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and patients’ data have been deidentified.

REGULAR ARTICLE

3972
Inference of genomic lesions from single-cell RNA-seq in myeloma
improves functional intraclonal and interclonal analysis
Francesca Lazzaroni,1,* Antonio Matera,2,* Alessio Marella,2 Akihiro Maeda,1 Giancarlo Castellano,1 Alfredo Marchetti,2 Sonia Fabris,1

Stefania Pioggia,1 Ilaria Silvestris,2 Domenica Ronchetti,2 Silvia Lonati,2 Giuseppina Fabbiano,1 Valentina Traini,1 Elisa Taiana,1

Laura Porretti,3 Federico Colombo,3 Claudio De Magistris,1,2 Margherita Scopetti,2 Marzia Barbieri,1 Loredana Pettine,1

Federica Torricelli,4 Antonino Neri,5 Francesco Passamonti,1,2 Marta Lionetti,2 Matteo Claudio Da Vià,1,† and Niccolò Bolli1,2,†
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Key Points

• scRNA-seq data can
be used to infer the
presence of the major
cytogenetic alterations
in MM.

• Single-cell B-cell
receptor profiling along
with copy number and
transcriptome analysis
improves functional
dissection of myeloma
subclones.
Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell (PC) neoplasm that

may evolve with variable frequency into multiple myeloma (MM). SMM is initiated by

chromosomal translocations involving the immunoglobulin heavy-chain locus or by

hyperdiploidy and evolves through acquisition of additional genetic lesions. In this

scenario, we aimed at establishing a reliable analysis pipeline to infer genomic lesions from

transcriptomic analysis, by combining single-cell RNA sequencing (scRNA-seq) with B-cell

receptor sequencing and copy number abnormality (CNA) analysis to identify clonal PCs at

the genetic level along their specific transcriptional landscape. We profiled 20 465 bone

marrow PCs derived from 5 patients with SMM/MM and unbiasedly identified clonal and

polyclonal PCs. Hyperdiploidy, t(11;14), and t(6;14) were identified at the scRNA level by

analysis of chimeric reads. Subclone functional analysis was improved by combining

transcriptome with CNA analysis. As examples, we illustrate the different functional

properties of a light-chain escape subclone in SMM and of different B-cell and PC subclones

in a patient affected by Wäldenstrom macroglobulinemia and SMM. Overall, our data

provide a proof of principle for inference of clinically relevant genotypic data from scRNA-

seq, which in turn will refine functional annotation of the clonal architecture of PC

dyscrasias.

Introduction

Multiple myeloma (MM) is a plasma cell (PC) malignancy usually preceded by an asymptomatic
expansion of clonal bone marrow (BM) PCs categorized as monoclonal gammopathy of undetermined
significance or smoldering MM (SMM).1-4 Although chromosomal translocations involving the immu-
noglobulin heavy-chain (IgH) locus or hyperdiploidy are considered as MM founding events, secondary
events acquired in the context of clonal heterogeneity represent a hallmark of subsequent MM evolu-
tion.5 More recently, advances in genomic studies showed how progressive and non-progressive cases
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can be recognized at the molecular level already in asymptomatic
stages6-11 and how the genomic landscape shows evidence of
subclonality at MM diagnosis and after treatment.12-16 More than
gene mutations, copy number alterations (CNAs) and structural
variants contribute to MM evolution as recently highlighted by
whole-genome sequencing and whole-exome sequencing
studies.10,14-16

Single-cell RNA sequencing (scRNA-seq) allows for the dissection
of cellular heterogeneity during the evolution of the disease.17,18

Genomic events have a transcriptional correlate in MM,19 and
the wealth of information provided by scRNA-seq could be
exploited to infer information on IGH translocations,20 CNAs,21 and
gene mutations22 that could be biologically and clinically relevant
along with transcriptomic data.

Given the complex and intertwined geno-transcriptomic landscape
of MM, we aimed at exploring a comprehensive molecular analysis
of scRNA-seq data. Through sequencing of the V(D)J regions of
the heavy (IGH) and light (IGK and IGL) chains of the B-cell
receptor (BCR) and with a combination of different pipelines, we
developed a workflow that generates detailed quantitative func-
tional maps of single-cell geno-transcriptomic states across MM
samples. The potential translational application of this analysis is
detailed in 5 samples, providing for each an accurate inference of
genomic features from RNA-seq data and high-resolution data on
single-cell heterogeneity with potential implications for disease
evolution at the clinical level.

Materials and methods

Sample collection and cell preparation

Primary BM samples from 5 patients affected by SMM (n = 4) and
MM (n = 1) were collected at the Hematology Department of
Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
(Milan, Italy), between 2020 and 2022, in accordance with Inter-
national Myeloma Working Group criteria. Detailed workflow is
described in supplemental Materials and Methods.

Single-cell library preparation and sequencing

The scRNA-seq libraries were prepared using the 10x Genomics
Chromium system (10x Genomics), following the manufacturer
instructions for the Single Cell 5’ Reagent kits v1.1 (10x Genomics;
catalog no. PN-1000165) and Chromium Single-cell V(D)J
Enrichment (10x Genomics; catalog no. PN-1000016) protocols
(CG000207 Rev B). Details for library preparation and sequencing
parameters are described in supplemental Materials and Methods.

Preprocessing and batch correction of scRNA-seq

datasets

Cells with <200 and >3000 expressed features and expressing
>5% of mitochondrial genes were filtered out. Immunoglobulin
genes were removed as well. DoubletFinder (v2.0.4) was used to
identify and remove putative doublets in each dataset, with the core
statistical parameters (nExp, pN, and pK) determined automatically
using the recommended settings for each sample.23 Automatic cell
assignment was performed using a published BM annotated atlas
from Seurat R package (github.com/satijalab/Seurat). The clono-
type information from the scV(D)J-seq was added to the Seurat
metadata to identify cells bearing the clonal V(D)J rearrangement or
13 AUGUST 2024 • VOLUME 8, NUMBER 15
polyclonal V(D)J rearrangements. We then integrated the datasets
using the RPCA reduction,24-26 and finally, we proceeded with
Seurat standard workflow (v 4.4.0) to analyze the combined data-
sets. Pipeline parameters are described in supplemental Materials
and Methods.

Identification of IGH translocations with Fuscia

We successfully detected chimeric transcript with “Fuscia” from
barcoded scRNA-seq (https://github.com/ding-lab/fuscia).20 The
software flags transcripts with reads bearing the same cellular
barcode and unique molecular identifier that map to different
positions on the reference genome. Those “chimeric transcripts”
can be strongly associated with translocations. Parameters are
described in supplemental Materials and Methods.

InferCNV

We were able to identify chromosomal CNAs in tumor scRNA-seq
data with the inferCNV tool (v.1.18.1) on R (inferCNV of the Trinity
CTAT project; https://github.com/broadinstitute/inferCNV), also
defining subclones in each tumor sample analyzed. Pipeline
parameters are described in supplemental Materials and Methods.

clusterProfiler

Differential expressed gene analyses were performed by means of
clusterProfiler R package (v. 4.10.1).27 To obtain enriched gene
ontology, we used gseGO function with the following parameters:
.1 as P value cutoff and Benjamini-Hochberg P adjusted and
plotted with DotPlot function.

Pseudotime trajectory inference analysis

The slingshot package was applied to perform the sc-pseudotime
inference analysis.28 Unsupervised clusters of cells were gener-
ated to uncover the global structure and then this structure was
converted into “pseudotime” smooth lineages represented by 1-
dimensional variables.

Pseudotime workflow is described in supplemental Materials and
Methods.

Single-cell Wäldenstrom macroglobulinemia

signature generation

The transcriptomic signature derived from Bagratuni et al.,29

(#GSE235723) was used to generate a specific Wäldenstrom
macroglobulinemia (WM) signature. After filtering steps and dou-
blets removal (R package v. 2.0.4), the annotated memory B cells
were defined to compute a specific gene expression: (1) using the
“wilcoxauc” R function to compare WM memory B cells with
healthy donor (HD) cells; and (2) to define a signature of genes
significantly upregulated in the WM’s cells (P adjusted < 0.01;
log2FC > 1.5). Then, the signature was inferred in our data set,
using the “add_module_score” Seurat function.

Cell cycle score estimation

Seurat package’s CellCycleScoring function was applied, to
assign a G1, S or G2/M phase score at each cell, using the
expression levels of known marker genes for each phase. Cell cycle
phases were integrated into downstream analysis together with
clonotypes information. Relative frequencies of cell cycle phases
for the 2 dominant clonotypes of P1 were calculated, and a χ2 test
was applied. A bar chart was generated using the R package
SINGLE-CELL TRANSCRIPTOMIC INFERENCES IN MYELOMA 3973
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ggplot2 (v.3.4.4) to visualize the relative frequencies of cell cycle
phases for the 2 dominant clonotypes of P1.

This study was approved by the local ethics committee (949/21),
and all patients signed written consent in accordance with the
Declaration of Helsinki.

Results

Single-cell transcriptional profiles reveal CD138+

cells heterogeneity across patients with MM

We performed scRNA-seq experiments combined with BCR-
sequencing on 33 274 cells isolated from n = 5 BM aspirates of
patients affected by SMM (n = 4) or newly diagnosed MM (n = 1;
Figure 1A). After quality control and filtering, the final integrated
dataset consisted of 21 326 cells (supplemental Figure 1A-D),
characterized by a total of 87 839 features, with a median of
17 977 features per sample. Two batches of fresh (n = 7671) and
frozen (n = 13 655) cells were integrated by the standard Seurat
pipeline, and the Harmony algorithm was applied to prevent any
batch effect (supplemental Figure 1E-F). By projecting cells onto a
2-dimensional uniform manifold approximation and projection
(UMAP) plot, we observed that most cells from single patients
formed separate clusters (Figure 1B). For unsupervised clustering
analysis, we interrogated different resolution levels starting from
0.01, defining 0.1 as the optimal level. This revealed 6 clusters
(Figure 1C) that only partially overlapped with the patient’s clusters.
Using an automated cell assignment method, we identified plas-
mablasts (n = 20 465 [95.96%]), CD14/CD16 monocytes
(n = 618 [2.89%]), B cells (n = 43 [0.2%]), or T cells (n = 171
[0.8%]; supplemental Figure 1G). The remainder of 29 cells
(0.13%) included natural killer cells, megakaryocytes, hematopoi-
etic stem cells, red blood cells, granulocyte/monocyte progenitor
cells, and dendritic cells (Figure 1D). Therefore, magnetic bead-
based enrichment worked at purity levels ranging from 95% to
99% except in patient P4, which was represented by cluster 4 (C4)
and C5 mainly. Here, the C4, representing 54% and 69% of the
total cells of the patient, was represented mainly by CD14/CD16
monocytes and T cells, indicating low purity (Figure 1D-E). Inter-
estingly, PCs from patients showed different patterns of differential
marker genes, highlighting the heterogeneity of the cohort of
patients (Figure 1F). Finally, the expression of a panel of selected
PC marker genes is shown by violin plots represented in Figure 1G.
Here, CCND1 and CCND3 upregulation was observed in samples
P1 and P2 with t(11;14) and t(6;14), respectively, as confirmed by
fluorescence in situ hybridization (FISH). However, CCND3 as well
as CCND2 expression was observed across patients and genetic
subgroups. ITGB7, a well-known30 MM high-risk marker, was highly
expressed in most samples.

Profiling of BCR repertoire and transcriptomic

markers of clonality

Leveraging single–cell BCR immune repertoire information, 20 465
PCs were investigated, of which 16 722 cells were deemed as
Figure 1. The landscape of SMM and MM PCs at single-cell resolution. (A) Overv

CD138 sorting of PCs, 5’ scRNA-seq coupled with BCR profiling and bioinformatic pipeline

E) Selection of PCs after cell assignment (D) and clustering of PCs by patients (E). (F) D

expression levels of 23 representative selected marker genes across the 5 patients.
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clonal and 203 as polyclonal, for subsequent phenotype and
clonotype integration (Figure 2A). Overall, our data show that
CD138-enriched samples in patients with SMM and MM can carry
a substantial number of admixing polyclonal PCs, ranging from
0.51% to 2.62%. Overall, the analysis of clonal vs polyclonal PCs in
our cohort highlighted common themes such as the increased
expression of GPRC5D and downregulation of CD27 markers in
neoplastic PCs as well as patient-specific levels of the ITGB7
integrin in polyclonal PCs. Furthermore, CD19 and CD99 expres-
sion specifically identified polyclonal PCs, whereas the clonal
counterpart was defined by frizzled related protein (FRZB) and
other cyclins genes (Figure 2B). A detailed analysis of clonal and
polyclonal cells by BCR analysis (Figure 2C-E) also led to unex-
pected results; in each of patients P1 and P4, 2 clonal BCR clo-
notypes were identified. In P1, characterized by a t(11;14)
translocation, 5054 (63.86%) of 7913 PCs had an identified V(D)J
rearrangement. Of these, 2280 (45.11%) and 2651 cells (52.45%)
belonged to 2 distinct, albeit related, clonotypes. Clonotype 1
showed a clonal rearrangement of both the heavy and light chains,
whereas clonotype 2 shared the same light-chain sequence but
had no heavy-chain rearrangement, suggestive of a “light-chain
escape.” Consistently, transcriptomic analysis showed that both
clonotypes overexpressed CCND1 (Figure 2F), suggesting they
both carried the t(11;14) translocation and were 2 subclones of
the same disease. Interestingly, the 2 clonotypes also differed in
marker gene expression, because only clonotype 1 showed higher
CD20 and MYC expression. Conversely, in P4 the 2 clonotypes,
composed of 408 and 72 cells, respectively, segregated far from
each other. In retrospect, P4 was found to carry 2 different serum
monoclonal proteins, IgA/k and IgM/k, suggesting the 2 clonotypes
belonged to different neoplastic conditions, namely SMM and WM,
respectively. Indeed, here, clonotype 1 showed overexpression of
GPRC5D, CCND2, LAMP5, ITGB7, MYC and CD38, consistent
with a MM profile. Clonotype 2 expressed mostly CD27 and CD99,
suggesting a WM origin (Figure 2G). This suggests our approach
may help refine the study of clonal PCs and may add resolution to
the assessment of subclonality. Indeed, the biological causes
underlying subclonal clustering would not have been revealed
without BCR analysis.

Inference of genetic MM subtypes from scRNA-seq

We asked whether we could leverage scRNA-seq data to identify
IGH translocation and CNAs at the single-cell level. To map IGH
translocations, we used the Fuscia tool.20 Fuscia called few
fusion events of different nature across all patients, even in cases
with negative FISH results, suggesting there is a baseline noise in
the algorithm. However, a specific signal clearly stood out in
FISH-translocated cases (Figure 3A). Indeed, we used this “sur-
rogate genetic evidence” by Fuscia to confirm that both dominant
BCR clonotypes of sample P1, characterized by the over-
expression of CCND1 (Figure 2B,F), derived from a t(11;14)
bearing cell. 2.5% of overall cells showed a fusion event, of which
89% belonging to clonotype 1 and 11% to clonotype 2
(Figure 3B). In addition, IGH::CCND3 fusion events were mapped
iew of cohort of SMM and MM patients and experimental setup of the study, including

s. (B-C) UMAP representation of analyzed cells by patients and by Seurat clusters. (D-

ot plot of top 10 marker genes by patients. (G) Violin plot showing the normalized
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Figure 2. Clonotype assignment across patients. (A) UMAP representing the overall of 5 patients’ BCR profiling, in which clonal and polyclonal cells are represented by red

and blue dots, respectively. (B) Violin plot showing the normalized expression levels of representative selected marker genes in clonal and polyclonal cells of each patient. (C)
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Figure 2 (continued)
in sample P2 showing high CCND3 expression, demonstrating a
t(6;14) (Figure 3C). Fuscia was more a specific tool than a sen-
sitive one, and the number of translocated cells is clearly under-
estimated. However, this is a promising tool for qualitative
assessment of the presence of IGH translocations at the sample
level. InferCNV was applied to detect CNAs (Figure 3D). As
expected, we found a pattern consistent with hyperdiploidy in
non-translocated samples. We observed gains of chromosomes
(chrs) 3, 11, 19, and 22 and losses of chrs 1p, 13, and 14 in
patient P2. Gains of chrs 1q, 11, 15, 18, 19, and 22 and losses of
chr 1p in patient P3. The most complex profile was found in P5,
characterized by gains of chrs 3, 5, 7, 9, 15, 19, and 21. More-
over, P5 harbored a clonal 17p loss and chr 11 gain, which was
associated with a high expression of CCND1 in the absence of
t(11;14). Lastly, not all trisomies were shared by all PCs in each
sample, because, for example, chr 19 gain was absent in a frac-
tion of clonal PCs in P2 and P5. Overall, based on these results,
we can argue that the simultaneous dissection of the clonal V(D)J
rearrangements along with the detection of fusion transcripts, as
surrogate for IGH translocations, and CNAs characterization
would represent a feasible strategy to correctly define the World
Health Organization (WHO) MM subtype and would allow for the
dissection of small rare subclones, for example in those cases in
which IGH translocations and hyperdiploidy coexist.
13 AUGUST 2024 • VOLUME 8, NUMBER 15
Identification and functional characterization of

heavy-chain locus loss through single-cell

sequencing

The addition of single-cell BCR and CNA analysis allowed us to
further refine this heterogeneity by highlighting the subclonal dif-
ferences based on V(D)J sequencing and aneuploidies. In sample
P1, 2 BCR clonotypes were related, but 1 showed evidence of
“light-chain escape” (Figure 4A; supplemental Table 1). InferCNV
revealed shared abnormalities such as chr 1p deletion, chr 1q and
chr 22 gains but also extensive differences in the tumoral PC
compartment, which clustered in 2 different subclones (Figure 4B).
Subclone 1 was characterized by gains of chr 9 and losses of chr
12, 13 and 19 and an apparent gain of chr 14q. Gain of chr 11q
and chr 19p, as well as loss of chr 5 and chr 17, identified sub-
clone 2. By labeling cells belonging to the 2 CNA-defined sub-
clones in the UMAP space, we observed a perfect overlap between
CNA subclones and BCR clonotypes (Figures 2A and 4C). This
suggests that the light-chain clone underwent extensive evolution
from the ancestral clone, well beyond the simple loss of the IGH
locus.

Indeed, the transcriptomic analysis alone could not explain the
different distribution of the 2 subclones in the UMAP space,
SINGLE-CELL TRANSCRIPTOMIC INFERENCES IN MYELOMA 3977
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whereas our inferred genotypic analysis provided a clear biological
explanation. The apparent gain of chr 14q in subclone 1 is simply
explained by the high expression of the IGH gamma chain of clo-
notype 1 (Figure 4A,D). Conversely, subclone 2 shows a very weak
expression from the IGH locus, while retaining the expression of the
light chain (Figure 4A,D). CCND1 was clearly overexpressed by
both subclones, but more in subclone 2 (Figure 4E), in which a chr
11 gain could explain this phenomenon (Figure 4B). Subclone 1
overexpressed CD20 (MS4A1) and MYC due to a t(8;14) trans-
location that was lost in subclone 2 (supplemental Figure 2A),
highlighting clear functional divergences between the 2 subclones.
Functional properties of the 2 subclones were further investigated
through pathway enrichment analysis (Figure 4F), in which we
found a significant over-representation of cellular processes related
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to Major Histocompatibility Complex (MHC) complex and protein
processing in the endoplasmic reticulum in subclone 2. Consistent
with lack of proliferative pathway enrichment in clonotype 2, cell
cycle analysis also did not show an enrichment in cells in S phase
in this cluster, suggesting that this spontaneous evolution did not
confer an intrinsically more aggressive phenotype to the cells
(supplemental Figure 2B).

Based on the geno-trascriptomic analysis that we performed, clo-
notype 1 and clonotype 2 represent a linear evolution of the same
ancestral clone. Based on this assumption, we applied an RNA
velocity algorithm aiming to ask whether cell states could recapit-
ulate clonal evolution. Indeed, the pseudotime depicted a trajectory
starting from cells harboring the complete immunoglobulin
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rearrangement, flowing to cells characterized by the IGH chain loss
(Figure 4G-K), corroborating the view of a linear evolution of the
MM subclones. Of note, this was also demonstrated by the spatial
localization of the 2 clonotypes, the differences in gene expression
of heavy- and light-chain genes and CCND1. Overall, this peculiar
P1 MM case highlights that inferring genomic data from scRNA-
seq is feasible, reliable and pivotal to better explain the subclonal
architecture and evolution of SMM.

Differential analysis of inter–tumor heterogeneity of

PCs and B cells in SMM and WM from the same

patient

We next applied our genomic-transcriptomic analysis to P4, char-
acterized by 2 entirely different tumoral clones related to the co-
existence of WM and SMM. A BM biopsy showed a dual infiltration
of clonal PCs and clonal lymphoplasmacytoid cells. Therefore, to
also study the lymphoid compartment, we integrated scRNA-seq
analysis of CD138+ and CD138– cell populations. Again, BCR
analysis showed 2 populations with completely different BCR
rearrangements (supplemental Table 2). This was also highlighted
by the expression of different heavy-chain isotypes by the 2 pop-
ulations, namely IgA and IgM, which did not share any protein
identity (Figure 5A). CNA profiles were inferred for both clonotypes
(Figure 5B), revealing 3 different CNA subclones: subclone 1,
corresponding to the MM population, and subclones 2 and 3,
represented by B cells and PCs of the WM clone, respectively. MM
PCs (subclone 1) were characterized by amp1q, amp4, del13, and
del16q, typically seen in MM. WM B cells and PCs shared del1p.
Then, WM B cells also showed private abnormalities, such as chr 6
and chr 2q amplifications and 7q deletions (Figure 5B). This sug-
gests an independent clonal origin of the 2 neoplasms and a
shared ancestor for WM cells followed by cell type–specific evo-
lution in B cells and PCs. Expression levels of clonal Ig in the
different subclones paralleled their belonging to the WM and MM
diseases (Figure 5C), showing perfect correlation with the clono-
types identified by V(D)J analysis. When projecting the V(D)J clo-
notypes and CNV subclones back to the UMAP containing all P4
cells (CD138+ and CD138– fractions), we observed that the PCs
were separated based on their clonal origin (MM vs WM), whereas
WM memory B cells clustered together (Figure 5D-E). On the
other end, cells from clonotype 2 were separated based on their
phenotype in B cells (subclone 2) and PCs (subclone 3).

Comparative gene expression analyses of marker genes identified
significant upregulation of SDC1, GPRC5D, ITGB7, LAMP5,
CCND2 and MYC in MM PCs, which is consistent with a MM
transcriptomic profile. In contrast, expression levels of CD27,
TNFRSF17, CD99, CD79A and CD79B were significantly
elevated in WM PCs, consistent with a more physiological
phenotype and marking clear differences with clonal MM PCs.
Subclone 2 (WM-B cells) was characterized by a specific over-
expression of CD19, MS4A1 and CCND3 marker genes, typical of
B cells, whereas upregulation of CD79A, CD79B, CXCR4, CD99
Figure 4 (continued) code of panel B. Tumor microenvironment (TME) is shown in gray. (D

Analysis of marker genes by subclone is represented by violin plots. (F) Pathway enrichme

cutoff; Padjusted (Padj) method by Benjamini-Hochberg; see “Materials and Methods”). (G

the cells were colored by pseudotime inference (G), clonotype origin (H), IGHV5-51 gene

CCND1 gene expression (L). Each model is fitted using the trajectory inferred by slingsho
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and CD27 was shared with subclone 3, although at different levels
(Figure 5F). Gene set enrichment analysis of gene ontology
showed how WM PCs were enriched for IgM processing related
pathways, whereas proliferation and microenvironment related
pathways characterized MM PCs (Figure 5G). WM PCs showed
enrichment for pathways involving the endoplasmic reticulum, as
expected for antibody-producing cells. In contrary, WM B cells
showed upregulation, among others, of pathways involved in B-cell
affinity maturation through somatic differentiation of immunoglob-
ulins (Figure 5H).

Overall, our analysis suggests that scRNA-seq can accurately
overcome heterogeneity of BM population, suggesting that a gene
expression signature can be obtained with superior results from
such data. To demonstrate this, we extracted a WM-specific
expression signature from a recently published study by Bagra-
tuni et al,29 in which CD19+ cells from 6 patients with WM were
compared with 2 BM samples from healthy donors (supplemental
Figure 3; supplemental Table 3). The resulting 11-gene signature
was then inferred in our data set. Of note, this signature resulted
highly specific only for PCs and memory B cells derived from the
WM part of the P4 sample, and not for clonal or polyclonal PCs or
B cells from the other samples.

Discussion

In this study, we explored a strategy to maximize the output of
scRNA-seq to deeply dissect heterogeneity of PCs and its bio-
logical implications for MM, focusing on post–sequencing inter-
pretation processes. Previously published observations report that
single-cell V(D)J analysis may be used to find rare clonal cells to
accurately infer myeloma evolution.11,19,31-33 Although genomic
and transcriptomic profiles of PCs are well documented in MM, the
informative potential derived from integration of such data at the
single-cell level is under-explored.

Our approach is robust and can be applied to fresh and frozen
samples with little need for batch correction. ScRNA-seq can
identify samples in which CD138 purification failed and warn about
false-negative FISH results. Furthermore, the addition of BCR
sequencing adds precision in identifying clonal vs polyclonal PCs,
another crucial aspect for FISH and bulk sequencing, especially in
asymptomatic MM stages in which the percentage of polyclonal
cells is higher on average. Interestingly, in our limited sample
cohort, we found a variable separation of polyclonal PCs from
clonal ones in the transcriptomic space, with considerable admix-
ture in some cases. Although marker genes separated clonal and
polyclonal PCs quite well on average, this finding prompts further
studies in which more samples and more polyclonal PCs are
analyzed to assess their functional properties.

Our approach included a transcriptome-based genotyping through
the addition of CNA and IGH translocation analysis: this allowed for
the categorization of all cases into WHO genetic subtypes from the
raw scRNA-seq data, without the need for extra, ad hoc sample
) Violin plot representing the expression of heavy and light chain in each subclone. (E)

nt analysis, comparing the transcriptional profiles of CNAs subclones, (.1 as P value

-K) After normalization and projection on a reduced-dimensional space (using UMAP),

expression (I), IGKV1-33 gene expression (J), IGKV1D-33 gene expression (K) and

t.
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preparation. CNA analysis also corroborated previous findings that
suggested how trisomies are not acquired simultaneously in hyper-
diploid cases16,21 because not all samples presented the entire array
of trisomic chromosomes in each cell. Furthermore, addition of
genotyping information improved clustering of subclones in the
UMAP space, which was not explainable by transcriptomic data
alone as in sample P1, in which a subclone evolved by heavy-chain
loss and acquisition of further aneuploidies. Our data show the
potential of scRNA-seq analysis to analyze features of light-chain–
only subclones when invisible by biochemical methods at the SMM
stage, in which they are poorly described, and during the sponta-
neous evolution of the disease. We found a cMYC and CD20
expression restricted to the intact IGH clone, owing to the loss of a
subclonal IGH::MYC translocation in the light-chain-only clone. This
adds complexity to the notion that MYC translocations are subclonal
events selected in evolution and points at gross differences in
functional properties of the subclones.

This advantage of scRNA-seq was also exemplified in sample P4, in
which BCR analysis confirmed the presence of 2 unrelated clonal
populations, 1 pertaining to SMM and a second to WM with
unrelated V(D)J sequences. Furthermore, although SMM clonal
cells were represented by PCs only, the clonal WM cells were both
B cells and PCs, as the disease biology would suggest. Intriguingly,
we found that WM PCs have a transcriptomic profile more similar
to normal than to MM PCs. Conversely, differences between WM
B cells and PCs pointed at antigen-receptor pathways in the
former and immunoglobulin production in the latter. This may have
important clinical implications because it may suggest a differential
effect on WM of proteasome inhibitors, which are more effective
against PCs, characterized by endoplasmic reticulum stress and
unfolded protein response, and Bruton tyrosine kinase inhibitors,
which are more effective toward B cells in which BCR signaling is
needed for oncogenesis. Further, potential translational applica-
tions of scRNA-seq reside in the characterization of the immune
microenvironment, which has relevance for the response to novel
immunotherapies34,35 and in the functional characterization of
minimal residual disease at the single-cell level.

Altogether, our approach represents a proof of concept of how
scRNA-seq approaches for the genotyping of the transcriptome
can return biological and translational information. Nevertheless,
1 limitation of our study resides in the small sample size, especially
given the heterogeneity of SMM and MM. Furthermore, scRNA-seq
is a research-only approach that cannot be applied in routine
clinical practice in its present form. However, validation of findings
in larger cohorts may prompt ad hoc, clinical-grade strategies to
investigate transcriptomic features of clonal cells for clinical
management.

In conclusion, we show initial evidence that scRNA-seq is
amenable to inference of genomic information with clinical value in
MM, with implications for disease biology and clinical management.
Indeed, fields such as the study of the cell of origin of MM, the
dynamics of clonal evolution, the persistence or re-emergence of
Figure 5 (continued) expression of heavy and light chain in each MM and WM subclones

WM subclones distribution in the UMAP space, with the same color code of panel B. TME

subclones. (G-H) Pathway enrichment analysis, showing the comparison of transcriptional p

value cutoff; Padj method by Benjamini-Hochberg; see “Materials and Methods”).
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minimal residual disease after treatment and the microenvironment
correlates to immunotherapy responses could all benefit from a
deeper dissection of clonal and reactive BM cells in MM. Further
studies with more samples will be needed to corroborate our initial
observations, which nevertheless propose a more accurate anal-
ysis strategy for scRNA-seq experiments.
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