDorfschmidt/neurosynth_analysis) and uploaded it for
automated comparison to the Neurosynth database (https://neurosynth.org) of
task-related fMRI activation coordinates, which returned the correlation values
of the map with a wide set of terms related to fMRI task activation experiments.

Replication of Results in an Independent Dataset. We determined the
replicability of our main results in an independent dataset, the HCP-D sample
(32), a cross-sectional cohort of children and adolescents aged 5 to 21 y, for
which multimodal imaging data, including T1w and T2w images, as well as DWI
data were acquired. For better comparison with the NSPN sample, we included
only HCP-D subjects aged 14 and older (N = 334). Participants aged 18 y and
older provided informed written consent, for younger participants consent was
obtained from a legal guardian who additionally accompanied the minor to
testing. See SI Appendix for details on dataset demographics and processing.

Adolescent Changes in Structure–Function Coupling. We estimated global
structure–function coupling as the Spearman correlation between the upper
triangle of each subjects’s structural (MSN) and functional connectivity (FC)
networks at each timepoint (Fig. 4 A and B). Local structure–function coupling
was estimated at each node as the Spearman correlation between the node’s
edges in the structural and functional networks (Fig. 4 A and B).
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Then, we estimated parameters of adolescent change in structure–function
coupling. Specifically, we estimated the linear effect of age on regional structure–
function coupling strength using linear mixed effects models, with a fixed effect
of age, sex, and site, and a random effect of subject, as above for MSN regional
strength (Eq. 2). From this model, we proceeded to derive the local structure–
function coupling at baseline (age 14) and the rate of change in coupling over
the course of adolescence, as the t-values of the effect of age (see SI Appendix,
Text for further details).

ColocationwithAdolescent Changes in Functional Diversity. We assessed
whether changes in morphometric similarity during adolescence were associated
with changes in functional brain networks which might represent adolescent
changes in cognition and behavior. We estimated multiple network metrics on
the thresholded functional connectomes (Fig. 5A) and used linear mixed effects
models as above to estimate the linear effect of age on each network metric (see
SI Appendix, Text for further details).

Data, Materials, and Software Availability. The NSPN raw data is publicly
available at https://nspn.org.uk (52) and the processed data can be downloaded
from https://doi.org/10.5281/zenodo.11175459 (53). The HCP-D data are
publicly available at https://www.humanconnectome.org (54). The code can
be accessed at https://github.com/LenaDorfschmidt/morphometric-similarity-
adolescence (55).
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