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ABSTRACT

The pathogenesis of atopic dermatitis (AD) is multifactorial, involving a dynamic interplay 
between genetic susceptibility, skin-barrier dysfunction, microbiome alterations, and 
immune dysregulation, whereas food allergy (FA) arises from the interplay of transcutaneous 
sensitization to food allergens and failure in the induction of oral tolerance. Skin 
epicutaneous sensitization is commonly involved in the development of AD and FA. Although 
clinical trials have been conducted to prevent AD or FA by applications of emollients on 
the skin after birth, the results are not consistent. For more effective preventive strategies, 
reliable biomarkers are required to identify high-risk individuals. Skin tape stripping (STS) 
is a non-invasive technique for identifying these biomarkers in the skin. By analyzing the 
stratum corneum collected via STS, researchers can gain molecular or cellular insights into 
the early pathogenesis and potential progression of AD and FA. This review aims to elucidate 
the critical aspects of AD and FA, underlying their pathogenesis, early manifestations, and 
STS's potential as a tool for identifying predictive non-invasive biomarkers in infants prior to 
onset of clinical disease.
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INTRODUCTION

Atopic dermatitis (AD) and food allergy (FA) are common diseases in children, affecting up 
to 20% and 10% globally, respectively.1-3 The rising incidence of AD and FA in infants and 
young children has profound implications for their long-term health and quality of life, as 
well as for their caregivers.3-5 These conditions pose significant public health challenges, 
particularly when they manifest early in life.

AD and FA are closely associated, with both conditions commonly manifesting within the 
first year of life.6 Food-specific immunoglobulin E (IgE) responses can be detected within the 
first few months of life and reach a prevalence of around 10% by 1 year of age.7 AD usually 
precedes the development of FA, a progression known as the atopic march.6 This progression 
may be attributed to the unique immune phenotype of early-onset AD, which differs from 
that seen in older children and adults.8
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Animal studies provide evidence that the application of ovalbumin or peanut protein on 
disrupted skin facilitates a type 2 immune response through antigen-presenting cells, 
resulting in FA and anaphylaxis.9,10 This sequence of events underscores the need for early and 
accurate diagnosis and highlights the potential for interventions that may modify disease 
trajectory and improve outcomes.

PATHOGENETIC MECHANISM AND RISK FACTORS OF AD 
AND FA
The pathogenesis of AD is multifactorial, involving a dynamic interplay between genetic 
susceptibility, skin-barrier dysfunction, microbiome alterations, and immune dysregulation, 
whereas FA arises from the interplay of transcutaneous sensitization and failure in the 
induction of oral tolerance.11,12 These mechanistic factors can interact and exacerbate each 
condition.13 Genetically, loss-of-function mutations in the filaggrin (FLG) gene are frequently 
associated with AD, leading to skin barrier disruption that facilitates allergen penetration 
and sensitization.1 T helper 2 (Th2) immune activation, which is predominant in both AD and 
FA, is known to downregulate the expression of epidermal proteins including filaggrin, alter 
epidermal lipid metabolism, reduce antimicrobial peptide production by keratinocytes, and 
inhibit keratinocyte differentiation.14

Epidermal barrier dysfunction is commonly found in both lesional and non-lesional skin 
of patients with AD, as evidenced by increased transepidermal water loss (TEWL) and pH 
disturbance, elevated permeability, reduced water retention, and altered lipid profiles.15 The 
barrier dysfunction is further exacerbated by microbial dysbiosis, including colonization 
with Staphylococcus aureus.16,17 Research indicates that 60%–100% of AD patients have skin 
colonized by S. aureus, and up to 10%–30% of these isolates are methicillin-resistant S. 
aureus (MRSA).16,17S. aureus colonization worsens AD and may lead to microbial dysbiosis, 
increased allergen sensitization, polarization towards Th2/Th17 responses, progression of 
the atopic march, and the development of FA in patients with AD.18 A recent study showed 
S. aureus induces cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, 
and IL-33, leading to changes in epidermal lipid composition and subsequent skin barrier 
dysfunction.17 This occurs through the inhibition of fatty acid elongase enzymes, such as 
elongation of very long chain fatty acids protein (ELOVL) 3 and ELOVL4, with these effects 
being more pronounced after exposure to MRSA compared to methicillin-sensitive S. aureus 
(MSSA).17 Additionally, toxins produced by Staphylococcus on the skin enhance transcutaneous 
sensitization to food allergens, thereby promoting the development of FA.19,20

Environmental factors significantly contribute to the development of AD and FA. External 
factors such as scratching, low environmental humidity, allergens, and topical irritants 
further damage the skin barrier in individuals with AD.11,14 Importantly, early-life exposure 
of the skin to high levels of environmental food allergens, known as epicutaneous exposure, 
increases the risk of food sensitization, particularly in children with damaged skin and low 
filaggrin levels.13,21,22 Therefore, key strategies to prevent food sensitization and allergies 
include skin barrier restoration, aggressive treatment of AD, and the early introduction of 
foods through the gut.23-25

A recent study utilizing a murine model showed that transcutaneous sensitization triggers 
the recruitment of activated dendritic cells to the draining lymph nodes, resulting in the 
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formation of allergen-specific IgG1+ germinal center B cells and the production of serum 
IgG1.9 The allergen-specific IgG1+ memory compartment predominantly displayed an 
immature, pro-germinal center phenotype, and subsequent exposures to the food allergen 
triggered the development of IgE+ germinal center B cells, increased serum IgE levels, and 
activated the classical anaphylaxis pathway.9 This indicates a positive correlation between 
food sensitization and increased AD severity and duration.2 However, clinical allergy can only 
be confirmed through actual food consumption, and since the timing of food antigen intake 
varies among individuals, it is difficult to accurately assess the age of FA onset.

WHY SKIN PREDICTIVE BIOMARKERS?

The potential of the skin as a site for predictive biomarkers in AD and FA is significant due 
to its accessibility and central role in immune interactions.26 Early changes in the integrity 
and function of the skin barrier often signal the onset of both AD and FA.6 The immune 
environment of the skin, rich in dendritic cells, T cells, and mast cells, reflects and possibly 
anticipates the complex immunological shifts during the development of these conditions.27 
Therefore, the expression of specific molecules such as cytokines, chemokines, and other 
mediators from genomics, transcriptomics, proteomics, and lipidomics in the skin can serve 
as early biomarkers to predict the risk of developing AD and FA.17,28-31 Various techniques 
can be employed to analyze skin biomarkers, including invasive methods like biopsies, 
less invasive methods like epidermal curettage or microneedle patches, and non-invasive 
methods like skin tape stripping (STS).30 Among these, STS stands out as an ideal non-
invasive method for early and repeated assessments, particularly important for managing 
children effectively and sensitively.26,32

To effectively prevent AD and FA from an early stage, it is crucial to establish strong 
biomarkers associated with the early detection of molecular signatures in the skin.28,29,33 
This proactive strategy can enhance patient outcomes through personalized treatment 
and prevention plans targeting specific immunological pathways involved in each patient’s 
disease process.26 Thus, identifying predictive skin biomarkers using non-invasive sampling 
and various omics approaches, where AD initially manifests, holds promises for improving 
the management of allergic diseases. Furthermore, understanding these skin biomarkers 
elucidates the pathogenetic mechanisms underlying AD and FA.

STS: A SUITABLE METHOD FOR SKIN SAMPLING

There are several non-invasive methods for collecting skin samples, including skin surface 
washing, the thin film headspace sampling method, and STS.34,35 Skin surface washing is 
effective for evaluating skin cytokines, but is inconvenient and difficult to apply to children 
due to the relatively long time required (about 30 minutes). Additionally, it has limitations 
in obtaining RNAs and lipids. The thin film headspace sampling method is suitable for 
longitudinal studies to measure volatile organic compounds in the skin, but cannot be used to 
analyze proteins, RNAs, or lipids. STS method offers several advantages over these methods.

A specialized skin tape disc, such as D-Squame® tape disc (22 mm diameter; CuDerm, 
Dallas, TX, USA), is used for STS method. Up to 20 consecutive D-Squame tape discs are 
applied to the same site on the skin. The D-Squame pressure instrument D500 (CuDerm) 
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ensures consistent application of equivalent pressure (e.g., 225 g/cm2) across all tape strips, as 
previously described.36 The number of STS applications can be adjusted based on the specific 
goals of the procedure. Kim et al.32 conducted side-by-side studies comparing skin biopsies 
and STS to determine the depth reached by the STS procedure in both healthy subjects and 
patients with AD. They found that 20 STS applications can reach the upper granular layer 
of epidermis, where RNA and cytokines are present. Thus, 15–20 applications of STS are 
needed to evaluate RNA expression from the upper granular layer of the epidermis. To obtain 
epidermal lipids and proteins, only 8 STS applications are sufficient. These comparative 
studies were conducted only in healthy subjects and those with AD. Therefore, future 
research may be needed to evaluate the efficacy of the STS method in other skin conditions, 
such as psoriasis, urticaria, and contact dermatitis. Twenty consecutive STS applications do 
not cause bleeding or scarring in non-lesional skin and allows analysis of gene transcription. 
It is not painful and only minor skin irritation is observed during STS.

Various samples including RNA, proteins, and lipids can be harvested from STS. Gene 
expression of epidermal barrier proteins and cytokines can be analyzed by polymerase chain 
reaction. Protein levels of epidermal cytokines can be detected by ELISA or a Meso Scale 
Discovery immunoassay. Lipids can be dissolved in methanol for liquid chromatography 
electrospray ionization tandem mass spectrometry analyses. The STS method offers several 
advantages over conventional skin biopsy. It is a useful strategy for collecting skin samples 
multiple times from the same subjects. Due to its non-invasive nature and low cost, the STS 
method enables the collection of a large number of samples. Additionally, it facilitates the 
collection of skin samples from subjects of diverse ages, including young infants.14,17,29,33

The STS method is an acceptable strategy for examining the molecular profiles of the skin 
across all age groups, from young infants to senior adults. Traditionally, the primary method 
for studying the pathophysiology of inflammatory skin diseases, such as AD and psoriasis, 
has been skin biopsy.32,37,38 However, the invasive and painful nature of skin biopsy poses 
significant limitations for its use in all subjects with skin diseases. Ethical concerns and the 
discomfort associated with the procedure make it particularly challenging to obtain skin 
samples from children, even though AD is most prevalent in this age group. Consequently, 
this can lead to bias and errors in the analysis of data from children with AD. Major 
characteristic findings of AD include abnormal keratinocyte differentiation and aberrant 
epidermal lipid profiles in the upper granular layer and cornified layer of the skin.28,38,39 
Therefore, a non-invasive and convenient STS method could be useful to investigate the 
expression of specific genes, lipids, and proteins in the epidermis.28,32,33,40-43 In summary, STS 
is an excellent strategy for evaluating the genes, proteins, and lipids of epidermis across all 
age groups.

PREDICTIVE BIOMARKERS FOR AD

AD in children is a major public health concern due to its high prevalence, significant impact 
on quality of life, substantial socioeconomic burden, and frequent progression to respiratory 
allergies. Consequently, identifying predictive biomarkers for preclinical asymptomatic 
target organ damage is crucial for preventing AD. These biomarkers represent an 
intermediate step between exposure to risk factors and subsequent development of clinical 
events. Given that the primary target organ of AD is the skin, a biomarker that detects skin 
changes in a preclinical stage could serve as a useful predictor.
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Skin barrier function: TEWL
TEWL is a noninvasive method to measure skin barrier function. Multiple commercially 
available instruments can measure TEWL.44,45 The accuracy of these measurements is 
influenced by several factors, including temperature, humidity, ventilation, and intrinsic 
factors.44,46,47 To ensure reliable results, measurements should be performed under standard 
conditions: maintaining a relative humidity of 40%−60% and acclimating the subject at an 
ambient temperature of 20°C−22°C for at least 20–30 minutes before measuring TEWL.44,46,47 
Additionally, subjects should not apply topical lotions or cosmetics to the skin areas being 
measured and should avoid exercise and caffeine intake for at least three hours prior to 
measurement.44,46,47

In a Japanese cohort study, TEWL was measured on the forehead under ambient environmental 
conditions (24°C−27°C, 11%−58% humidity) within the first week of life in 116 infants, who 
were followed until 32 weeks after birth. When the probability of AD incidence was stratified 
by TEWL, the high TEWL group (TEWL ≥ 6.50 g/m2/h) showed a higher AD incidence than the 
low TEWL group (TEWL < 6.50 g/m2/h) (P < 0.05).48 In a study using a cohort of infants living 
in south-east Norway, TEWL was measured on the lateral part of one upper arm using an open 
chamber DermaLab USB (Cortex, Hadsund, Denmark) system under reasonable environmental 
conditions (20°C−25°C, 20%−50% humidity).49 This study found that high TEWL (> 9.33 g/m2/h)  
at less than 3 months was significantly associated with atopic eczema at a mean 24 months 
(17.5–35.2 months) (odds ratio [OR], 7.67; 95% confidence interval [CI], 1.04–56.77) although 
the cohort size was small (n = 32).49 These studies suggest that TEWL at 2 or 3 months of age can 
be used to predict the future development of AD before the age of 12 months.

In contrast, a Korean birth cohort study of 87 infants measured TEWL on the volar surface of 
the forearm using a Tewameter TM300 (Courage & Khazaka) at 2 months of age and found 
no statistical significance between infants who later developed AD and those who did not.29 
Another study nested within the prospective Copenhagen Baby Skin birth cohort measured 
TEWL on the central part of the flexor forearm using a portable device (AquaFlux model 
AF200; Biox Systems Ltd, London, UK).31 In this study, the median TEWL at 2 months of age 
did not differ between 44 infants diagnosed with AD in their first year and 44 healthy controls 
matched by sex and season of birth (14.0 vs. 13.3 g/m2/h, P = 0.9).31 In the Preventing Atopic 
Dermatitis and Allergies in Children prospective birth cohort study involving 1,150 mother-
child pairs, TEWL was measured on both affected and unaffected skin of AD using an open 
chamber DermaLab USB (Cortex) at room temperature (20°C−25°C) with variable humidity 
(6%−73%).50 A multivariate analysis demonstrated that high TEWL (> 11.3 g/m2/h) at 3 months 
of age was not predictive for AD at 6 months.50 Additionally, a study measuring TEWL on 
the central volar forearm with a portable device (AquaFlux model AF200; Biox Systems Ltd) 
reported that an elevated mean TEWL at 2 months of age did not increase the risk of AD 
among term (adjusted OR [aOR], 1.29; 95% CI, 0.81–2.05; P = 0.3) or preterm children (aOR, 
0.53; 95% CI, 0.17–1.64; P = 0.3).51

TEWL measurement is technically demanding and varies significantly across individuals 
and anatomical locations. It is influenced by environmental factors such as temperature, 
humidity and pollution. This variability may explain the inconsistent results from previous 
studies regarding the efficacy of TEWL as a predictive biomarker of AD. Additionally, 
because functional changes in the skin barrier often follow biochemical or molecular 
alterations, assessing TEWL at 2 months of age may be too early to reliably predict the future 
development of AD, particularly in mild cases.
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Structural proteins of skin barrier: FLG
Filaggrin plays a major role in skin barrier function. Filaggrin, synthesized from the precursor 
profilaggrin encoded by the FLG gene on chromosome 1q21, binds with cytoskeletal keratins 
to maintain corneocyte structural integrity. Upon degradation, filaggrin yields breakdown 
products such as free amino acids, pyrrolidone carboxylic acid (PCA), and urocanic acid 
(UCA), which are key components of the epidermal natural moisturizing factor.52

FLG mutations were strongly associated with AD, and meta-analyses have confirmed these 
associations with an overall OR ranging from 3.12 to 4.78.53 However, AD develops in only 
42% of all FLG heterozygotes,54 and approximately 54% of FLG null mutation carriers in the 
United States remain asymptomatic for AD.55 Therefore, targeted screening for FLG mutation 
would be beneficial only in a limited number of patients. Among AD patients, cases without 
FLG mutations are much more than those with FLG mutations. Indeed, filaggrin expression is 
downregulated by type 2 cytokines including IL-4 and IL-13, and most patients with AD have 
an acquired defect in filaggrin expression.56

In a Danish birth cohort, STS were collected at 2 months of age and revealed that low levels 
of UCA increased the risk of developing AD until the age of 2 years (adjusted hazard ratio 
[aHR], 1.68; 95% CI, 1.07–2.64).51 In contrast, a Korean birth cohort study demonstrated that 
filaggrin levels measured in STS at 2 months did not predict future development of AD in a 
logistic regression model.29 Another Korean birth cohort also showed that no difference in 
the levels of UCA and PCA of stratum corneum (SC) was observed between healthy and future 
AD subjects.28 These findings indicate that filaggrin expression is not reduced at 2 months of 
age in AD patients without FLG mutations, but may be decreased before this age in those with 
FLG mutations.

Immune responses
Thymic stromal lymphopoietin (TSLP) and IL-33, collectively known as alarmin cytokines, 
facilitate communication between keratinocytes and immune cells, thereby regulating 
immune activity in the skin. TSLP is produced mainly in epithelial cells and epidermal 
keratinocytes in response to both environmental and endogenous triggers.57 TSLP induces 
Th2 differentiation,58 downregulates filaggrin expression,59 and contributes to allergic skin 
inflammation in AD.60 In a Korean birth cohort study, skin samples were obtained from 87 
infants using STS at the age of 2 months on their forearms where clinically apparent AD did 
not appear and followed them for 2 years. This study revealed that high TSLP expression at 
2 months was associated with higher risk of AD with the aOR of 5.3 (95% CI, 1.3–21.4). In 
addition, aOR reached 20.2 (95% CI, 1.5–272.3) when high TSLP expression was combined 
with positive family history.29 This observation was replicated in another Korean birth 
cohort by showing that TSLP level in the skin increased the aOR of 4.1 (95% CI, 1.7–10.1). 
These results indicated that epidermal TSLP protein expression level can be used as an early 
biomarker to predict AD development.28

Thymus and activation regulated chemokine (TARC)/chemokine (C-C motif ) ligand 17 (CCL17) 
is constitutively expressed in the thymus and is produced by dendritic cells, endothelial 
cells, keratinocytes and fibroblasts.61 TARC/CCL17 plays a crucial role in the migration 
of chemokine (C-C motif ) receptor 4 (CCR4)-expressing T cells to the skin.62 There is a 
significant correlation between serum TARC levels and disease severity in patients with AD.63 
Indeed, higher levels of TARC/CCL17 were observed in umbilical cord serum of neonates who 
subsequently developed AD during infancy compared to those who did not develop AD, with 
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median values of 1,586.9 vs. 819.6 pg/mL, respectively (P < 0.001).64 This finding was replicated 
in a separate Japanese birth cohort study.65 Recent research suggests the possibility that 
TARC/CCL17 levels in the skin of newborn babies may predict the development of AD during 
infancy. A Danish prospective birth cohort demonstrated that elevated TARC/CCL17 levels in 
the skin at 2 months of age increased the risk of overall AD (aHR, 1.85; 95% CI, 1.18–2.89) 
and moderate-to-severe AD (aHR, 4.65; 95% CI, 1.91–11.31) during the first 2 years of life.51 
A nested case-control study within the Copenhagen Baby Skin birth cohort revealed that, 
at 2 months, skin TARC/CCL17 levels were slightly but significantly higher in children who 
developed AD by 12 months compared to those who did not (0.02 vs. 0.01 pg/μg, P = 0.01).31

S100A8/A9, heterodimeric members of the calcium-binding S100 protein family, are 
released from keratinocytes. These proteins function as proinflammatory alarmins 
or damage-associated molecular pattern molecules.66,67 An in vitro experiment showed 
that S100A8/A9 elevated levels of IL-6, IL-8, and monocyte chemoattractant protein-1 in 
keratinocytes and concurrently diminished the expression of the skin barrier proteins 
filaggrin and loricrin.68 Additionally, elevated levels of S100A8/A9 in both lesional skin and 
serum were correlated with disease severity in patients with AD.69,70 A study of an Irish birth 
cohort (n = 86) showed that higher levels of S100A8/A9 in the antecubital fossa at 2 months of 
age, not at birth, in infants with the normal FLG genotype predicted the development of AD 
in the first year of life (P = 0.033). This association was not observed in infants with filaggrin 
loss-of-function mutations.71

In STS from Korean infants at two months, cytokines including IL-13, TNF-α, macrophage-
derived chemokine (MDC), and IL-6 were detected before AD onset.33 Levels of IL-1Ra, 
TNF-β, IL-8, IL-18, IL-22, CCL2, and vascular endothelial growth factor A (VEGF-A) were 
elevated in the skin of German infants who later developed AD,72 while IL-1Ra, IL-8, IL-18, 
IL-1α, IL-1β, CCL27, and chemokine (C-X-C motif ) ligand (CXCL) 2 were not associated with 
later AD development in Irish birth cohort study.71 Various cytokines and chemokines may 
serve as potential predictive biomarkers, but further studies are required.

Skin microbiome
It is well known that skin microbial dysbiosis is linked to AD. Notably, S. aureus is colonized 
on the lesional skin of 70%–100% of patients with AD, and S. aureus colonization is correlated 
with AD severity.73 A few observational studies have delineated changes in skin microbiome 
signatures that may influence AD onset during infancy. In a cohort of 50 children from 
BASELINE longitudinal birth cohort, colonization of the antecubital fossa with commensal 
staphylococci at 2 months was inversely associated with the incidence of AD at 12 months.74  
A Swiss birth cohort study involving 149 infants revealed that culture-proven S. aureus 
colonization at 3 months was significantly more prevalent in infants who later developed 
AD by the age of 2 years. This study also noted that the prevalence of S. aureus was higher on 
the skin of infants at the onset of AD and even 2 months prior, compared with age-matched, 
unaffected infants.75 Similarly, in a Japanese birth cohort, whole-genome sequencing of  
S. aureus strains isolated from the cheek skin of 268 infants was performed at 1 and 6 months 
after birth. The findings indicated that colonization by S. aureus at 6 months significantly 
elevated the risk of developing AD over the subsequent 2 years.76 Recently, Fonfara et al.72 
examined skin swab samples from a German birth cohort study (n = 50) using 16S amplicon 
sequencing and found that before AD onset, levels of various Staphylococcus epidermidis amplicon 
sequence variants (ASVs) were higher, while those of Streptococcus oralis, Streptococcus vestibularis, 
and several Streptococcus mitis ASVs were lower compared to children with no subsequent AD. 
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Of note, even at AD onset, the skin microbiome predominantly featured S. epidermidis, with 
virtually no S. aureus sequences detected. These longitudinal studies suggest that S. aureus 
colonization in the skin may contribute to AD onset in infants and serve as early indicators 
of AD onset. Nonetheless, it is plausible that S. aureus colonization is secondary to subclinical 
skin changes and may not represent the initial pathophysiological event preceding the clinical 
manifestation of AD.

Skin lipid profiles
Lipid is a critical component of the epidermal barrier. The intercellular multilayered lipid 
lamellae are located within the SC and are primarily composed of 50% ceramides (CERs), 
25% cholesterol, and 15% free fatty acids. Epidermal CERs, in particular, consisting of 
a long-chain sphingoid bases linked to fatty acids, are critical for skin barrier function.77 
Human CERs are categorized into 20 classes, distinguished by their specific sphingoid bases 
(SB) and fatty acids. Aside from these CER classes in lipid lamellae, SC includes 5 classes 
of protein-bound CERs that are covalently linked to the cornified envelope proteins of 
corneocytes, which are terminally differentiated keratinocytes.78

In a case-control nested study in the prospective Copenhagen Baby Skin birth cohort (n = 300),  
44 random children with onset of AD in the first year of life were compared with 44 children 
who did not develop AD. STS samples were obtained from the dorsal side of the hands at  
2 months of age. They found that phytosphingosine ([P]) levels were much lower in children 
who developed AD compared with children who did not (238 vs. 535 pmol/mg, P < 0.001). 
Most lipid ratios in children who developed AD showed significantly increased concentrations 
of shorter SBs as compared to longer SBs. The ratio of CER[DS]-(d18:1)/CER[S]-(d20:1) was 
lower in children who developed AD and the ratio of CER[S]-(d18:1)/CER[S]-(d20:1) was the 
single best predicting lipid biomarker. The combination of 5 lipid ratios ([DS]-(d17:0)/[DS]-
(d18:0), [DS]-(d18:0)/[S]-(d18:1), [P]-(t18:0)/[S]-(d18:1), CER[DS]-(d17:0)/CER[DS]-(d18:0), 
CER[S]-(d17:1)/CER[S]-(d18:1)) gave an prediction accuracy of 89.4%.31

In a Korean birth cohort study, STS samples were collected from the forearms of newborns 
(n=111) at 2 months of age, before any clinical signs of AD, with and without a family history 
of atopic diseases. These infants were monitored until age 2 years to confirm the presence 
or absence of AD. In this study, 22 out of 74 (29.7%) in the risk group and 5 out of 37 (13.5%) 
in the control group developed AD. In future AD cases, protein-bound CERs decreased 
(P < 0.001), while unsaturated sphingomyelin species increased (P < 0.0001), along with 
elevated short-chain nonhydroxy fatty acid sphingosine CERs and alpha-hydroxy fatty 
acid sphingosine CERs (P < 0.01 and P < 0.05, respectively). Of note, multivariable logistic 
regression analysis demonstrated that AD was strongly predicted from the combination 
of family history, type 2 cytokines, and dysregulated lipids, with the OR of 54.0 (95% CI, 
9.2–317.5).28 Therefore, integrating data from STS, skin swab, and TEWL, following standard 
protocols, may offer more accurate predictions of AD development. Table summarizes the 
skin biomarkers that predict the development of AD during infancy. These findings suggest 
the early pathogenetic mechanisms of AD development in infants, as shown in Fig. 1.

PREDICTIVE BIOMARKERS FOR FA

It is well known that AD is a major risk factor for FA.79 In the same context, filaggrin loss-of-
function mutations demonstrated a significant association with peanut allergy (OR, 5.3; 95% 
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CI, 2.8–10.2). This finding remained significant (P = 0.0008) after adjusting for coexistent 
AD.80 In the Learning Early About Peanut Allergy (LEAP) study, peanut allergy was reduced 
among high-risk infants with AD who were introduced to peanuts early in life, whereas about 
40% of the placebo group of children with AD developed FA by age 5.12
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Table. Potential biomarkers to predict the development of atopic dermatitis at age 12–24 months
Population Follow-up Samples Biomarkers Reference

Barrier 
proteins

Barrier lipids Cytokines Barrier 
function

Skin microbiome

Japan  
(n = 116)

32 wk TEWL (forehead)  
at 7 days

TEWL* Horimukai  
et al.48  
(2016)

South Korea  
(n = 75)

2 yr STS and TEWL 
(forearm)  
at 2 months

Filaggrin 
(MS)†

TSLP↑ (MS)* TEWL† Kim  
et al.29  
(2016)

Norway  
(n = 32)

1 yr TEWL (lateral part of 
upper arm) at less 
than 3 months

TEWL* Berents  
et al.49  
(2017)

Ireland  
(n = 50)

1 yr Skin swab for 
bacterial 16S 
ribosomal RNA 
sequencing in 
antecutibal fossa  
at 2 months

Colonization with 
commensal 
staphylococci: 
negatively 
significant

Kennedy  
et al.74  
(2017)

Colonization with 
S. aureus†

Swiss  
(n = 149)

2 yr Skin swab for 
bacterial culture in 
axillary fossa  
at 3 months

Colonization with 
S. aureus*

Meylan  
et al.75  
(2017)

Japan  
(n = 268)

2 yr Skin swab for whole-
genome sequencing 
in cheek skin  
at 6 months

Colonization with 
S. aureus*

Nakamura  
et al.76  
(2020)

Norway/
Sweden  
(n = 1,150)

6 mon TEWL (lateral part of 
left upper arm)  
at 3 months

High TEWL 
(> 90th 

percentile)†

Rehbinder  
et al.50  
(2020)

South Korea  
(n = 111)

2 yr STS (forearm)  
at 2 months

Filaggrin 
breakdown 
products 

(UCA, PCA)†

Protein-bound OS-CER↓, 
unsaturated sphingomyelin↑, 
short-chain NS-CER↑,  
short-chain AS-CER↑*

TSLP↑, IL-13↑* Berdyshev  
et al.28  
(2023)

IL-4†

Denmark  
(n = 88)

2 yr STS (dorsal side of 
hands) and TEWL 
(central part of the 
flexor forearm)  
at 2 months

Phytosphingosine ↓,  
shorter sphingoid base↑, 
the ratio of CER[S]-(d18:1)/
CER[S]-(d20:1)↓*

TARC/CCL17↑* TEWL† Rinnov  
et al.31  
(2023)

Denmark  
(n = 426)

2 yr STS (dorsal side of 
hands) and TEWL 
(central part of the 
flexor forearm)  
at 2 months

Filaggrin 
breakdown 
products 
(UCA)↓ 

(LC)*

TARC/CCL17↑* TEWL† Halling  
et al.51  
(2023)

IL-8↑, IL-18↑* for 
moderate-to-severe AD

Ireland  
(n = 86)

1 yr Skin swab 
(antecubital fossa) 
at 2 months

S100A8/9↑* Stamatas  
et al.71  
(2024)

IL-1Ra, IL-8, IL-18, IL-1a, 
IL-1b, CCL27, CXCL2†

Germany  
(n = 50)

2 yr STS and skin swab 
(antecubital fossa) 
at 2–21 days,  
6 months,  
12 months, and  
24 months

IL-1Ra↑, TNF-β↑, 
IL-8↑, IL-18↑, IL-22↑, 
CCL2↑, TARC↑, TSLP↑, 

VEGF-A↑*

S. epidermidis 
ASVs↑, S. oralis, 
S. vestibularis, 
and S. mitis 
ASVs ↓*

Fonfara  
et al.72  
(2024)

Colonization with 
S. aureus†

TEWL, transepidermal water loss; STS, skin tape stripping; MS, mass spectrometry; TSLP, thymic stromal lymphopoietin; UCA, urocanic acid; PCA, pyrrolidone 
carboxylic acid; OS-CER, ω-hydroxy fatty acid sphingosine ceramide; NS-CER, nonhydroxy fatty acid sphingosine ceramide; AS-CER, alpha-hydroxy fatty acid 
sphingosine ceramide; IL, interleukin; TARC, thymus and activation regulated chemokine; CCL17, chemokine (C-C motif) ligand 17; LC, liquid chromatography; AD, 
atopic dermatitis; CXCL, chemokine (C-X-C motif) ligand; TNF, tumor necrosis factor; VEGF-A, vascular endothelial growth factor A; ASV, amplicon sequence variant.
*Significant; †Not significant.



Although AD often precedes the development of FA, not all FA patients have AD. In a Korean 
birth cohort study, STS samples were obtained from their forearms at 2 months of age, prior 
to any clinical signs of FA or AD, and analyzed to find biomarkers predictive of FA, either 
alone (FA+AD−) or with AD (FA+AD+).33 In this study, 18 out of 129 newborns developed FA by 
the age of 2, with 9 having FA+AD− and 9 having FA+AD+. Levels of unsaturated (N24:1)(C18-
sphingosine)CER and (N26:1)(C18-sphingosine)CER were elevated, both in absolute amounts 
and as a proportion of their molecular group, in the SC of children who later developed FA 
(both FA+AD− and FA+AD+) compared to the healthy controls (all P < 0.05), but not in the SC 
of those who later developed AD without FA (FA−AD+). In contrast to infants with future AD, 
who exhibited decreased levels of protein-bound ω-hydroxy fatty acid sphingosine CERs 
(OS-CERs), the SC of infants predisposed to FA+AD− demonstrated a significant increase in 
OS-CERs levels compared to that of healthy children. Levels of unsaturated sphingomyelin 
species were not increased in the SC of infants who later developed FA, whereas they were 
significantly elevated in the SC of infants who later developed FA−AD+. While levels of TSLP, 
IL-13, and TNF-α were increased in infants who later developed either FA or AD, IL-33 levels 
were elevated in infants who later developed FA but not in those who developed AD alone. 
Logistic regression analysis indicated that a combination of dysregulated lipids and cytokines 
strongly predicts FA, evidenced by the OR of 101.4 (95% CI, 5.4–1,910.6). These results 
suggest that changes in cytokines and lipid profiles in the skin at 2 months of age can serve as 
biomarkers to predict the development of FA during infancy (Fig. 2).
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Fig. 1. A hypothesis concerning the early events in the skin leading to AD development during early infancy. Levels of TSLP, TARC/CCL17 and type 2 cytokines 
such as IL-13 are elevated in the skin within the first 2 months of life. This initiates immune dysregulation and alterations in the protein and lipid composition of 
the skin barrier. Subsequently, there is a decrease in filaggrin expression accompanied by changes in the skin microbiome, culminating in the onset of AD during 
infancy. Conversely, in infants with filaggrin mutation, diminished filaggrin expression may be evident before 2 months of age, potentially leading to the early 
onset of severe AD. 
AD, atopic dermatitis; TSLP, thymic stromal lymphopoietin; TARC, thymus and activation regulated chemokine; CCL17, chemokine (C-C motif) ligand 17; IL, 
interleukin; TEWL, transepidermal water loss; AMP, antimicrobial peptide; SM, sphingomyelin; NS-CER, nonhydroxy fatty acid sphingosine ceramide; AS-CER, 
alpha-hydroxy fatty acid sphingosine ceramide; FLG, filaggrin; OS-CER, ω-hydroxy fatty acid sphingosine ceramide.



So far, there are few studies to identify predictive biomarkers for FA development. Recently, 
omics technology has been applied to uncover the molecular mechanisms of FA.81 This 
approach will not only validate existing findings but also contribute to the discovery of new 
biomarkers for FA development.

CONCLUSION

Non-invasive methods such as skin swabs, STS, and TEWL are effective strategies for 
analyzing the skin microbiome, filaggrin degradation products, skin lipid profiles, skin 
cytokines, and skin barrier function, all of which are related to the development of AD and 
FA. Studies utilizing multi-omics approaches and STS have demonstrated the ability to detect 
early alterations in infant immune responses and epidermal barrier function, which precede 
the development of AD and FA during infancy. In other words, as early as 2 months of age, 
certain epidermal proinflammatory cytokines, type 2 cytokines, and lipid profiles may be 
used as effective biomarkers for identifying infants at elevated risk of developing AD and FA 
later in life.

However, there are not many studies related to predictive biomarkers yet. Expanding research 
to include diverse cohorts of children from various ethnic backgrounds in different regions 
is crucial to corroborate these findings and to determine whether the skin biomarkers 
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IL-33 �
IL-13 �, TNF-��

Protein-bound OS-CER: no change
IL-33 �
TSLP �
IL-13 �, TNF-��

Treg �

Food allergen
exposure

Food allergen
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immune 
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Epicutaneous
sensitization

Epicutaneous
sensitization

at birth 1-2 yr2 mo

Preclinical stage Clinical stage

Fig. 2. A hypothesis concerning the early events in the skin leading to FA development during early infancy. FA development is linked to concurrent epicutaneous 
sensitization to food allergens and failure to induce oral tolerance. AD is a strong risk factor for FA development and FA is often accompanied by AD. Thus, early 
AD-associated skin changes—elevated TSLP, IL-13 and TNF-α levels—within the first 2 months of life, increase the risk of developing FA. However, in the case of 
FA occurring independent of AD, increased levels of IL-33, IL-13, TNF-α, unsaturated NS-CER, and protein-bound OS-CER are observed within 2 months of age. 
FA, food allergy; AD, atopic dermatitis; TSLP, thymic stromal lymphopoietin; IL, interleukin; TNF, tumor necrosis factor; NS-CER, nonhydroxy fatty acid 
sphingosine ceramide; OS-CER, ω-hydroxy fatty acid sphingosine ceramide; Treg, regulatory T cell.



identified are specific to Asian children living in Asia-Pacific regions or applicable universally 
across different ethnicities. Finally, early identification of children at high risk allows for the 
implementation of targeted preventive strategies before the age of 2 months, potentially 
preventing the onset of clinical AD and FA during infancy.
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