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Abstract

We report the synthesis of block copolymers of mono-methoxylated polyethylene glycol and 

poly(glycerol carbonate) (mPEG-b-PGC) via the ring-opening polymerization of benzyl glycidyl 

ether, mono-methoxylated polyethylene glycol, and carbon dioxide using a cobalt salen catalyst. 

The resulting block copolymers display high polymer/cyclic carbonate selectivity (>99%) and, 

if two oxirane monomers are used, random incorporation into the polymer feed. The resulting 

di-block mPEG-b-PGC polymer shows promise as a nanocarrier for surfactant free, sustained 

chemotherapeutic delivery. mPEG-b-PGC, with paclitaxel conjugated to the pendant primary 

alcohol of the glycerol polymer backbone, readily forms 175 nm diameter particles in solution 

and contains 4.6 wt% PTX which is released over 42 days. The mPEG-b-PGC polymer itself is 

non-cytotoxic, whereas the PTX-loaded nanoparticles are cytotoxic to lung, breast, and ovarian 

cancer cell lines.
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Block copolymers are versatile materials across industry sectors.1, 2 In the pharmaceutical 

arena, amphiphilic block copolymers readily form polymeric micelles in aqueous solution 

and enable encapsulation of hydrophobic agents to increase their aqueous solubility.3, 

4 A classic example of a block copolymer is monomethoxy-poly(ethylene glycol)-co-

poly(lactide) (mPEG-PLL), first reported in 1988.5 mPEG-PLL encapsulates a large number 

of agents6–12 including paclitaxel (PTX),13–15 a microtubule stabilizing agent used clinically 

for the treatment of breast, lung, and ovarian cancers.16 The poor aqueous solubility of 

PTX necessitates the use of such carriers or solubilizing agents like Cremophor EL™, which 

can lead to complications in patients such as anaphylaxis hypersensitivity.17, 18 From a 

polymer perspective, the hydrophilic and hydrophobic domains of the polymeric micelle 

are highly tunable, enabling optimization of the chemical, physical, and pharmacological 

properties. Genexol®PM represents an important milestone achievement in amphiphilic 

block copolymers, and is a clinically used PTX-loaded monomethoxy-poly(ethylene 

glycol)-block-poly(D,L-lactide) micelle.19 Compared to conventional PTX/Cremophor EL, 

Genexol®PM, with encapsulated PTX, exhibits reduced toxicity and a higher maximum 

tolerated dose (390 mg/m2 vs 175 mg/m2) in patients.20

Three shortcomings of drug-loaded polymeric micelles include: 1) poor encapsulation yields 

affording low drug weight percent from 1–3%; 2) burst release of the encapsulated drug 

(> 60% within 24 hours); and 3) the use of polyesters as the hydrophobic segment, which 

degrades into acidic byproducts.21 We envision that a polymeric micelle composed of PTX 

conjugated to a non-polyester, but degradable, block copolymer will address some of these 

issues and be an attractive carrier system for further investigation. Glycerol-based polymers 

are finding ever increasing applications in medicine.22–29 We selected poly(1,2-glycerol 

carbonate) (PGC) for the hydrophobic domain of the block copolymer, as it degrades into 

the natural metabolites of glycerol and carbon dioxide30 and possesses a pendant-chain free 

primary hydroxyl group for facile conjugation to PTX. Drawing inspiration from the success 

of mPEG-PLL nanocarriers, the incorporation of mPEG as the hydrophilic segment will 
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allow for the formation of nanoparticles that are stable in aqueous solution without the use 

of surfactant (Figure 1).

Herein we report the synthesis of PGC block copolymers using mPEG, monohydroxyl 

terminated polystyrene, or benzyl alcohol as the chain transfer agent via a cobalt salen 

catalyzed copolymerization with benzyl glycidyl ether (BGE) and CO2 with high turnover 

numbers (> 500) and polymer selectivity (99%). The mPEG-PGC-OH polymers, grafted 

with PTX via succinate linker (mPEG-b-PGC-g-PTX) form 175 nm diameter micelles in 

aqueous solution. Lastly, mPEG-b-PGC-g-PTX micelles release paclitaxel over 42 days and 

are cytotoxic to lung, breast, and ovarian cancer cell lines.

Specifically, we synthesized amphiphilic mPEG-b-PGC copolymers via the cobalt catalyzed 

ring opening polymerization of benzyl glycidyl ether (BGE) and mono-methoxylated PEG 

(mPEG), the chain transfer agent, at 50°C and 220 psi CO2 (Scheme 1). The thermally 

stable cobalt-based catalyst, SalcyCoIIITBDDNP, was selected for its high selectivity 

of polymerization (>99%).31 The turnover frequency (TOF) was calculated as [product]/

[product+monomer]*catalyst loading*h−1. Polymer selectivity was also determined by using 
1H NMR to define the ratio of the polymeric methine hydrogen to the cyclic carbonate. 

The number average molecular weight and dispersity were determined via GPC analysis in 

tetrahydrofuran against polystyrene standards.

We prepared the above mPEG-b-PGC polymers with mPEG of three molecular weights 

(Mn 1.9 kDa, 5.0 kDa, 10.0 kDa). The polymerizations proceed with high TOF to afford 

terpolymers with narrow dispersities (Ð <1.25) (Table 1). As anticipated, increasing the 

amount of chain transfer agent (mPEG) in the monomer feed lowers the molecular 

weight of the resulting polymer.32 To demonstrate the generality of the approach using a 

compositionally different chain transfer agent, we investigated the polymerization with both 

benzyl alcohol and monohydroxy-terminated polystyrene. The polymerization using benzyl 

alcohol affords copolymers consistent in percent conversion with reported literature.33 With 

monohydroxy-terminated polystyrene, the narrow dispersity and high TOF obtained are 

similar to that of the copolymer using mPEG.

Next, we investigated the terpolymerization of mPEG, BGE, and propylene oxide (PO) 

with CO2 using SalcyCoIIIDNP, PPNDNP as the catalyst in order to assess the kinetic 

preference of monomers in the reaction mixture (Scheme 2). Again, the polymerization 

proceeds with high TOF and results in polymers with low dispersity. We then determined 

the mole fractions of monomers incorporated into the resulting tetrapolymer via NMR. We 

fitted the data for the mole fraction of PO in the feed and the glycerol carbonate unit to 

the Fineman-Ross model (R2 = 0.96) (Figure 2). The monomer reactivity ratio of BGE 

(rBGE = k11/k12) and PO (rPO = k22/k21) are 0.98 and 0.97, respectively. The relatively 

small difference in monomer reactivity ratios indicates negligible preference of monomer 

incorporation into the growing polymer chain. This is consistent with literature, in which a 

random distribution of monomeric units is defined as having r1 and r2 approximately equal 

to 1.34
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To functionalize the mPEG-b-PGC polymer into a drug delivery vehicle, we synthesized 

nanoparticles using the mPEG(1.9k)-b-PGC polymer and PTX. Building upon previous 

work with PGC-PTX nanoparticles23, we hypothesized that PTX could be similarly 

conjugated to the pendant chain of the mPEG-b-PGC copolymer. We deprotected the benzyl 

terminated mPEG-b-PGC-OBn using high pressure hydrogenolysis in which mPEG-b-PGC-

OBn was dissolved in 3:1 v/v ethyl acetate:methanol, pressurized to 600 psi H2, and stirred 

at room temperature for 16 hours. To chemically conjugate PTX to mPEG-b-PGC-OH, 

we performed an acylation reaction with 4-dimethylaminopyridine (DMAP) and installed a 

succinic anhydride onto the free hydroxyl of the PGC’s pendant chain. We then employed 

N,N’-dicyclohexylcarbodiimide (DCC) and DMAP to couple PTX to the succinate linker 

following a published procedure.23 The chemically conjugated mPEG-b-PGC-g-PTX was 

synthesized at two different mol percents: 11 and 48 (Scheme 3).

We prepared nanoparticles from mPEG-b-PGC-g-PTX (11 mol % PTX) using an oil-in-

water mini-emulsion sonication method. It is important to note that the hydrophobicity of 

the paclitaxel payload is necessary for nanoparticle formation. Without PTX, the mPEG-

b-PGC-OBn or mPEG-b-PGC-OH polymers do not form micelles. Scanning electron 

microscopy (SEM) confirmed the spherical morphology of the nanoparticles (Figure 3a). 

The nanoparticles are, on average, 175 nm in diameter (polydispersity 0.12) by dynamic 

light scattering (DLS), a size which decreases over the course of 42 days of release in 10 

mM phosphate buffer with 0.3% SDS (pH 7.4, 37°C) (Figure 3b). The delivery efficiency 

of nanoparticle payloads to tumors depends on particle size, with 10–100 nm particles 

delivering 0.7% of the injected IV dose and 100–200 nm particles delivering a comparable 

0.6%.35 Therefore, the mPEG-b-PGC-g-PTX nanoparticles, which are 175 nm in size are 

well-suited for tumor accumulation and additionally will be able to traverse the 100–500 nm 

endothelial gaps in tumor vasculature.

We assessed the release profile of the mPEG-b-PGC-g-PTX nanoparticles in 10 mM 

phosphate buffer, 0.3% SDS at 37°C over the course of 42 days. PTX concentration was 

analyzed using absorbance at 230 nm. mPEG-b-PGC-g-PTX nanoparticles release PTX in 

a sustained manner, with minimal drug release from days 1 through 5 and about 50% of 

loaded drug lost between days 5 and 14 (Figure 3c). The nanoparticles continue to release 

drug slowly over 42 days, at which point we terminated the experiment. This is a marked 

improvement over the release profile of similar systems like the mPEG-PLL nanoparticle 

Genexol®PM, which show a PTX burst release of 65% in the first 24 hours and 95% in 

the first 48 hours.36 Previously reported PGC-g-PTX nanoparticles, without the PEG block, 

displayed sustained PTX release for longer than 70 days.23 The faster release rate of the 

mPEG-b-PGC-g-PTX nanoparticles is likely a consequence of the increased hydrophilicity 

of the nanoparticle due to the mPEG block. The hydrophilic mPEG outer shell of the particle 

promotes diffusion of water into the material, accelerating hydrolytic degradation of the 

succinic acid-paclitaxel ester linkage and subsequent release of the payload.

We determined in vitro cytotoxicity of both the unloaded mPEG-b-PGC-OBn polymer 

and drug-loaded mPEG-b-PGC-g-PTX nanoparticles against NIH 3T3 murine fibroblast, 

SKOV3 human ovarian adenocarcinoma, A549 human lung carcinoma, and MDA-MB-231 

human breast adenocarcinoma cell lines. The unloaded mPEG-b-PGC-OBn polymer is not 
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cytotoxic (cell viability > 80%) below 0.6 mg/mL of polymer for any of the cell lines. 

For the drug-loaded mPEG-b-PGC-g-PTX nanoparticles, the formulation is cytotoxic to all 

groups with half maximal inhibitory concentration (IC50) values of 13.5 (NIH 3T3), 2.3 

(A549), 1.5 (SKOV3), and 1.5 ng/mL (MDA-MB-231) (Figure 4). The result is expected and 

offers further confirmation to PTX’s release, since PTX inhibits cell division and affords cell 

death. These IC50 values are slightly less than those reported for free paclitaxel against these 

cancer cell lines (3.5 ng/mL, A549;2.7 ng/mL, SKOV3; 2.1 ng/mL, MDA-MB-231).37–39 

Importantly, the concentration of polymer delivered to the cells is, at most, 0.4 mg/mL, 

which is below the observed cytotoxicity limit for mPEG-b-PGC-OBn without drug.

In conclusion, we describe an efficient synthesis to block copolymers of mono-methoxylated 

polyethylene glycol and poly(glycerol carbonate) (mPEG-b-PGC) via the ring-opening 

polymerization of benzyl glycidyl ether, mono-methoxylated polyethylene glycol, and 

carbon dioxide using a cobalt salen catalyst. Subsequent covalent conjugation of PTX to 

the copolymer enables formation PTX-loaded nanoparticles without the need of a surfactant 

through the use of an amphiphilic block copolymer of PEG and PGC. The nanoparticles 

release PTX over the course of 42 days and are toxic to human lung, breast, and 

ovarian cancer cell lines. The formulation is a promising start to developing surfactant-free 

nanoparticle formulations for the extended delivery (i.e., weeks) of hydrophobic payloads. 

Future work will assess the in vivo biodistribution and efficacy of the mPEG-b-PGC-g-PTX 

nanoparticles, as well as the loading capability of the micelles to maximize the amount of 

deliverable payload. With improved sustained release of PTX and the use of polymers with 

more biocompatible degradation products, mPEG-b-PGC-g-PTX nanocarriers address key 

shortcomings of conventional polymeric mPEG-PLL micelles.
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ABBREVIATIONS

PTX paclitaxel

mPEG mono-methoxylayted polyethylene glycol

PGC polyglycerol carbonate

SDS sodium dodecyl sulfate

IC50 half maximal inhibitory concentration
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SEM scanning electron microscopy

GPC gel permeation chromatography

DLS dynamic light scattering

NMR nuclear magnetic resonance
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Figure 1. 
Cartoon of Genexol®PM and mPEG-b-PGC-g-PTX nanoparticle assemblies.
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Figure 2. 
Fineman-Ross analysis for BGE, PO, and mPEG terpolymerization (Y = [fBGE/(1-fBGE)][1–

2FBGE)/FBGE]; X = fBGE
2/(1-fBGE)2][(1–2FBGE)/FBGE]).
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Figure 3. 
(a) SEM images of mPEG-b-PGC-g-PTX nanoparticles, (b) mPEG-b-PGC-g-PTX 

nanoparticle diameter, polydispersity, and (c) PTX release, over 42 days.
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Figure 4. 
In vitro cytotoxicity of mPEG-b-PGC-g-PTX against NIH 3T3, A549, SKOV3, and MDA-

MB-231 cell lines.
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Scheme 1. 
Polymerization of mPEG-b-PGC-OBn.
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Scheme 2. 
Terpolymerization of mPEG, CO2, BGE, and PO.
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Scheme 3. 
Conjugation of PTX to mPEG-b-PGC.
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Table 1.

Catalyst, monomer, and chain transfer agent influence on polymerization characteristics.

Chain Transfer Agent (-
OH)

BGE : Catalyst : 
-OH TOF (h−1)

Polymer 
Selectivity

Mn (NMR) Mn (theoretical) Mn (GPC) Ð

mPEG, 1.9k

2000:1:40 570 >99% 5.9k 5.9k 4.3k 1.03

2000:1:20 600 >99% 11.1k 12.4k 8.8k 1.02

2000:1:10 630 >99% 24.9k 26.0k 13.1k 1.04

mPEG, 5.0k 2000:1:20 580 >99% 14.5k 16.3k 9.9k 1.03

mPEG, 10.0k 2000:1:20 370 >99% 10.5k 14.0k 13.6k 1.25

benzyl alcohol

2000:1:40 630 >99% 6.0k 6.4k 6.8k 1.03

2000:1:20 670 >99% 13.6k 13.6k 9.3k 1.03

4000:1:40 630 >99% 12.6k 12.4k 9.4k 1.04

polystyrene, 6.0k
2000:1:20 580 >99% 14.7k 12.1k 10.3k 1.04

2000:1:13 558 >99% 19.6k 17.3k 11.3k 1.04
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