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14-3-3z suppresses RANKL signaling by destabilizing TRAF6
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Macrophages are essential regulators of inflammation and
bone loss. Receptor activator of nuclear factor-kb ligand
(RANKL), a pro-inflammatory cytokine, is responsible for
macrophage differentiation to osteoclasts and bone loss. We
recently showed that 14-3-3z-knockout (YwhazKO) rats exhibit
increased bone loss in the inflammatory arthritis model. 14-3-
3z is a cytosolic adaptor protein that actively participates in
many signaling transductions. However, the role of 14-3-3z in
RANKL signaling or bone remodeling is unknown. We inves-
tigated how 14-3-3z affects osteoclast activity by evaluating its
role in RANKL signaling. We utilized 14-3-3z-deficient pri-
mary bone marrow–derived macrophages obtained from
wildtype and YwhazKO animals and RAW264.7 cells generated
using CRISPR-Cas9. Our results showed that 14-3-3z-deficient
macrophages, upon RANKL stimulation, have bigger and
stronger tartrate-resistant acid phosphatase–positive multinu-
cleated cells and increased bone resorption activity. The pres-
ence of 14-3-3z suppressed RANKL-induced MAPK and AKT
phosphorylation, transcription factors (NFATC1 and p65) nu-
clear translocation, and subsequently, gene induction (Rank,
Acp5, and Ctsk). Mechanistically, 14-3-3z interacts with
TRAF6, an essential component of the RANKL receptor com-
plex. Upon RANKL stimulation, 14-3-3z–TRAF6 interaction
was increased, while RANK–TRAF6 interaction was decreased.
Importantly, 14-3-3z supported TRAF6 ubiquitination and
degradation by the proteasomal pathway, thus dampening the
downstream RANKL signaling. Together, we show that 14-3-3z
regulates TRAF6 levels to suppress inflammatory RANKL
signaling and osteoclast activity. To the best of our knowledge,
this is the first report on 14-3-3z regulation of RANKL
signaling and osteoclast activation.

The 14-3-3z is an adaptor protein known to interact with
several cytokine receptors and MAPK (1–3). We recently
showed that 14-3-3z suppresses inflammatory arthritis (IA) in
animals (4). In the IA models, 14-3-3z-deficient (YwhazKO)
rats show severe bone loss across several joints, affecting both
cortical and trabecular compartments. These animals show
decreased bone mass, cortical thickness, and trabeculae
thickness with increased spacing between them. This sug-
gested that 14-3-3z plays a role in maintaining bone
* For correspondence: R. Chakravarti, ritu.chakravarti@utoledo.edu.

© 2024 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY license (http://creativecommons.org/licenses/by/4.0/).
homeostasis under inflammatory conditions. Bone remodel-
ing is a coupled process involving bone formation by osteo-
blasts and bone resorption by osteoclasts (5). Uncoupling
between anabolic and catabolic mechanisms can lead to a
decreased bone mass, which is often seen in inflammatory
diseases (6). IA is associated with an increase in osteoclasts’
number and activity. Osteoclasts precursors of monocytic
lineage fuse to make multinucleated and TRAP (tartrate-
resistant acid phosphatase)-positive, mature osteoclasts in the
presence of receptor activator of nuclear factor-kb ligand
(RANKL) (7, 8). RANKL levels are increased in IA-affected
patients (9–11).

RANKL is an inflammatory cytokine secreted from osteo-
cytes, osteoblasts, and T-cells (8). RANKL signals via its re-
ceptor RANK, which is a member of the TNF receptor family.
It is a transmembrane protein present in the macrophages or
pre-osteoclasts. RANK forms complexes with several adaptors
(TRAF6, Grb2, and RACK1) and kinases (TAK, aPKC, and
TAB1) in the cytosol for successful signal transduction (12).
Upon binding RANKL, the cytoplasmic domain of RANK in-
teracts with TRAF adaptor proteins, primarily TRAF2, TRAF5,
and TRAF6, the E3 ubiquitin ligases (8). Among these, TRAF6
is essential for RANKL signaling and osteoclast activity.
Traf6KO mice, similar to RANKKO or RANKLKO, show osteo-
petrosis, indicating its role in bone resorption and osteoclast
function (13). Relatively less is known about other TRAFs
(TRAF2 and TRAF5) (14). Activated RANK–TRAF complex
induces a series of phosphorylation events involving MAPK,
PI3K/AKT, and IkB. Activation of ERK and JNK leads to
increased expression of c-Fos and c-Jun. At the same time, p38
phosphorylation promotes the expression of microphthalmia-
associated transcription factor and TRAP. The activation of
the PI3K-AKT pathway also supports osteoclast survival and
function (15). RANKL induces NF-kB signaling by both clas-
sical and alternative pathways (16). Activation of the above-
mentioned transcription factors leads to the induction of
several genes, such as ACP5 (TRAP), RANK, IL1b (IL-1b),
MMP9, CTSK (Cathepsin K), etc., that are markers of osteoclast
differentiation and activity (12). Several regulatory mechanisms
of RANKL signaling help maintain balance between bone for-
mation and bone resorption during remodeling. Like RANKL,
osteoblasts also secrete osteoprotegerin, which acts as a soluble
decoy receptor for RANKL, thus resulting in decreased
RANKL-RANK signaling and osteoclast formation (8, 12).
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14-3-3z suppresses RANKL signaling
Signaling modulators (e.g. TAK1) or other factors (melatonin
and bone morphogenetic proteins influence RANKL signaling
and osteoclast differentiation (17–19). Several protein degrad-
ing pathways, such as autophagy and proteasomal degradation,
play important role in RANKL signal transduction and osteo-
clastogenesis (20, 21).

We previously showed that 14-3-3z regulates IL-17A
signaling (22). Like RANK, the cytoplasmic domain of IL-17A
receptors (RA and RC) form complexes with TRAF (2, 5, and
6) proteins (23). In IL-17A signaling, 14-3-3z interacts and
regulates TRAF-dependent outcomes (22). These results made
us question if 14-3-3z0s role in bone remodeling is mediated by
regulating RANKL signaling outcomes via TRAF proteins. We
performed a detailed investigation to examine the biochemical
mechanismof 14-3-3z-mediated regulation of RANKL signaling
using genetically modified murine macrophage cell line
[RAW264.7(RAW, henceforth] and rat bone marrow–derived
primary macrophages (BMDMs). Our results, as shown below,
indicate a novel role of 14-3-3z in suppressing RANKL signaling
by promoting TRAF6 degradation. To the best of our knowl-
edge, this is the first report of 14-3-3z regulation of RANKL
signaling by affecting TRAF6 ubiquitination and stability.
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Figure 1. 14-3-3z suppresses RANKL-induced osteoclast formation and a
treated Wt and YwhazKO BMDM plated on dentine discs were measured usin
plated on bone discs for 0 to 15 days with RANKL (100 ng/ml) followed by Tolu
images from 10 days posttreatment are shown (n = 2). D, primary BMDMs from
stained with Texas red phalloidin to stain F-actin. The scale bar shows 50 mm
RANKL (100 ng/ml) and examined for multinucleated cells and TRAP staining a
image. A scale bar of 1000 mm or 100 mm is indicated on the images captured a
TRAP-positive multinucleated (3 nuclei or more) cells (captured at 4× magnific
number of nuclei per MNC. **** indicate p < 0.001. The experiment was pe
multinucleated cell; RANKL, receptor activator of nuclear factor-kb ligand; TRA
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14-3-3z suppresses RANKL-induced osteoclast differentiation

To understand why YwhazKO animals show increased bone
loss, we examined RANKL-induced osteoclastogenesis in
wildtype (Wt) and YwhazKO BMDMs. First, we measured the
effect of 14-3-3z on osteoclast activity by plating Wt and
YwhazKO BMDMs on the dentine discs in the presence of
RANKL and measuring collagen-type 1 fragments released in
conditioned media using Crosslaps for Culture (CTX-I) assay.
Incubating bone slices in media, without (NC) or with cells but
no RANKL, showed minimum to little release of collagen
products. RANKL treatment significantly increased collagen
fragment (CTX) levels for the Wt cells. Compared to Wt,
conditioned media from the 10 days post-RANKL–treated
YwhazKO BMDM showed higher CTX levels, indicating
increased bone resorption in the absence of 14-3-3z (Fig. 1A).
The dentine discs were stained with toluidine blue at 10 days
and 15 days post-RANKL treatment, and the bone resorption
area was measured. The discs plated with YwhazKO BMDMs
showed increased pit formation and corresponding bone
resorption area over the tested period (Figs. 1, B and C and
C
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14-3-3z suppresses RANKL signaling
S1A). In contrast, the absence of RANKL did not cause any
increase in the pit area for Wt or YwhazKO BMDMs (Fig. S1A).

We next studied 14-3-3z0s role in the actin ring formation
upon RANKL-treatment. Compared to Wt, RANKL treatment
of YwhazKO BMDMs resulted in much bigger actin rings
visible as early as 4 days posttreatment (Figs. 1D and S1B). It
was noted that the YwhazKO BMDMs without RANKL treat-
ment also showed the presence of an actin ring but not
multinucleated cells (MNCs) (Fig. S1B). Next, we examined
how 14-3-3z affects MNCs and TRAP staining, a marker of
mature osteoclasts. Compared to Wt, RANKL-treated
YwhazKO BMDMs showed giant multinucleated and strongly
TRAP-positive cells (Fig. 1E). The number of giant MNCs
(MNC > 3 nuclei) over five fields (at 4× magnification) per
well was counted and averaged for each treatment performed
in quadruplicate. The average number of TRAP-positive MNC
per well and the number of nuclei per MNC for YwhazKO

BMDMs was significantly higher than the Wt (Fig. 1, F and G).
These results suggest that 14-3-3z suppresses RANKL-induced
osteoclast differentiation and activity.
14-3-3z suppresses RANKL-mediated gene induction

To understand how 14-3-3z regulates osteoclast differenti-
ation, we compared RANKL-induced gene induction in the Wt
and YwhazKO cells. As expected for Wt BMDMs, RANKL
stimulation caused an increase in Rank, Acp5 (TRAP), and
Ctsk mRNA levels. Compared to Wt, Rank, Acp5, and Ctsk
mRNA levels were significantly increased in the YwhazKO
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Figure 2. 14-3-3z suppresses RANKL-induced genes in macrophages. A, Ywh
analyzed by qRT-PCR (n = 2). B–D, mRNA levels of Rank, Acp5, and Ctsk in the M
mRNA levels in CRISPR-Cas9 control (Ct) and YwhazKO RAW cells were analyzed
treated RAW cells was measured by qRT-PCR (n = 3). H–J, effect of rescuing Ywh
control, was examined on 2 days post RANKL treatment on gene induction by
qRT-PCR. The expression levels of the mRNAs were normalized to 18S rRNA. BM
of nuclear factor-kb ligand; RAW, RAW264.7. The asterisks *, **, ***, and **** s
BMDMs (Fig. 2, A–D). Since RAW is a well-established model
to investigate RANKL signaling, we generated 14-3-3z-defi-
cient (YwhazKO) RAW cells using CRISPR/Cas9 (Fig. 2E) and
examined its effect on RANKL-induced genes. Control
CRISPR-Cas9 plasmid-transfected cells (labeled as Ct) were
used as a control. A time course of gene induction upon
RANKL stimulation was performed. Compared to Ct,
YwhazKO cells induced higher Acp5 and Rank mRNA levels
(Fig. 2, F and G). To confirm the 14-3-3z role, we ectopically
expressed epitope (HA)-tagged 14-3-3z (HA-Ywhaz) in
YwhazKO BMDMs and repeated gene induction study upon
RANKL treatment. Compared to empty vector (EV), ectopic
HA-Ywhaz expression suppressed RANKL-induced expression
of Rank, Acp5, and Ctsk in YwhazKO BMDMs (Fig. 2, H–K).
These results indicated that 14-3-3z suppressed RANKL-
induced gene expression.
14-3-3z suppresses RANKL-activated NF-kB and NFATC1

RANKL-stimulated nuclear translocation of several tran-
scription factors, including p65, NFATC1, and c-Jun, was
evaluated in the Ct and YwhazKO cells using subcellular frac-
tionation. Nuclear translocation of NF-kB subunit p65 and
NFATC1 was increased in RANKL-stimulated YwhazKO

compared to the Ct RAW cells. (Figs. 3A and S2A). No sig-
nificant changes in the c-Jun levels were observed between the
Ct and YwhazKO cells (not shown). We further confirmed these
results by confocal microscopy, which indicated increased
signals for nuclear p65 and NFATC1 in the RANKL-treated
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Figure 3. 14-3-3z suppresses RANKL-induced NF-kB and NFATC1 activation in macrophages. A, Ct (CRISPR-Cas9 control) and YwhazKO RAW cells were
treated with M-CSF for 30 min, followed by RANKL for the indicated time. Nuclear fractions from the cells were analyzed for p65 and NFATC1 levels by
immunoblot (n = 3). HDAC1 was used as a nuclear marker. Band intensities were quantified by ImageJ and are listed below each lane. 14-3-3z protein
expression in Ct versus YwhazKO RAW cells is shown in the lower panel. B, Ct and YwhazKO RAW cells were treated with RANKL for 30 min when NFATC1
(green) and p65 (red) nuclear translocation (DAPI, blue) were analyzed by confocal microscopy. Overlays from untreated cells are shown (n = 2). C, ImageJ
quantification of average nuclear fluorescence from 3 to 5 fields was calculated. D, primary BMDMs from Wt and YwhazKO animals were treated with RANKL
for 30 min, when NFATC1 (green) and p65 (red) nuclear translocation were analyzed by confocal microscopy. DAPI-stained nuclei are also shown in overlay
images (n = 2). E, ImageJ quantification of average nuclear fluorescence from 3 to 5 fields was calculated. Loss of 14-3-3z at the protein level is shown. F, the
YwhazKO RAW cells were transiently transfected with either an empty vector (EV) or HA-Ywhaz and stimulated with RANKL for 30 min. Nuclear fractions were
examined for p65 nuclear translocation by immunoblot (n = 3). Expression of HA-14-3-3z is shown by immunoblot using anti-HA antibody. Molecular
weights are shown on the left of the immunoblot panels. Original blots are shown in the supplementary data. BMDM, bone marrow–derived primary
macrophage; RANKL, receptor activator of nuclear factor-kb ligand; RAW, RAW264.7. The asterisks * and **** show p-value of <0.05 and 0.001, respectively.

14-3-3z suppresses RANKL signaling
YwhazKO cells compared to control cells (Fig. 3, B and C). It
was noted that YwhazKO cells showed increased nuclear levels
of p65 and NFATC1 at the basal level, which was further
increased upon RANKL treatment. Similar to RAW cells,
increased nuclear levels of p65 and NFATC1 were also
observed in the RANKL-treated primary YwhazKO BMDMs
(Fig. 3D). Similar to RAW cells, a statistically significant in-
crease in the nuclear staining of p65 and NFATC1 was
observed in the YwhazKO BMDM (Fig. 3E). To confirm its role
in regulating RANKL-induced nuclear localization of tran-
scription factors, we rescued 14-3-3z in the YwhazKO cells
using transient transfections with an HA-tagged 14-3-3z
expression vector. Compared to EV, rescue with HA-Ywhaz
increased 14-3-3z and suppressed nuclear p65 levels upon
RANKL stimulation (Figs. 3F and S2B). These results indicate
that 14-3-3z suppressed RANKL-mediated NF-kB and
NFATC1 activation.

14-3-3z suppresses RANKL-induced MAPK and AKT
phosphorylation

We further examined 14-3-3z0s role in RANKL-induced
signaling in the Ct and YwhazKO RAW cells. RANKL treat-
ment of RAW (Ct) increased phosphorylation of several in-
termediate kinases, including MAPK (ERK, p38, and JNK) and
AKT. In comparison, phosphorylation of all intermediate
4 J. Biol. Chem. (2024) 300(7) 107487
kinases (ERK, p38, JNK, and AKT) was more increased in the
YwhazKO RAW cells (Figs. 4, A and B and S3, A and B).
Similarly, YwhazKO primary BMDMs also showed increased
phosphorylation of AKT and JNK when compared to Wt
BMDMs (Figs. 4, C and D and S3, C and D). 14-3-3z rescued
YwhazKO BMDMs, compared to EV, show reduced levels of
RANKL-induced ERK and p38 phosphorylation (Figs. 4E and
S3E). Together, our results demonstrated that 14-3-3z sup-
pressed RANKL signaling in macrophages.

14-3-3z–TRAF6 interaction is increased by RANKL

Results shown above suggest that 14-3-3z action lies up-
stream of signaling kinases (e.g., MAPK). Therefore, we next
examined 14-3-3z0s role at the receptor complex by perform-
ing protein–protein interaction studies immediately after
RANKL stimulation. Co-immunoprecipitation (co-IP) studies
in Ct RAW cells showed that 14-3-3z interacts with TRAF6,
which further increased upon 5 min of RANKL stimulation
(Figs. 5A and S4A). The 14-3-3z knockout cells were used as
control (Fig. S4B). This result was further confirmed by co-IP
of TRAF6, which again showed increased TRAF6–14-3-3z
interaction in RANKL-treated cells (Figs. 5B and S4C).
TRAF6–RANK interaction, a key event for RANKL signal
transduction, was evaluated by co-IP of RANK and TRAF6 in
Ct and YwhazKO cells. Importantly, RANK and TRAF6
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Figure 4. 14-3-3z suppresses RANKL-induced MAPK and AKT phosphorylation. A and B, Ct and YwhazKO RAW cells were pretreated with M-CSF for
30 min, followed by RANKL treatment for the indicated time, when phosphorylation of ERK, p38, JNK, and AKT were analyzed by immunoblot (n = 3). Band
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14-3-3z suppresses RANKL signaling
interacted in the absence of RANKL stimulation. Upon
RANKL stimulation, the TRAF6–RANK interaction decreased
in both Wt and YwhazKO cells. However, TRAF6–RANK
interaction remained significantly higher in RANKL-treated
YwhazKO than in Ct cells (Figs. 5C and S4D). Next, we per-
formed immunostaining to examine TRAF6–RANK interac-
tion in RAW cells. Confocal microscopy revealed that surface
localization and overall staining of TRAF6 were visibly
increased in the RANKL-treated YwhazKO cells. This corre-
lated with increased colocalization of TRAF6 and RANK, as
shown by yellow-colored overlays (Fig. 5D). To confirm that
14-3-3z regulates TRAF6–RANK interaction, we performed a
proximal ligation assay. Results showed increased interaction
(red dots) between TRAF6 and RANK in the RANKL-treated
YwhazKO cells (Figs. 5E and S4E). These results suggested
that 14-3-3z interacts with TRAF6 and suppresses TRAF6–
RANK interaction in RANKL-treated cells.
14-3-3z promotes TRAF6 degradation upon RANKL
stimulation

We next questioned the consequence of 14-3-3z interfer-
ence in RANK–TRAF6 interaction. Our imaging studies
showed an increase in TRAF6 signal in YwhazKO compared to
Ct cells (Fig. 5D). RANKL-induced TRAF6 degradation has
been shown to dampen downstream signaling (20). We per-
formed a time course study to examine TRAF6 protein levels
in the RANKL-treated Ct and YwhazKO RAW cells. Over
90 min post-RANKL treatment, a significant reduction in
TRAF6 protein levels was noted in the Ct cells but not in the
YwhazKO RAW cells (Figs. 6A and S5A). Reduction in TRAF6
levels in YwhazKO RAW cells was RANKL dependent since no
difference in TRAF6 levels was observed in unstimulated cells
(Fig. S5B). Also, RANKL treatment in the presence of cyclo-
heximide did not affect TRAF6 level, suggesting new protein
synthesis did not play any role in this process (Fig. S5C). To
determine the specificity of TRAF6 degradation, we examined
the effect on TRAF2 levels, which did not change upon
RANKL stimulation or by the presence of 14-3-3z (Figs. 6B
and S5D). The 14-3-3z-dependent TRAF6 degradation was also
observed in the RANKL-treated primary BMDMs fromWt and
YwhazKO animals (Fig. 6C). Importantly, the effect on TRAF6
stability was specific to RANKL, as M-CSF treatment did not
affect TRAF6 levels (Fig. S5E). To confirm that 14-3-3z regu-
lated TRAF6 levels, we restored 14-3-3z expression in the
YwhazKO RAW cells and examined RANKL-induced TRAF6
degradation. RANKL treatment of 14-3-3z-restored YwhazKO

RAW cells resulted in reduced TRAF6 levels (Figs. 6D and S5F).
Since proteasomal degradation has been shown to regulate

TRAF6 (20), we examined if 14-3-3z has any role in regulating
TRAF6 ubiquitination (Ub-TRAF6). The IP of TRAF6 fol-
lowed by immunoblotting with anti-ubiquitin IgG showed that
RANKL-induced Ub-TRAF6 level was decreased in the
YwhazKO cells (Figs. 6E and S5G). To confirm that proteaso-
mal degradation is responsible for TRAF6 levels, we used
MG132 and lactacystin, which suppressed RANKL-induced
TRAF6 degradation in the Ct cells. These results indicated
that 14-3-3z promoted RANKL-stimulated TRAF6 degrada-
tion via the proteasomal pathway, which can be prevented
using MG132 (10 nM) and lactacystin (10 nM) (Figs. 6, F and
G and S5, H and I). To examine the functional relevance of 14-
3-3z and TRAF6 levels, we overexpressed TRAF6 or HA-
J. Biol. Chem. (2024) 300(7) 107487 5
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14-3-3z suppresses RANKL signaling
Ywhaz in the Wt BMDMs and studied osteoclast differentia-
tion using TRAP staining. Increased levels of TRAF6,
compared to EV, resulted in more and bigger TRAP-positive
MNCs upon RANKL stimulation. However, co-expression of
14-3-3z with TRAF6 in BMDM suppressed TRAF6’s promo-
tional effect on RANKL-induced TRAP-positive MNC gener-
ation. Co-expression of 14-3-3z with an EV significantly
suppresses TRAP-stained giant MNCs per well and the
number of nuclei per cell upon RANKL treatment (Figs. 6, H–J
and S5J).

Together, our studies reveal that 14-3-3z suppresses
RANKL-induced signal transduction, gene induction, and
osteoclastogenesis by promoting TRAF6 degradation via the
proteasomal pathway (Fig. 7).
Discussion

RANKL signaling is primarily responsible for osteoclast
activity and bone loss. Our results show that 14-3-3z is a
suppressor of RANKL signaling in macrophages. By manipu-
lating 14-3-3z levels, knockout in RAW cells and primary
BMDM, as well as ectopically expression to rescue the levels,
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we demonstrated it suppresses RANKL-induced phosphory-
lation events of intermediate kinases, nuclear translocation of
transcription factors, and target gene expression. Biochemical
and imaging results showed that RANKL stimulation caused
increased interaction for 14-3-3z-TRAF6 while decreased
TRAF6–RANK interaction. The presence of 14-3-3z promoted
TRAF6 ubiquitination and degradation during early time
points post-RANKL treatment (Fig. 7). However, 14-3-3z did
not affect TRAF6 levels in unstimulated cells or only M-CSF-
treated cells, suggesting that the effect is RANKL dependent.
Suppression of RANKL signaling by 14-3-3z was functionally
visible by stronger and bigger TRAP-positive cells and actin
rings in the YwhazKO cells. This correlated with increased
toluidine staining, pit formation, and release of collagen frag-
ments in media, suggesting higher osteoclast activity of
YwhazKO cells. Though the absence of 14-3-3z at the basal
level showed an actin ring, cells were neither multinucleated
nor had any bone resorption activity. Overall, our results
clearly indicate that 14-3-3z suppresses RANKL signaling and
osteoclast activity.

14-3-3z is a member of the 14-3-3 protein family (24, 25). In
addition to acting as adaptors, these are known to regulate the
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14-3-3z suppresses RANKL signaling
nuclear-cytoplasmic shuttling of several transcription factors.
It has been shown that 14-3-3z participates in the nuclear
translocation of NF-kB and microphthalmia-associated tran-
scription factor (26, 27). Similarly, 14-3-3g is reported to
participate in the selenoprotein W–regulated shuttling of
NFATC1 and NF-kB in RANKL signaling (28). Our results, on
the contrary, indicate that 14-3-3z suppresses NF-kB and
NFATC1 nuclear translocation in the RANKL signaling. We
previously reported that 14-3-3z interacts with TRAF6 in fi-
broblasts and epithelial cells (22). Our current study extends
this interaction to macrophages wherein TRAF6 interacts with
the cytoplasmic domain of RANK (14, 23). TRAF6 has E3
ubiquitin ligase activity that is essential for RANKL signaling
(29). The association and strength of TRAF6–RANK interac-
tion play a key role in osteoclast differentiation (30–32). Our
results showing that 14-3-3z reduces TRAF6 levels and
weakens the RANK–TRAF6 interaction in RANKL-stimulated
cells can explain its suppressive action on RANKL signaling.
How 14-3-3z binds to TRAF6 has not been studied. The 14-3-
3 proteins can bind both phosphorylated and non-
phosphorylation proteins (33, 34). Phosphorylation of TRAF
proteins, except for TRAF4, remains one of the least studied
posttranslational modifications (35). In the LPS signaling,
TRAF6 phosphorylation plays a regulatory role in ubiquitina-
tion and proteasomal degradation (36). Though TRAF6
interaction with atypical PKC and p62 in the RANKL signaling
has been reported, how it affects TRAF6 phosphorylation re-
mains unknown (37). Since 14-3-3z–TRAF6 interaction is
increased upon RANKL stimulation; there is a possibility that a
posttranslational modification or a third protein(s) may
participate in this interaction. It is known that p62 promotes
TRAF6 ubiquitination and NF-kB activity in RANKL signaling
(37–40). As an autophagy regulator, p62 connects 26S pro-
teasomal degradation and autophagy pathways (39–41). It is
known that 14-3-3z regulates autophagy in a context-
dependent manner (42, 43). How 14-3-3z interacts with
J. Biol. Chem. (2024) 300(7) 107487 7
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14-3-3z suppresses RANKL signaling
TRAF6 and regulates its degradation via proteasomal degra-
dation or autophagy upon RANKL stimulation will be inves-
tigated in future studies.

TRAF proteins are essential in various pathways, including
RANKL signaling (14, 44). In addition to TRAF6, TRAF2 and
TRAF5 also interact with RANK; however, the site of TRAF6
interaction on RANK is different from TRAF2 and TRAF5
(14). TRAF6 is an E3 ubiquitin ligase, and its interaction with
TAK1-TAB to promote RANKL signaling and osteoclasto-
genesis depends upon its ubiquitination status (29, 45).
Removal of K63 ubiquitin chains on TRAF6 by CYLD, a de-
ubiquitinase recruited by p62, suppresses RANKL signaling;
however, CYLD involvement appears to play a significant role
at the pre-osteoclast level but not during the early part of
RANKL signaling (41, 45). In contrast to K63, K48-
ubiquitination of TRAF6 promotes its degradation and sup-
presses RANKL signaling (46, 47). Apart from ubiquitination,
additional mechanisms affect TRAF6 activity in RANKL
signaling. Recently, Annexin 3 has been shown to promote
TRAF6 stability and interaction with RANK to activate
RANKL signaling (48). In contrast, WDFY3 regulates TRAF6
levels by autophagy to suppress RANKL signaling and osteo-
clastogenesis (21). Notably, several 14-3-3 isoforms, including
the zeta, are known to control the cellular level of ubiquiti-
nated proteins (49–51). Our results indicate that 14-3-3z
promotes TRAF6 ubiquitination and degradation via the
proteasomal pathway in RANKL-treated cells. Further in-
vestigations are needed to study if 14-3-3z-mediated TRAF6
ubiquitination is K48-linkage specific, which is known for
protein degradation (52).
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While several inflammatory cytokines (IL-17A and TNF-a)
promote bone loss, RANKL is a primary cytokine responsible
for osteoclastogenesis and bone loss (53–55). In addition to IA,
RANKL levels are increased in several immune diseases,
including primary biliary cholangitis (56), inflammatory bowel
disease (57), and type 2 diabetes mellitus (58). Suppression of
RANKL signaling and osteoclast activity by 14-3-3z supports
in vivo results observed in the IA model (4). Based on our
current and published studies demonstrating 14-3-3z0s role in
regulating TRAF6-dependent IL-17A and RANKL signaling,
we speculate that the 14-3-3z may have broader implications
in other innate mechanisms requiring TRAF6. Overall, our
results show that 14-3-3z is a novel suppressor of RANKL
signaling and osteoclast activation.

Experimental procedures

Reagents

All chemicals were purchased from Fisher Scientific Inc.
unless stated otherwise. Murine and rat M-CSF and RANKL
were obtained from R&D Systems. CTX-I ELISA and dentine
slices were purchased from immunodiagnostic systems, IDS.
The antibodies against the specific proteins were purchased
from CST unless indicated otherwise: phospho-ERK, ERK,
phospho-AKT (Ser), AKT, phospho-p38, p38, phospho-JNK,
anti-JNK, TRAF6, TRAF2, GAPDH, HDAC1, HA, p65, and
14-3-3z. The antibodies, including NFATc1, c-Jun, 14-3-3z,
RANK, b-Tubulin, and CRISPR-Cas9 constructs of 14-3-3z
(Ywhaz) and control (Ct) were purchased from Santa Cruz
Biotechnology Inc.

Cell culture

The RAW 264.7 cells were purchased from ATCC, and cells
were maintained in Dulbecco’s modified Eagle’s medium con-
taining 10% FBS, penicillin, and streptomycin at 37 ◦C and 5%
CO2 incubators. The cells were pretreated with M-CSF (50 ng/
ml) for 30 min, followed by mouse RANKL (50 ng/ml) treat-
ment for the time as indicated later (59). The cleaned bones of
Wt and YwhazKO rats were used to collect primary BMDMs.
The bone marrow was collected by spinning in a clean tube at
1000 rpm for 5 min. The red blood cells were lysed using
ammonium-chloride-potassium lysis buffer, followed by plating
in the minimum essential medium containing 20% LCM (L929
conditioned media), 15% fetal bovine serum, and 5 mM b-
mercaptoethanol. After 1 day, nonadherent cells were collected
and cultured on plastic dishes or glass coverslips with M-CSF
(10 ng/ml) and RANKL (100 ng/ml) to induce osteoclast dif-
ferentiation. The BMDMs were transfected with EV, V5-
TRAF6, or HA-14-3-3z for 48h. Cells were treated with rat
RANKL for the time period as indicated in figure legends.

The 14-3-3z knockout RAW cells were generated using the
CRISPR-Cas9 method as described before (22). Briefly, RAW
264.7 cells were transfected with either control (sc-418922) or
14-3-3z–specific (sc-400490) CRISPR/Cas9 plasmids (Santa
Cruz Biotechnology Inc) using Lipofectamine 2000 (Thermo
Fisher Scientific). Transfected cells were sorted for high
GFP-expressers using flow cytometry, and the GFP-expressing
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cells were expanded to isolate individual clones. These clones
were screened for 14-3-3z protein levels by immunoblot, and
the clones with no 14-3-3z protein expression were selected
for further validation to ensure the gene knockout. Hence-
forth, the CRISPR-control plasmid-transfected cells are listed
as Ct and 14-3-3z knockout as YwhazKO. For overexpression
or rescue, cells were transfected with HA-14-3-3z or an EV for
48 h. The medium was then replaced with fresh complete
Dulbecco’s modified Eagle’s medium/minimum essential me-
dium containing M-CSF and RANKL for the time as needed
for a specific experiment.

TRAP staining

TRAP-positive cells were determined using a leukocyte acid
phosphate assay kit (Sigma) as per the manufacturer’s in-
structions. The cells were fixed with 65% acetone, 25% citrate
solution, and 8% formaldehyde. The fixed cells were then incu-
batedwith theTRAP staining solution in the dark for 1 h at 37 �C.
After washing twice with water, the cells were counterstained
with hematoxylin for 30 s and rinsed with water. TRAP-positive
cells that contained three ormore nuclei were consideredmature
osteoclasts when visualized under Cytation 5 (BioTek).

Immunostaining

The RANKL-treated cells were fixed in 4% (v/v) para-
formaldehyde andpermeabilizedwith 0.1%TritonX-100 (v/v), as
used before (22). For immunostaining, coverslips were blocked
using 1% BSA following adding primary antibodies followed by
Alexa Fluor-conjugated secondary antibody (Invitrogen Inc.).
The previously optimized protocol for proximal-ligation assay
was used (22). For actin staining, 100 ml of 2 mM Texas red
phalloidin was added to the fixed and permeabilized cells for
30min in the dark at room temperature (60). The coverslipswere
mounted onto microscopy slides using DAPI containing Vecta-
Shield (Vector Laboratories #H-1200) and analyzed using a Leica
microscope and Las X software or SP5 Laser Scanning Confocal
Microscope with MP (Leica Microsystems).

C-terminal telopeptide fragments of type I collagen and
resorption pits assay

BMDMs were plated on the washed bone slices and incu-
bated with M-CSF and RANKL. At 10 days posttreatment,
conditioned media were collected, and collagen degradation
products using the CTX-I ELISA kit were quantified as per the
manufacturer’s instructions (CrossLaps).

To identify the resorption pits formed on the dentine slices,
attached cells were removed from the discs by sonication. The
bone slices were washed and stained with toluidine blue (0.1%,
w/v). Bone slices were imaged using a Leica microscope, and
the total areas of resorption pits were determined using NIH
Image-J software.

Immunoblots and immunoprecipitation

Immunoblot analyses were performed using previously
described procedures (22). Briefly, the cells were lysed in
50 mM Tris buffer, pH 7.4, containing 150 mM of NaCl, 0.1%
Triton X-100, 1 mM sodium orthovanadate, 10 mM sodium
fluoride, 10 mM b-glycerophosphate, 5 mM sodium pyro-
phosphate, and protease and phosphatase inhibitors (Roche).
The 2 mg of antibody followed by Protein-G-Sepharose for co-
IP or 10 ml of tagged beads for affinity pulldowns were added
to the cell lysate and incubated overnight at 4 �C. Total protein
extracts, or pull-down beads, were analyzed by SDS/PAGE,
followed by immunoblot.

RNA isolation and quantitative analysis

Total RNA was isolated using TRIzol (Invitrogen), cDNA
was prepared using ImProm-II Reverse Transcription Kit
(Promega), and the cDNA was analyzed using Radiant SYBR
Green PCR mix (Alkali Scientific) in Roche LightCycler 96
instrument and analyzed with the LightCycler 480 Software,
v1.5. The expression levels of the mRNAs were normalized to
18S rRNA. For the qRT-PCR analyses of the respective genes,
the following primers were used:

rAcp5: CGCCAGAACCGTGCAGA/TCAGGCTGCTGGCT
GAC

rRank: TTAAGCCAGTGCTTCACGGG/ACGTAGACCAC
GATGATGTCGC

rCtsk: CCCAGACTCCATCGACTATCG/CTGTACCCTC
TGCACTTAGCTGCC

rYwhaz: TGAAGAGTCGTACAAAGACAGCA/GTTAA
TTTTCCCCTCCTTCTCC

mAcp5: GACGATGGGCGCTGACTTCA/GCGCTTGGAG
ATCTTAGAGT

mRank: TTTGTGGAATTGGGTCAATGAT/ACCTCGCT
GACCAGTGTG AA

mCtsk: ACGGAGGCATCGACTCTGAA/GATGCC AAG
CTTGCGTCGAT

mYwhaz: ACCGTTACTTGGCCGAGGTT/GCAGGCTTT
CTCTGGGGAGT.

Statistical analysis

All experiments with RAW cells and BMDM were per-
formed at least thrice unless indicated otherwise. All imaging
studies are performed thrice. GraphPad Prism was used to
compare the number of sets by unpaired Student’s t test or
two-way ANOVA. The asterisks *, **, ***, and **** show p-value
of <0.05, 0.01, 0.005, and 0.001, respectively.

Data availability

All data presented in this paper are contained within the
article.
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