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Summary
Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two

decades, the majority of them have only been separately characterized in specific varieties or

single-gene modified backgrounds, thus limiting their practical application. We developed an

optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably

express up to twelve sgRNA targets in a single plant expression vector. In this study, we

established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional

improvement of complex agronomic traits in one small-scale rice transformation. This approach

provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free

screening and the creation of promising germplasm, by combining the precision of gene editing

with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity

of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its

growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the

desired traits of early heading date reduced plant height, and more effective panicles were

generated without compromising yield, blast resistance and grain quality. Furthermore, the

results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs)

and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low

frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy

would be a robust approach for exploring and applying crucial agronomic genes, as well as for

generating novel elite germplasm in the future.

CRISPR/Cas9-basedmultiplex gene editing (MGE) has the potential

to simultaneously incorporate several beneficial agronomic genes

in order to breed ideal varieties (Zhu et al., 2020). However, many

significant agronomic traits, including yield, growth period, and

quality, are often influenced by the combined effects of multiple

loci with additive effects and genetic interactions. Regarding

heading date, a crucial trait for rice (Oryza sativa L.) breeding,

hundreds of heading date QTLs had been identified in recent

decades (Vicentini et al., 2023). The core regulator of Hd1/Ehd1, in

cooperation cooperated with Ghd7/DTH8/DTH7, have been

unveiled and well-illustrated in controlling photoperiod sensitivity

and geographic adaption of rice varieties. However, many minor

effect genes that control heading, either dependent or indepen-

dent of the Hd1/Ehd1 regulatory pathway, have been identified,

including DTH2, Se14, and Ef7. The establishment of mutation

pools comprising these relevant genes is crucial for their potential

utilization in germplasm improvement and creation, which was

difficultly achieved by traditional approach.

In this regard, we try to develop a strategy called MGE-based

Rapid Directional Improvement (MRDI) for mutation pool and

germplasm creation through a combination of MGE

and crossbreeding, and expedite its prospective practical

application in crop breeding (Figure 1a). FXZ is a newly developed

varieties (CERTIFICATE NO. 20200011) that possesses exceptional

quality and high resistance to blast disease. However, its

prolonged growth period (>140 days) and the slender leaf shape

limit its adaptability and practical application. We are aiming to

generate new FXZ germplasm with moderately early-maturation

trait and better plant architecture through the MRDI strategy with

multiplex edited genes that control heading date and plant

architecture.

The MGE structure is critical for the production of stable and

homozygous mutants of multiplex target sites. We chose to use a

multiplex stand-alone sgRNA unit, with each sgRNA driven by an

individual snRNA promoter (Hao et al., 2020; Ma et al., 2015;

Xing et al., 2014). To simplify the construct process, we have

introduced unique non-palindromic stick-ends by shifting the

cleavage sites of the three artificial promoters along the 30–50

direction at the termini (Figure S1a). This modification allows for

the assembly of over 24 potential units in a single round of PCR

(Figure S1b; Table S1). We optimize the sgRNA cassette assembly

combination for high ligation efficiency, enabling the assembly of

up to 16 sgRNAs using golden-gate ligation (Figure S1c–f).
Overall, this vector structure provides consistent expression levels
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and comparable mutant efficiency, although some sites had

positon effect in transient system (Figure S2a–c).
To implement the MRDI strategy for improving heading date

and comprehensive traits, we selected 12 main agronomic trait

genes, including seven heading date related genes, four plant

architecture genes and one quality gene (Figure 1b). These genes

were physically distant from each other (Figure S2d), to facilitate

complete segregation and minimize the potential hazard of

chromosome structural variation caused by simultaneous editing

of tandemly arrayed genes (Zhou et al., 2023).The sgRNAs of

these genes were designed and assembled to the single vector

“12A” for simultaneously knocking out 12 genes in rice. To

prevent the instability of the duodecuplex structure, we divided

the targets from the same chromosome into two paired sextuple

vectors 6A and 6B, by reusing and rearranging the cassettes

(Figure 1b; Figure S2d).

Upon transformation with FXZ, a total of 41 independent T0
plants were acquired. Among these, 17 plants harboured vector

6A, 10 plants carried vector 6B, and 14 plants contained

vector 12A (Figure 1b; Figure S2e). In summary, except for

Se14, which exhibited lower mutant efficiency in protoplasts, the

remaining targets of 12A displayed similar mutant rates to those

observed in sextuplex-edited plants, ranging from 85.2% to

100% (Figure 1b; Figures S2f and S3; Table S2). The top-two

off-target sites for each gene were selected and verified

(Table S3), and there were no discernible mutated peaks in all

T0 plants.

Considering the high mutagenesis efficiency in T0 plants, we

have designed a cross plan for the second step of the MRDI.

Initially, we screened T0 lines with all target sites edited and low

T-DNA insert copy number. These lines were either crossed as

6A 9 WT, 12A 9 WT and 6A 9 6B to generate a segregation

population of multiplex genes. Through the utilization of a

GFP-based non-invasive sorting method, we successfully identi-

fied transgene-free seeds from the hybrid seeds within 2 days

after germination (Figure 1c). Subsequently, we harvested and

selected the F1 plants with fully heterozygous alleles of 12A and

6A for population construction and germplasm creation.

The seven heading date related genes could generate 128 (27)

combinations for homozygous segregation and 2187 (37)

combinations for intermediate heterozygous progeny due to

combinations of seven gene interactions. We initially investigated

the T2 plants from 6A T1 parents carrying heterozygous alleles of

the minor effect gene of DTH2 and Se14. The results showed that

the knockout DTH2 and Se14 could individually and coordinately

affect heading date in the background of the Hd1/Gdh7 mutant

(Figure S4a–c). Therefore, a pool of plants with rich diversity in

heading time would be generated from F2 population when the

gene collections of heading date were segregated.

We planted and investigated two F2 population of 6A/FXZ and

12A/FXZ under NLD (natural long day) conditions, respectively.

Compared with the wild type FXZ (107.2 days of heading date),

two populations exhibited large variations in heading date

(Figure 1d; Figure S5a–d), ranging from 91 to 121 days in the

12A population and from 94 to 122 days in the 6A population. In

two population, early heading plants (a week earlier than WT)

accounted for 30% (84 of 280 plants) in the 12A population and

13% (39 of 293 plants) in the 6A; while late heading plants (a

week later than WT) accounted for 7.5% (21 of 280 plants) in 12

A and 19% (43 of 293 plants) in 6A, respectively (Figure S5b–d).
With directional improvement via specific gene pool, in practice

we initially selected approximately 25% of the plants (142 plants

from two populations) that exhibited early maturity, reduced

plant height, wide short blades, and a moderate plant type in the

primary population, which differed from traditional cross

breeding with selection ratios typically lower than 5% (Jen-

nings, 1979). To gain insights into the distribution of edited genes

within the selected candidate breeding lines, we analysed the

genotypes of 88 lines from the 12A population. The wild type

alleles were predominant for most of the genes, indicating that

the unedited alleles comprised the majority of the 12A MGE

plants and a low percentage of edited genes would be favourable

for the desired traits of heading date and grain yield. Interestingly,

the dth8, dth7 and dth2 was the highest percentage of

homozygote edited allele, i.e. potential “hot spot” genes for

promoting heading date in the selected population (Figure 1e).

From the F2:3 populations, we screened ideal progeny plants with

the desired trait of early heading date and moderate plant

architecture, specifically reduced plant height and more effective

panicles (Figure 1e). In these lines, #41, #72 and #91 harboured

homozygous alleles for dth2 and displayed early head date and

short flag leaf, and #72 and #91 also harboured dth8 alleles.

Importantly, most of MGE progeny maintained blast resistance

and high grain quality, indicating that the MRDI of FXZ could

accurately and efficiently promote heading date without com-

prising general agronomic traits (Tables S4 and S5).

We continue to track the traits of the progeny plants from the

F3:4 sub-population to further confirm the combined effects of

these genes in a homozygous background. dth2 has a moderately

positive effect on yield in rice with delayed heading date, and

Figure 1 MGE-based Rapid Directional Improvement (MRDI) in the study. (a) Flow diagram of MRDI, which consists of four fundamental steps, as

indicated in the timeline below the title. MG1 and MG2 represent different MGE plants with distinct plant type and heading date. Triangle and oval indicate

sgRNAs cassette and Cas9 cassette, respectively; red and green box indicate edited allele and T-DNA insert, respectively. (b ~ e) The steps from 1st to 4th of

MRDI in our study. (b) The left panel: MGE vectors 6A, 6B and 12A. The vector 12A contains 12 main agronomic trait genes, while 6A and 6B each contain

a set of six different genes. LB/RB: left/right border of T-DNA; Cas9: spCas9 cassette; Ubi: ubiquitin promoter; Hyg, Hygromycin -resistance cassette; FL,

fluorescent cassette; aU3/aU6a/aU6b, sgRNA cassette driven by artificial snRNA promoter. The middle panel: the rice plant carrying 12 edited genes. Scale

bar, 15 cm. The right panel: the overall mutagenesis efficiency recorded from 41 T0 lines of 6A/6B and 12A transgenic plants. (c) GFP screening of

transgene-free F1 hybrid seed. Red/black arrow indicate shoot of fluorescent/non-fluorescent hybrid seed. Scale bar, 5 mm. (d) Heading phenotypes of F2
plant from 12A/WT under normal long-day (NLD) conditions. Plants were grown for 114 days. Scale bar, 15 cm. Representative plants were selected and

arranged according to heading dates, with the heading dates annotated above the plants. (e) The left panel: seqlogo of 12 genes illustrating the percentage

of homozygous alleles in 88 lines of 12A F2:3 population with desired agronomic traits, and the red ovals indicate the average distribution of edited genes

based on pooled sequencing results from the 12A population (~50 individual plants). The letters U/H/Z represent unedited/ homozygous-edited/

heterozygous-edited site. The right panel: representatives of F2:3 progeny plants selected for early heading date, moderate plant architecture, and good

yield potential. Scale bar, 15 cm. PH, plant height; GD, growth duration; GYP, grain yield per plant; Genotype, detailed allele type; red block indicates

edited alleles, while green block indicates unedited alleles. (f) The IGV view of adjacent regions containing twelve targets in 12A T1 plant. The red triangle

indicates the mutation of target sites directly detected by NGS analysis. The complete IGV view has been included in Figure S9.
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could alleviate the yield loss caused by the deletion of DTH7,

DTH8 and Ghd7 (Figure S6). By contrast, the knockout of Ef7 has

a stronger photosensitive effect compared to that of DTH2. When

combined with the double mutant DTH7/DTH8, ef7 mutant

exhibits a moderate yield trait and plant architecture in long-day

conditions, making it a minor allele that helps balance both yield

and heading date in the selected population (Figure S6; Table S6).

In addition, we observed that that LPA1, EP3 and DEP1 have

interactive effects on plant type, yield trait and heading date. EP3

and LPA1, two minor selected genes, exhibited a strong

interaction in plant type and provided more tiller numbers and

moderately loose architecture in double mutants. In line #141

with EP3/LPA1 double mutant, the plant had a less compact plant

shape, and the single mutants of EP3 or LPA1 lead to overly

compact or loose plant type, respectively (Figure S7; Table S6).

Overall, lines #72-1, #41-1, #41-2, #91-1 and #139-1 show great

potential as germplasm resources for early heading and improved

plant architecture through the MRDI breeding strategy.

Recently, the occurrence of chromosome rearrangements and

mutations resulting from concurrent DSBs induced by CRISPR-

Cas9 has raised concerns about the potential adverse effects on

CRISPR-based precision breeding (Zhou et al., 2023). Although

the targets selected for our MRDI strategy have been optimized

and re-organized, concerns regarding simultaneous dozen of

DSBs remained. To address this, we performed whole-genome

sequencing (WGS) on T1 and F4 plants to investigate structural

variants. Our analysis revealed no significant structural variations

(SVs) across the entire genome, and the T1 samples with sextuple

or duodecuplex editing shared a similar distribution of SVs with

the wild-type FXZ and single mutant plants (Figure S8). Addition-

ally, the mutation patterns within regions containing the target

sites further validated the specificity of our MRDI design in three

types of MGE plants (Figure 1f; Figure S9a,b). We also examined

single nucleotide variations (SNVs) and small Indels in F4 plants

and newly generated T0 plants of double, sextuple, and nonuple

mutants, and overall mutations do not accumulate significantly in

MGE plants compared to the control (empty vector) (Figure S10),

consistent with previous reports on the high specificity of CRISPR

in rice (Tang et al., 2018; Zhang et al., 2023). These results

support the potential of utilizing MGE strategy with optimized

targets for breeding purposes.

Notably, this strategy offers the advantages of almost identical

genetic background and distinct allele genotypes, making it also a

powerful tool for analysing gene interactions at the phenotype

level. We believe that the MRDI breeding strategy has the

potential to be a powerful approach for exploring and applying

important agronomic genes in the future.
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