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Abstract

With one of the highest mortality rates of all malignancies, the 5-year survival rate for esophageal 

cancer is under 20%. Depending on the stage and extent of the disease, the current standard 

of care treatment paradigm includes chemotherapy or chemoradiotherapy followed by surgical 

esophagogastrectomy, with consideration for adjuvant immunotherapy for residual disease. This 

regimen has high morbidity, due to anatomic changes inherent in surgery, the acuity of surgical 

complications, and off-target effects of systemic chemotherapy and immunotherapy. We begin 

with a review of current treatments, then discuss new and emerging targets for therapies and 

advanced drug delivery systems. Recent and ongoing pre-clinical and early clinical studies are 

evaluating traditional tumor targets (e.g., human epidermal growth factor receptor 2), as well 

as promising new targets such as Yes-associated protein 1 or mammalian target of rapamycin 

to develop new treatments for this disease. Due the function and location of the esophagus, 

opportunities also exist to pair these treatments with a drug delivery strategy to increase tumor 

targeting, bioavailability, and intratumor concentrations, with the two most common delivery 
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platforms being stents and nanoparticles. Finally, early results with antibody drug conjugates 

and chimeric antigenic receptor T cells also show promise as upcoming therapies. This review 

discusses these innovations in therapeutics and drug delivery in the context of their successes and 

failures, with the goal of identifying those solutions that demonstrate the most promise to shift the 

paradigm in treating this deadly disease.
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Introduction

Esophageal cancer is the sixth most common cause of cancer deaths worldwide, with a 20% 

5-year survival rate1. Its prevalence in Western countries has increased 6-fold over the past 

20 years, associated with increasing rates of obesity and gastroesophageal reflux disease2,3. 

There are two major subtypes of esophageal cancer: esophageal adenocarcinoma (EAC) and 

esophageal squamous cell carcinoma (ESCC). EAC is the most common type of esophageal 

cancer in the United States and Western Europe and primarily affects Caucasian males. 

EAC is associated with Barrett’s esophagus - intestinal metaplasia of the normal squamous 

esophageal mucosal epithelium, which results from acid or bile reflux associated with 

chronic gastroesophageal reflux disease. Globally, however, ESCC is the most common type 

of esophageal cancer, accounting for 87% of cases worldwide4. Risk factors for development 

of ESCC include use of alcohol or tobacco and dietary intake of nitrites and hot temperature 

liquids. The role of environmental factors, including diet and lifestyle, in disease prevalence 

is supported by the lower rate of ESCC in Chinese immigrants in the US as compared to 

those living in China5. While the incidence of ESCC in the Western world (North America, 

Western Europe, and Australia) is declining, rates of EAC continue to increase. In the USA 

alone, the incidence escalated from 0.4 to 2.8 per 100,000 people between 1973 and 20124.
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Of all major cancers, esophageal cancer exhibits one of the lowest overall survival rates, 

with the best predictive measure of survival being tumor stage or extent of disease at the 

time of clinical presentation. Although overall survival is only 20%, survival rates can 

increase up to 50% in the setting of localized disease, and up to 70% for superficial tumors 

limited to the esophageal mucosa6. The current clinical standard consists of chemotherapy 

or chemoradiotherapy, followed by esophagogastrecomy, with consideration for adjuvant 

immunotherapy for residual disease7. Esophagogastrectomy is a complex procedure 

requiring mobilization and resection of the thoracic and intra-abdominal esophagus and 

proximal stomach, tubularization of the remaining stomach, and anatomic reconstruction 

via esophagogastric anastomosis. This operation bears a 10–30% risk of anastomotic leak, 

which in turn can lead to delayed stricture formation, severe mediastinitis, empyema, sepsis, 

respiratory complications, and even death. Other common complications include atrial 

dysrhythmia and pneumonia, and postoperatively all patients endure significant changes 

to their quality of life resulting from this anatomic reconstruction8.

Neoadjuvant therapy includes chemotherapy and radiation for ESCC and chemotherapy 

with or without radiation for EAC and has demonstrated a clear survival benefit for locally 

advanced disease in multiple studies9–12. However, systemic chemotherapy is associated 

with significant side effects and toxicities, including fatigue, hair loss, nausea, weight 

loss, neutropenia, and neuropathy13, further decreasing patients’ quality of life. In this 

review, we summarize the challenges associated with current treatment options and discuss 

novel targeted therapies and chemotherapy delivery platforms. Specifically, we examine: 

1) traditional anticancer targets which are only recently being explored in the setting of 

esophageal cancer, such as HER2 and VEGF; 2) targeted therapies related to esophageal 

and gastric cancers, such as CLDN18.2; and, 3) novel pathways that are emerging from 

ongoing research, including Yes-associated protein 1 (YAP1). This review then examines 

evolving drug delivery platforms for this disease, including drug-impregnated esophageal 

stents and loaded nanoparticles, and comments on the future of drug delivery, such as 

antibody-drug conjugates. The purpose of this review is to stimulate discussions, highlight 

clinical approaches and successes over the past decade, and provide further motivation to 

develop more effective treatment options for this deadly disease.

Esophageal Cancer Treatments in the Clinic

Current treatment options for esophageal cancer depend on histologic subtype, tumor 

location, and tumor stage. Radial penetration depth, dissemination to regional lymph 

nodes, and distant spread to lymph nodes or other organs defines the American Joint 

Committee on Cancer (AJCC) staging system (0-IV) for EC (Figure 114). This section 

details current treatment approaches, highlights associated challenges, and reviews newer 

strategies currently undergoing clinical and preclinical evaluation.

Endoscopic Therapy

Patients with small, superficial tumors (stage 0 or I) are candidates for organ-preserving 

procedures via endoscopic resection strategies. Tumors limited to the mucosa with no 

invasion into the submucosal layer (T1a) and no suspected lymph node involvement are 
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resected by endoscopic mucosal resection (EMR). This technique partially aspirates the 

lesion into a specialized cap placed on the tip of the endoscope or bands it at the base, 

and then resects the lesion using a cauterizing snare15. Traditional criteria for EMR with 

curative intent include well-differentiated tumors (<2 cm) lacking lymphovascular invasion, 

in which a negative margin can be achieved endoscopically. The two forms of EMR include 

cap-assisted EMR and band-assisted EMR. Band-assisted mucosectomy is more efficient 

for larger lesions, with similar success rates for smaller lesions (<15 mm) relative to cap-

assisted EMR, and both are associated with fewer complications compared to traditional 

surgical resection16. Using these techniques, curative resections can be achieved for both 

adenocarcinoma and squamous cell carcinoma.

Endoscopic submucosal dissection (ESD) is a more complex resection technique that 

targets tumors invading the superficial layer of the submucosa. Expanded criteria for ESD 

include tumors of any size, well or moderately differentiated, that lack lymphovascular 

invasion and invade <500 micrometers into the submucosa (SM1 by Paris classification), 

for which negative margin can be achieved endoscopically. The submucosa surrounding 

the lesion is injected multiple times with a viscous solvent to establish the submucosal 

plane, and then the lesion is dissected with a cauterizing knife. This technique requires 

more precision and technical skill than EMR, with a higher risk of complications including 

bleeding and full thickness perforation. However, ESD allows for greater resection area 

and offers more pathological information regarding margin status for larger lesions that 

would otherwise require resection via serial EMR17 by allowing for a single specimen 

with anatomic orientation. A comparison of these two techniques, as reported by Takashi 

et al., shows similar overall survival due to development of distant metastasis, however 

cumulative disease-free survival was significantly greater with ESD than with EMR18. 

Data from a larger meta-analysis comparing the two techniques reveals that ESD provided 

significantly higher en bloc, curative, and R0 resection rates with lower local rates of 

recurrence, while having similar complication rates19. As these approaches become more 

widely adopted in Western countries, and further improvements are made in endoscopic 

tools and predictive modeling for lymph node metastasis, endoscopic resection techniques 

may become more widely applied to larger tumors without lymph node involvement to 

enable organ preservation and improved quality of life.

Surgery

For patients with larger tumors (stage II/III), resection requires surgical resection via partial 

or near-total esophagectomy with reconstruction, most commonly using a gastric conduit. 

Based on the location of the tumor, the surgeon within a multidisciplinary team setting 

determines the extent and approach to resection. Tumors in the distal third of the esophagus 

are typically resected via Ivor Lewis esophagogastrectomy, a 2-stage procedure under single 

anesthetic that involves mobilization of the distal esophagus and stomach followed by 

tubularization of the stomach to create the conduit that will be used as the “neo-esophagus” 

via an intra-abdominal approach. This is followed by dissection of the intrathoracic 

esophagus, resection and removal of the specimen, and intrathoracic anastomosis of the 

proximal in situ esophagus to the gastric conduit via a right sided transthoracic approach20. 

This procedure can be performed open or minimally invasively, via traditional laparoscopic 
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and thoracoscopic approaches or with robotic assistance. Clinical trials comparing the 

two techniques find that patients undergoing minimally invasive esophagectomy exhibit 

significantly fewer complications than those undergoing open surgical approach21, with no 

difference in either disease-free or overall survival22. Mid-esophageal tumors are resected 

via McKeown, or 3-hole, esophagectomy involving transthoracic, transabdominal, and 

transcervical approaches. This procedure begins with mobilization of the intrathoracic 

esophagus via the right chest, followed by mobilization of the intrabdominal esophagus 

and stomach and gastric tubularization, followed by dissection of the proximal esophagus 

and anastomosis within the left neck to achieve appropriate margin. This procedure can 

also be performed via open or minimally invasive techniques23. The transhiatal approach to 

esophagectomy involves mobilization of the intrathoracic esophagus from a transabdominal 

approach by dissection into the mediastinum through the esophageal hiatus, followed by 

anastomosis in the left neck, and is typically used for earlier stage esophageal tumors 

given the limited intrathoracic lymph node dissection from this approach24. Resection of 

tumors located in the proximal third of the esophagus is more challenging and morbid 

due to proximity to the larynx and pharynx, and proximal tumors are therefore typically 

treated with definitive chemotherapy and radiation. Despite significant advances in surgical 

techniques including adoption of robotic surgical approaches, 5-year survival remains low25, 

highlighting the need for additional treatment options.

Neoadjuvant Treatments for Resectable Disease

The overall 5-year survival for esophageal cancer remains poor due to development of 

distant metastatic disease26. Neoadjuvant treatment extends survival for patients with locally 

advanced esophageal cancer27–29. Clinical trials by the Japanese Clinical Oncology Group 

show that neoadjuvant chemotherapy or chemoradiation provides improved disease-free 

and overall survival rates, as well as prevention of relapse, compared to surgery alone for 

patients with ESCC.30–32 Neoadjuvant chemoradiation is now standard for ESCC prior to 

surgery in both Japan and Western countries. Results of neoadjuvant chemoradiation are so 

effective for ESCC that ongoing trials are currently investigating the role for surgery versus 

clinical surveillance in patients who demonstrate complete clinical response following initial 

chemoradiation33,34.

For EAC, debate continues regarding optimal neoadjuvant strategy, though standard of 

care at most centers includes neoadjuvant chemotherapy or chemoradiation followed 

by surgical resection. Several studies including the CROSS trial show a modest 

survival benefit for carboplatin/paclitaxel with radiation, however this survival benefit 

was less than that observed for ESCC35. Additional studies demonstrate the efficacy 

of combination chemotherapeutics in the perioperative setting, including docetaxel, 

carboplatin, and 5-fluorouracil. Clinical trial results comparing neoadjuvant chemoradiation 

versus perioperative chemotherapy show improvement over surgery alone, but do not 

demonstrate a significant difference in overall survival between these two approaches36,37. 

While most North American centers continue to use a neoadjuvant chemoradiation strategy 

for EAC, determination of an optimized chemoradiotherapy protocol requires additional 

studies as there are inconsistencies in prior clinical trials with radiation dosing38,39, 
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chemotherapy regimen40–42, and timing of surgical intervention43–45. Ongoing trials are 

also investigating the comparative efficacy of proton versus photon radiation approaches.

For patients with unresectable tumors due to local invasion into critical structures, 

proximal location, or inability to tolerate esophagectomy due to comorbidities or frailty, 

chemoradiation without surgery is the standard treatment approach. Ongoing clinical trials 

are investigating optimal chemotherapy and chemoradiation protocols in both EAC and 

ESCC, as well as the role for surgery in patients who demonstrate complete clinical response 

to neoadjuvant treatments46–52, and the emerging role for neoadjuvant immunotherapy in 

resectable disease, as discussed in the next section.

Immunotherapy

Immunotherapy is one of the most exciting emerging fields in oncology at present. 

The first immunotherapy agent was approved by the FDA in 1986, however the field 

experienced exponential growth in the 2010s53. Pembrolizumab and nivolumab are IgG4 

monoclonal antibodies that block programmed death-ligand 1 (PD-L1) to prevent immune 

evasion by cancer cells and are currently in use for treatment of several malignancies 

in the neaodjuvant, adjuvant, and advanced/metastatic settings, including both gastric and 

esophageal cancers54. PD-L targeting is prevalent within immunology, and expression of 

PDL-1 in tumors is prognostic for treatment response to PDL-1 or PD-1 inhibition, and, in 

some cases, is predictive of development of metastatic disease55.

Currently, both pembrolizumab and nivolumab are approved for the treatment of esophageal 

cancer in combination therapies in the advanced and adjuvant settings, with ongoing 

trials of its role in the neoadjuvant setting. Results of the Checkmate 577 trial (Figure 

256) demonstrate that treatment with nivolumab after resection following neoadjuvant 

chemoradiotherapy increases average survival to 22.4 months, as compared to 11.0 

months in the placebo group (p= 0.0003)54. The Checkmate 64857 and ATTRACTION-358 

trials further support this finding with similar results: nivolumab in conjunction with 

chemotherapy significantly prolongs survival in patients with advanced ESCC. These results 

motivate further investigation, and as a result there are approximately one hundred ongoing/

recruiting clinical trials using immunotherapy for the treatment of esophageal cancer 

including both ESCC and EAC.

The use of newer investigational anti-PD-1 therapies and their efficacy relative to, or in 

addition to, chemotherapy are ongoing in the advanced/metastatic setting. These agents 

include camrelizumab59,60, sintilimab61,62, toripalimab63, and tislelizumab64, which show 

modest survial improvements in advanced disease in the first-or second-line settings. The 

use of combination ipilimumab, which targets CTLA-4, with nivolumab also improves 

survival relative to chemotherapy alone65. As the immunotherapy field continues to advance, 

we anticipate these newer anti PD-1, anti PD-L1, and anti CTLA-4 agents will begin 

to be used in the neoadjuvant and adjuvant settings for patients with locally advanced 

resectable disease. Novel approaches to immune modulating therapy, including CAR-T cells 

and adoptive cell therapies will be discussed further below.
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Emerging Targets for Tumor Targeting

The clinical standard for chemotherapy administration is systemic delivery. Unfortunately, 

this delivery method affords only a fraction of the drug (<10%) reaching the disease site 

with greater levels of the drug reaching major organs such as the liver and kidneys66. To 

decrease the off-target toxicities of systemic delivery, new techniques are being explored to 

target the surface proteins of tumor cells using antibodies, peptides, and/or other proteins. 

This section details examples of traditionally used tumor targets, as well as promising newer 

strategies in preclinical development.

Genomics and molecular classification

One of the hallmarks of cancer is the dysregulation of genetic pathways associated with 

cell growth, proliferation, and neovascularization. ESCC and EAC possess unique genetic 

and genomic mutations, suggesting these two disease histologies may have separate origins. 

ESCC shows similarity to other head and neck cancers, with genomic amplifications of 

CCND1, SOX2, and TP6367. Meanwhile, EAC is more akin to gastric cancer, as both 

possess amplifications of VEGF, ERBB2, and GATA468. These differences in mutational 

signatures suggest that ESCC and EAC may respond to more specific treatment strategies, 

with only limited overlap in their susceptibility to targeted agents.

ESCC and EAC do share one such common target: the receptor tyrosine kinase-ras-

phosphatidylinositol-3-kinase (Ras/PI3K) pathway, which is dysregulated in 50–60% of 

ESCC and 60–75% of EAC69. In this pathway, ERBB2, VEGF, and KRAS gain-of-function 

mutations prevail, yet none are as highly expressed as EGFR, which is present in 30% of 

all EC (Figure 370). EGFR is the second most frequent receptor tyrosine kinase alteration in 

EAC, behind KRAS, demonstrating chromosomal instability in 5–10% of tumors71. While 

targeting this pathway is conceptually promising, current trial results have yet to show 

benefit of EGFR inhibitors against metastasis.

ERBB2, EGFR, and KRAS amplifying mutations tend to be mutually exclusive. These 

genes possess a common downstream tumor promoting effect through the activity of cell 

cycle genes CCND1, CDK4, and CDK6. 67% of EAC and over 90% of ESCC contain 

alterations of the cell cycle pathway72 and research into CDK4/6 inhibitors in the pre-

clinical setting is a promising ongoing field of study.

ESCC also exhibits mutations in NOTCH1, PIK3CA, SOX2 and TP63 pathways, whereas 

EAC expresses elevated levels of PI3K/Akt and mTOR, all associated with tumor 

progression and drug resistance73,74. Such molecular pathway discoveries are informing and 

enabling researchers to selectively target tumor cells by histologic subtype, while mitigating 

off-target drug effects. Below, we further detail several of these pathways and the ongoing 

work both clinically and in preclinical development.

Human epidermal growth factor receptor 2 (HER2)—Human epidermal growth 

factor receptor 2 (HER2) is a highly targeted receptor across several cancers and historically 

most associates with breast cancer phenotypes; however, this receptor is also present in 

ovarian, gastric, and esophageal cancers (Figure 370). The HER2 proto-oncogene encodes a 
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185 kDa transmembrane glycoprotein receptor with intracellular tyrosine kinase activity75. 

Both EAC and ESCC upregulate HER2 in ~15% of cases76. In gastric cancers, up 

to 25% show HER2 overexpression, although the prognostic value remains unclear77. 

HER2 overexpression in gastric/esophageal cancer coincides with a higher incidence of 

heterogeneity (focal staining) than breast cancer78, limiting the predictive value79.

There are currently several HER2-targeted therapies approved in the clinic for the 

treatment of esophageal cancer, most notably trastuzumab - a HER2-targeted humanized 

monoclonal antibody. In 2010, the FDA approved trastuzumab following the success 

of the ToGA clinical trial. ToGA (Trastuzumab for Gastric Cancer) is an open-label, 

international, phase III clinical trial undertaken across 122 centers in 24 countries80. 

In this trial, 584 patients with HER2-positive advanced gastric and gastroesophageal 

junction cancer received either chemotherapy (capecitabine or fluorouracil plus cisplatin) 

plus trastuzumab or chemotherapy alone. Patient median overall survival increases by 2.7 

months with chemotherapy and trastuzumab compared to chemotherapy alone (13.8 vs 11.1 

months). Notably, an exploratory post-hoc analysis reveals that patients with higher HER2 

expression demonstrated greater overall survival81. In this study, trastuzumab treatment also 

significantly increased progression-free survival, time to progression, and proportion of 

patients achieving an objective response80.

Since the ToGA trial, additional trials examined the role for trastuzumab in advanced 

clinical settings. In 2017, Thuss-Patience et. al. led a phase II/III global study (GATSBY), 

to assess the efficacy and safety of trastuzumab emtansine (a drug antibody conjugate) 

versus taxane treatment in patients with previously treated HER2- positive advanced gastric 

or gastro-esophageal cancers82. Unfortunately, the results are not consistent with those 

of the ToGA trial, with no improvement in survival in patients treated with trastuzumab. 

Further, the role of trastuzumab in the neoadjuvant setting in addition to chemoradiation 

also shows no survival benefit in patients with HER2-expressing tumors83. Other phase III 

trials investigating trastuzumab in combination therapies edo not demonstrate differences in 

overall survival84,85.

Lapatinib is a small-molecule tyrosine kinase inhibitor targeting both epidermal growth 

factor receptor (EGFR) and HER2. Treatment with lapatinib affords a 9% response rate 

as a monotherapy against advanced gastroesophageal junction tumors. While this number 

may seem low, no anti-HER2 agent had previously demonstrated improved survival as a 

monotherapy prior to this study86. Hecht et al. report a phase III trial, termed TRIO-013/

LOGiC, that evaluates lapatinib’s efficacy in combination with capecitabine and oxaliplatin 

(CapeOx) for the treatment of EAC. Although the response rate significantly increases 

compared to placebo (53% vs 39%), patient overall survival does not improve87.

One novel treatment under investigation is MM-11171, a bispecific antibody fusion protein 

binding HER2 and HER3, another receptor tyrosine kinase in the human epidermal 

growth factor receptor family88. Despite promising preclinical results, a phase II clinical 

trial evaluating MM-111 in combination with trastuzumab and paclitaxel was terminated 

early due to a lack of efficacy89. The JACOB phase III trial investigated the efficacy of 

pertuzumab, another anti-HER2 agent, with or without trastuzumab and chemotherapy to 
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treat gastro-esophageal junction cancer. Unfortunately, no significant difference in overall 

survival exists between the treatment groups90. Thus, while HER2 seems to be a promising 

target based on its overexpression in a subset of EC and the efficacy of its targeting in 

improving survival in other malignancies, the poor clinical results of anti-HER2 targeted 

therapies in esophageal cancer signify the necessity for further study of the role of HER2 

in the pathobiology of esophageal cancer and the potential role for development of more 

tumor-specific HER2 targeted treatments.

Vascular endothelial growth factor (VEGF)—Tumors commonly overexpress vascular 

endothelial growth factor (VEGF) promoting angiogenesis and subsequent tumor growth91. 

Given the increased expression of angiogenic markers associated with aggressive disease 

subtypes and associated inferior survival in esophageal cancers, targeting angiogenesis is an 

attractive strategy for this disease92–94. In fact, several studies show a correlation between 

VEGF expression and advanced tumor stage (III/IV) with increased risk for metastasis95,96; 

yet, there is minimal clinical success utilizing it as a target for treatment thus far.

The only FDA approved angiogenesis inhibitor in esophageal cancer is ramucirumab, a 

monoclonal antibody that binds and blocks the VEGF receptor to prevent the formation 

of new blood vessels. Both the REGARD97 and RAINBOW98 trials demonstrate improved 

overall survival in patients with advanced EAC after initial chemotherapy treatments with 

administration of ramucirumab either as a monotherapy or with paclitaxel, respectively. 

In contrast, results from a phase II clinical trial led by Yoon et. al., show improved 

overall response of stable disease, but not progression-free survival when ramucirumab is 

administered with FOLFOX as a front-line therapy to treat metastatic or non-resectable, 

locally advanced gastric-esophageal junction adenocarcinoma99.

Apatinib, another VEGF receptor inhibitor, is FDA approved for the treatment of gastric 

cancer100,101, and shows promise in clinical trials for the treatment of metastatic esophageal 

cancer. Results from two clinical trials reveal that apatinib is effective as both second 

and further-line treatment for advanced esophageal cancer102,103. In combination with 

chemotherapy, apatinib affords similar success and improvement in overall survival104–

106. Despite the success of apatinib, clinical trials of other VEGF targeting antibodies, 

such as bevacizumab107,108, sunitinib109–112, sorafenib113–116, pazopanib117–118, and 

regorafenib119–123 all report minimal to no improvement in survival. Hence, VEGF may 

represent a useful marker for aggressiveness of esophageal cancer subtypes but opportunities 

remain for improvement of targeting and extension of survival.

Epidermal growth factor receptor (EGFR)—Epidermal growth factor receptor 

(EGFR) is a transmembrane glycoprotein overexpressed in several gastrointestinal 

malignancies. Ligand binding to the extracellular domain activates EGFR, and subsequent 

phosphorylation of the intracellular tyrosine kinase initiates several downstream pro-growth 

pathways including Ras/Raf/mitogen-activated protein kinases and the Akt/mTOR pathway. 

Approximately 30%−50% of gastro-esophageal malignancies and 19% of squamous cell 

cancers overexpress EGFR. Further, more aggressive histology and advanced tumor stages 

correlate with increased levels of EGFR expression124–126.
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Given that EGFR upregulation is common in many cancer types, there are several FDA-

approved monoclonal antibody therapies in clinical use across multiple malignancies. These 

include: cetuximab for the treatment of both metastatic colorectal and squamous cell 

cancers127, panitumumab for metastatic colorectal cancer128, nimotuzumab for gliomas and 

head/neck cancer129, and necitumumab for the treatment of non-small cell lung cancer130. 

However, there are no currently approved therapies for treatment of esophageal cancer131. 

The success in other cancer subtypes prompts ongoing investigations towards translating 

similar therapeutics to esophageal cancer.

Cetuximab is minimally successful as a monotherapy in esophageal cancer. A phase 

II trial reports that only 3% of patients (one person) demonstrated a partial response 

to cetuximab monotherapy after previous chemotherapy regimens failed132. Cetuximab 

when used in combination with chemotherapy in the adjuvant setting shows slightly more 

promise. Two independent phase II trials in patients with advanced gastro-esophageal cancer 

reveal enhanced response rate with the addition of cetuximab in conjunction with cisplatin/

docetaxel133 or docetaxel alone134. However, there is no overall survival benefit. Other 

EGFR-targeting monoclonal antibodies, such as nimotuzumab135–138, and panitumumab139–

141 are currently being clinically evaluated; however, as of today, none of these agents 

demonstrates clinical success in terms of overall survival or disease progression.

In addition to monoclonal antibodies, tyrosine kinase inhibitors (TKIs) are pharmacological 

agents that inhibit the phosphorylation of specific proteins downstream of EGFR-induced 

signal transduction cascades. Gefitinib and erlotinib are both FDA approved for the 

treatment of non-small cell lung cancer142, and metastatic non-small cell lung cancer/

advanced pancreatic cancer143, respectively. Yet, clinical trials with gefitinib for treatment of 

esophageal cancer were unsuccessful or terminated early144,145. Patient response to erlotinib 

is greater compared to gefitinib. The outcomes from the SWOG 0127 trial, which examined 

patients with EAC at the gastrio-esophageal junction, show some efficacy of erlotinib as 

a first-line therapy146. In conjunction with radiotherapy for the treatment of older patients 

with EC stages I-IV, erlotinib treatment yields a 12% complete response rate, defined as 

absence of viable tumor in endoscopic evaluation147. In a trimodality neoadjuvant setting, 

erlotinib plus chemoradiotherapy against localized esophageal cancer raises the complete 

response rate to 29%148. These results merit further investigation of TKIs and specifically 

their impact on the EGFR pathway for esophageal cancer treatment.

Mammalian target of rapamycin (mTOR)—The mTOR pathway plays a pivotal role 

in cell growth and proliferation, and its dysregulation is linked to tumorigenesis149,150. 

As mTOR upregulation exists in many cancer types, it is a common target for inhibition, 

with currently three FDA-approved treatments: sirolimus (rapamycin), temsirolimus, and 

everolimus. In the early 2010s, everolimus was approved for the treatment of renal cell 

carcinoma, astrocytoma, and HER2-negative breast cancer. With regards to gastric cancer, 

56% of gastric cancer patients treated with everolimus as monotherapy achieve disease 

control as reported by the GRANITE-1 trial, a multicenter phase II and III study151. 

Unfortunately, patient overall survival does not significantly improve, and this finding was 

confirmed in a subsequent clinical trial152. Interestingly, esophageal cancer patients treated 

with everolimus, both in combination with chemotherapy153 or as a monotherapy154, show a 
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marginal increase in disease control and progression-free survival. These initial studies merit 

additional follow-up to identify if targeting the mTOR pathway is a viable mechanism to 

treat esophageal cancer.

A newer target associated with the mTOR pathway is TRIM44, a member of the 

tripartite motif (TRIM) protein family. TRIM44 promotes tumor growth in non-small cell 

lung cancer via the mTOR pathway and is of prognostic value for EAC155. Moreover, 

TRIM44 downregulation suppresses ESCC cell proliferation, migration, and invasion, while 

overexpression promotes these cellular activities156, making this a promising target for 

future studies.

Cyclin-Dependent Kinases (CDKs)—Greater than 90% of ESCCs contain alterations 

to the cell cycle pathway69. The two most common cell cycle targets currently under 

investigation in esophageal cancer are CDK4 and CDK6, which phosphorylate cyclin D to 

promote cell cycle progression (Figure 4157). Cyclin-dependent kinase inhibitors (CDKIs) 

were first explored in the 1990s, when loss of the endogenous CDKI p27Kip1 directly 

correlated with the progression of esophageal squamous cell carcinoma158. Since then, there 

are numerous FDA-approved CDKI therapies such as palbociclib159, abemaciclib160, and 

ribociclib161. Notwithstanding, these inhibitors are currently only in clinical use for breast 

cancer and are not yet approved for esophageal cancer. Palbociclib is cytotoxic against 

ESCC in vitro with resistant cells demonstrating glutamine dependence162. Abemaciclib 

shows preclinical success against esophageal cancer cells both in vitro and in vivo163,164, 

and clinical trials investigating ribociclib165 and palbociclib166 are ongoing. Additional 

CDKIs are being evaluated in vitro, with positive preliminarily results167–169. As a result, 

there are several multi-center clinical trials evaluating these CDKIs170,171, and other cell 

cycle targets for the treatment of esophageal cancer.

Yes-associated protein 1 (YAP1)—Yes-associated protein (YAP1), the Hippo pathway 

transcriptional coactivator, is a recently discovered oncogene and another potential target for 

new therapies for esophageal cancer172. In a Japanese cohort - one of the countries with 

the highest prevalence of this disease – ESCC over expresses YAP1173. Knock down of 

this gene in vitro inhibits proliferation and increases apoptosis in esophageal cancer cells, 

highlighting the importance of this gene to tumor progression174,175. YAP1 plays a key 

role in several tumor associated pathways, specifically upregulation of both SOX9176 and 

EGFR177, corresponding to increased tumorgenicity and chemoresistance, respectively. The 

crosstalk between YAP1 and CDK6, as reported by Li et. al., highlights the potential of 

dual targeting, given that dual inhibition results in enhanced antitumor effect in vitro and 

in vivo178. Recent success in preclinical trials brings promise for the development of such 

novel therapies in the future179.

Claudin 18.2—A recently identified new target in gastric and gastroesophageal junction 

tumors is isoform 2 of claudin-18 (CLDN18.2). Claudins are components of tight junctions 

on tumor epithelial cells, and CLDN18.2 is highly expressed in gastric cancer180. This 

discovery led to the design of the monoclonal antibody zolbetuximab to specifically target 

CLDN18.2. Addition of zolbetuximab to chemotherapy improves overall and progression-

free survival in metastatic or unresectable gastric and esophagogastric cancers181. Based 
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on these results, zolbetuximab is currently undergoing expedited FDA review for use in 

advanced gastric cancers lacking HER-2 expression; while there were no deficiencies cited 

in the clinical data, FDA approval was set back due to manufacturing concerns. Efficacy 

of zolbetuximab in the neoadjuvant or adjuvant settings in locally advanced resectable 

esophageal cancers remains to be determined.

Novel Delivery Mechanisms

Most chemotherapeutics are hydrophobic, resulting in poor solubility, necessitating the use 

of solvents such as pegylated castor oil for intravenous administration182. Additionally, 

intravenous administration is fraught with pharmacokinetic challenges to deliver sufficient 

chemotherapeutic to the tumor. In contrast, biological therapies are hydrophilic proteins 

soluble only in aqueous solution, which possess their own set of challenges for drug 

delivery including processability, protein denaturation, and retention of activity. Given this 

cancer’s location, oral delivery is a potential alternative delivery mechanism for esophageal 

cancer, with rapid adsorption into the highly vascularized oral and esophageal mucosa183, 

however this route can be limited in a large percentage of esophageal cancer patients 

with associated dysphagia184. Esophageal cancer patients would therefore benefit from 

development of a delivery system that will increase tumor targeting, bioavailability, and 

intratumor concentration, while decreasing toxicities and off-target effects. In this section, 

we discuss four promising delivery mechanisms for treatment of esophageal cancer – 

nanoparticles, stents, antibody drug conjugates, and chimeric antigenic receptor T cells – 

and examine their successes and limitations in several recent studies.

Nanoparticles

One solution to improve systemic delivery is to package the drug payload into nanoparticles, 

which increases the in vivo half-life and accumulation at the disease site. These 10–

500 nm diameter particles typically encapsulate chemotherapeutics or small-molecule 

hydrophobic agents and are amenable to surface modification to introduce moieties for 

tumor targeting. Drug-loaded nanoparticles were first investigated to treat esophageal cancer 

in the mid-2000s185–187, culminating in a phase I trial of now FDA-approved abraxane 

(nab-paclitaxel)179.

There is extensive preclinical work on carbon-based nanotechnologies as well, such as 

carbon nanoparticles188–191, carbon nanotubes192–195, and graphene196–198, due to their 

potential biocompatibility, ease of synthesis, and unique ability to introduce surface 

modifications. However, these carbon materials, as with most polymer or ceramic 

nanoparticles, are limited in their ability to efficiently load chemotherapeutics, owing to their 

physical structure and their hydrophilicity. Zhang et. al circumvent this issue by developing 

~100nm hollow carbon spheres which contain 132% more drug than conventional carbon 

spheres. When administered in vivo, these doxorubicin-loaded hollow carbon spheres show 

improved antitumor activity, increased drug accumulation at the tumor site, and reduced 

off-target toxicities in vital organs, such as the heart and kidney199.

Fluorescent self-assembling cyclic peptide nanoparticles, as reported by Fan et. al., are 

biocompatible, biodegradable, capable of loading chemotherapeutics, and amenable to 
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functionalization with active targeting moieties. Specifically, loading of epirubicin (EPI), 

a chemotherapeutic used to treat some esophageal cancer patients, and conjugating a tumor-

honing peptide (RGD), affords a NP which selectively targets both EAC and ESCC cells, 

while also affording anti-tumor activity with significantly less side effects compared to EPI 

alone in a murine model (Figure 5200).

Micelles are an aggregation of amphiphilic polymers that form a colloidal suspension and 

are ideal for encapsulating hydrophobic drugs in their core. Traditional micelles comprise a 

surfactant with a hydrophilic head and a hydrophobic carbon chain, and readily encapsulate 

chemotherapeutics such as paclitaxel, doxorubicin, and cabazitaxel201–203. As reported by, 

Fu et. al., poly(caprolactone)-pluronic micelles loaded with doxorubicin are readily taken 

up in multiple esophageal cancer cell lines and when administered in vivo decrease tumor 

volumes compared to saline controls204. These polymeric micelles are easily functionalized, 

affording synthesis of active targeting systems. Conjugation of a targeting peptide to the 

exterior of the micelles results in specific targeting of esophageal cancer cells, increasing 

the overall efficacy of the treatment. Specifically, conjugation of the SNFYMPL peptide 

onto their paclitaxel loaded PEG-DSPE micelles target the epithelial cell adhesion molecule 

(EpCAM, upregulated in EAC), resulting in greater cellular uptake in vitro, superior tumor 

reduction, and extended survival in vivo compared to traditional, non-targeted micelles205.

Functional nanoparticles which respond to stimuli, be it a change in pH, redox state, or 

ionic strength206–211, are also of significant interest. An elegant example of responsive 

nanoparticles to treat esophageal cancer is reported by Matsumoto et al., who describe a 

disulfide bond crosslinked core poly(ethylene glycol)-block-poly(l-lysine) NP loaded with 

an siRNA therapeutic. The siRNA releases upon cleavage of the disulfide linkages within 

the tumor212. A similar disulfide cross-linked micelle, composed of PEG5k-Cys4-L8-CA8 

telodendrimers, efficiently encapsulates docetaxel or AZD8186, a PI3K inhibitor, as they are 

both hydrophobic. Intravenous delivery of these nanoparticles reduces tumor burden in an 

in vivo model of esophageal cancer. When loaded together, the treatment halts growth of 

the primary tumor, demonstrating the advantage of responsive, dual-loaded systems to treat 

esophageal cancer213.

Biocompatible, nonimmunogenic nanoparticles composed of amphiphilic phospholipids are 

easily manufactured and are widely available from natural sources. These “cell-like” carriers 

are capable of loading both hydrophobic and hydrophilic drugs and can be further modified 

to contain active targeting moieties on the exterior214–216. Ren et. al. describe a red blood 

cell membrane functionalized carrier system with the internalizing RGD peptide and an 

EGFR antibody to create an ESCC tumor targeting nanocarrier with tumor penetration 

capabilities for paclitaxel delivery217. Ren et. al.’s work examplifies how combining 

nanoparticles and the tumor targets discussed above represents the future for esophageal 

cancer treatments. Li et. al. utilize gold nanoparticles with aptamers to target both EGFR 

and HER2, and demonstrate unique targeting capabilities in vitro218. Liu et. al. target VEGF 

with calcium phosphate nanoparticles, and report in vivo efficacy219. Additional examples 

include Xia et. al. use of targeting mTOR with artesunate-loaded solid lipid nanoparticles220.
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Stents

The two key challenges to systemic chemotherapy delivery are limited drug accumulation 

in tumors and off-target toxicities. This is especially true for tumors which are dispersed 

throughout an area, are present in minimally vascularized tissue, or are exposed to 

significant exogenous fluid flow, such as the esophagus. Local delivery is a potential 

solution, such as the delivery of a chemotherapeutic via a stent placed endoluminally at the 

disease site. Stents are primarily used as a palliative measure to treat malignant dysphagia 

caused by esophageal cancer, particularly in the metastatic or unresectable setting221. The 

advantages of using a stent in combination with chemotherapy for treatment of esophageal 

cancer include palliation of esophageal tumor obstruction, enhanced patient quality of life 

through improved oral intake, and drug delivery directly to the tumor site at the esophageal 

mucosal surface. Drug-coated stents originated in the mid-1990s when heparin-coated metal 

stents were implanted to prevent thrombosis in patients with stable angina pectoris222,223.

Won et. al. describe an implanted self-expanding metal stent embedded with a radioisotope 

to provide intraluminal palliative brachytherapy in canines224. This first trial of a chemo-

loaded stent therapy for esophageal cancer entailed use of a metallic stent coated with 

5-fluorouracil. In this model, burst release occurs over the first 10 days225. While this stent 

design leaves significant room for improvement, this study demonstrates the principle of 

local drug delivery through an esophageal stent.

Optimization of a novel drug eluting stent specifically designed for the esophagus requires 

intricate examination of each component (Figure 6226). Specifically, biocompatibility and 

pharmacokinetics are the primary parameters of interest, as they are closely tied to efficacy. 

Initial evaluation is typically performed in vitro, however work by Shaikih et. al., reveal that 

this model is not an accurate depiction, as drug uptake heavily depends on the permeability 

of the esophageal tissue227. To prolong drug delivery and enhance efficacy, one employs 

surface modified metallic stents. Jeon et. al., describe a thin nano-networked silica film 

on top of a sirolimus-loaded stent that affords a twofold delay in release compared to 

the control228. Many groups leverage these exterior coatings to increase biocompatibility 

and limit complications such as blockage, inflammation, perforation, and leakage229–231. 

For example, Xue et al. report a film comprised of hyaluronic acid and poly-dopamine, 

which yields a biocompatible and hemocompatible material compared to the standard 

poly(dimethylsiloxane) coating232. Wang et. al., describe the release kinetics from a stent 

using the intrinsic properties of their polymeric coating: crack propagation. The release 

kinetics of both cisplatin and 7-ethyl-10-hydroxycamptothecin are strain-dependent233. 

Zhang et. al. demonstrates that chemotherapeutic release is not necessary. By immobilizing 

a cytotoxic polymer (poly-ethylenimine) on top of a biocompatible polydopamine film 

coating, they demonstrate anti-tumor properties with tunable toxicity based on polymeric 

molecular weight234.

One approach to further control drug release in vivo, is to use near-infrared (NIR) irradiation 

which can penetrate tissue and alter the stent structure via the surface plasmon resonance 

effect. In doing so, the rate of drug release increases and it serves as a source for 

photothermal therapy. Lee et. al. demonstrate this principal using gold-coated nanoturf 

structures. Here, the stent slowly releases doxorubicin until irradiated with NIR light, 
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causing a spike in drug release. In a murine model, the stent in combination with the 

photothermal effect shows increased effiacy235. However, clinical translation may be limited 

due to the short depth of NIR penetration and, therefore, other modalities such as low-

level magnetic fields (0.01–0.1 T) are being investigated. Jin et al. report a magnetic 

field-responsive paclitaxel-loaded stent comprised of nitinol and 1-hexadecanol in which 

paclitaxel release is due to the magnetocaloric effect236.

Despite these advances in drug-loaded stent technology, the hydrophobic drug that is 

eluted from a drug-coated stent still suffers from poor bioavailability and tumor uptake237. 

The partnership of a nanoparticle-coated stent leverages the slow, controlled release 

of nanoparticles with the local, structural support of the stent. Xiao et. al. establish 

this technique by electrospinning an albumin-conjugate onto an esophageal stent for 

delivery of a photosensitizing agent for photodynamic treatments. This methodology is 

likely transferrable to a chemotherapeutic238. The combination of nanoparticle-stents and 

phototherapy shows success in preclinical development; Cho et al. and Park et al. both 

utilize gold-nanoparticle coated stents, which, with NIR irradiation, locally heat to prevent 

granulation tissue formation and hyperplasia, respectively239,240. This work could be 

translated to the treatment of esophageal cancer, using phototherapy for tumor ablation. The 

fusion of stents and nanoparticles is an attractive approach to increase local drug delivery in 

esophageal cancers. Nevertheless, there are only a few recorded cases of esophageal cancer 

patients implanted with a drug-coated stent, with currently no ongoing clinical trials241..

Drug Conjugates

Another alternative delivery platform is an antibody-drug conjugate (ADC). ADCs rely 

on the antibody as a homing mechanism to carry a highly chemotherapeutic agent to a 

specific target (Figure 7242). With just over ten FDA-approved treatments, ADCs are at the 

forefront of modern medicine243,244. Significant pre-clinical studies are underway to identify 

target tumor surface antigens via high-throughput screening and to assess in vivo efficacy 

of new compositions245. Trastuzumab deruxtecan is one FDA approved ADC example 

which leverages a herceptin antibody and the topoisomerase inhibitor, deruxtecan, for the 

treatment of HER2-positive breast cancer. When used in combination with chemotherapy 

for the treatment of patients with advanced HER2-positive gastric or gastroesophageal 

adenocarcinoma246, the median disease-free survival significantly extends in patients with 

the dual treatment, compared to chemotherapy alone. Following successes in phase I247 and 

phase II248–250 trials against gastric cancer, median disease-free survival slightly improves 

in patients with HER2+ EAC when combined with trimodality treatment in a phase III 

trial (NRG Oncology/RTOG-1010). However, the results are not statistically significant, and 

further investigations are warranted251.

The ADC composed of a bispecific antibody directed against the tumor associated antigens 

(TAAs) mucin-1 (MUC1) and human epidermal growth factor receptor (EGFR), linked 

to antimitotic agent (hemiasterlin; M1231) is under evaluation as a monotherapy for 

the treatment of esophageal cancer242. Knuehl et. al. report, in a poster at the 2022 

AACR meeting, impressive therapeutic responses in two different patient-derived xenograft 

models252, and M1321 is currently undergoing a phase I clinical trial as a single agent 
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for the treatment of esophageal cancer253. Results from two other recent phase I trials 

with tisotumab vedotin254 and sacituzumab govitecan255 show serious adverse side effects 

during dosing, which has dampened enthusiasm for these particular agents. However, GPC1-

ADC(MMAE)256, enfortumab vedotin257, and Fv-LDP-D3-AE258 all show in vitro and in 
vivo efficacy and merit their own clinical investigations, showing promise for use of ADCs 

against esophageal cancer.

ADCs are not the only drug conjugates currently under investigation; peptides are also 

capable carriers that efficiently target tumors. Peptide-drug conjugates (PDCs) are small, 

with high drug-loading, and exhibit excellent cell permeability. Lam et. al. report a 

synthetic peptide library to identify specific ligand-binding capabilities259, which can be 

leveraged to target esophageal cancer cells. Wang et. al. describe that DM1, a promising 

chemotherapeutic that is also highly toxic, when combined with a peptide, LLC2B, 

inhibits tumor growth both in vitro and in vivo260. While these PDCs are actively under 

investigation261–263, there has been minimal work leveraging this technology for esophageal 

cancer. There is clearly a need for future research in this space, with potential to engage 

other chemotherapeutics previously thought non-viable due to severe off-target toxicities.

Chimeric Antigenic Receptor T cells.

Synthetic biology is another emerging field profoundly impacting cancer treatment, with 

chimeric antigenic receptor T cells (CAR-T) or T cell receptor T cells (TCR-T) being a 

prime example. Clinically, T cells are harvested from the patient, engineered to target a 

specific antigen on the cancer cell surface, and then introduced into the patient’s immune 

system. Recent clinical successes in melanoma264, sarcoma265, and colorectal carcinoma266 

are prompting clinical investigation for the treatment of esophageal cancer267,268. Given the 

significant research in melanoma, lung, breast, ovarian, and bladder cancers, antigens are 

known which are upregulated in epithelial carcinomas but with limited expression in healthy 

normal adult tissue269–274. Far fewer upregulated antigens are known for esophageal cancer, 

with candidates including MUC1, HER2, EpCAM, CLDN18.2, MAGE-A3, MAGE-A4, and 

NY-ESO-1275,276,277. Success targeting these antigens with CAR-T and TCR-T therapies 

both in vitro, in vivo, and in clinical trials provides motivation for further studies265,278–280. 

Lu et al. report a partial response with treatment using autologous MAGE A3 engineered 

T cells281 with only minimal adverse reactions. In contrast, Morgan et al. note that some 

patients suffered from neurological toxicities282. Kageyama et al., describe the first clinical 

study using CAR T cells possessing the MAGE-A4 antigen in combination with sequential 

MAGE-A4 peptide vaccinations in nine patients with recurrent esophageal cancer283. 

Transduced T cells are present in the peripheral blood at one month for all patients, and 

in five patients they persisted for more than five months. The persisting cells maintain ex 
vivo antigen-specific tumor reactivity. Of the nine patients, three patients who had minimal 

tumor lesions at baseline survived for more than 27 months, while the remaining patients 

demonstrated tumor progression within 2 months following treatment. No adverse events or 

toxicity were noted283. Several on-going trials with anti-MAGE-A4 expressing T-cells, as 

well as other targeted TCRs will offer further insight into efficacy of this approach284–287. 

Several other targets for CAR-T and TCR-T cell therapies, as well as CAR-Natural Killer 

(CAR-NK) cells, are currently being explored.
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Conclusion

Esophageal cancer is one of the deadliest malignancies, yet treatment options remain 

limited due to insufficient research in this field. Trimodality therapy with neoadjuvant 

chemoradiation and esophagogastrectomy are improving survival outcomes, however only 

patients with local or locally advanced disease are candidates for surgical resection. By 

expanding knowledge of esophageal cancer-specific disease targets and delivery platforms, 

the potential for development of more effective treatment options is promising. Several of 

the discussed approaches merit further clinical evaluation and refinement to address the 

unique issues associated with esophageal cancer. Recent advances in immunotherapy, new 

therapeutic targets, and new potential approaches, such as local drug delivery via device 

platforms or ADCs, hold substantial promise to advance the field. With recent early and 

promising clinical trial results in many of these areas, the next decade will likely hold 

significant advances in patient survival as well as quality of life.
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Figure 1. 
Table of treatments and associated 5-year survival rate for esophageal cancer, organized by 

staging classification. Adapted from ref 14.14

SEER = Surveillance, Epidemiology, and End Results. AJCC = American joint Committee 

on Cancer.
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Figure 2. 
Illustration summary of pivotal Checkmate 577 trial, indicating efficacy of nivolumab56. 

Reproduced with permission from ref. 56. Copyright 2021 New England Journal of 

Medicine.
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Figure 3. 
Illustration of the EGFR signaling domains and its downstream pathway, with examples 

of inhibition from monoclonal antibodies extracellularly and small molecule inhibitors 

intracellularly70. Reproduced with permission from ref. 70 (CC BY).
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Figure 4. 
Illustration of the role of CDK4/6 in the cell cycle progression157 Reproduced with 

permission from ref. 157. Copyright 2017 Wolters Kluwer.
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Figure 5. 
Diagram of EPI-loaded self-assembling peptide nanoparticles and their tumor-honing ability 

due to the RGD ligand200 Reproduced with permission from ref. 200 (CC BY).
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Figure 6. 
Diagram of a drug eluting stent and the components that impact release kinetics and 

efficacy226 Reproduced with permission from ref. 226 (CC BY).
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Figure 7. 
Depiction of an ADC and the mechanism of cellular delivery/apoptosis242 Reproduced with 

permission from ref. 242. Copyright 1997 Elsevier.
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