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Diffuse large B-cell lymphoma (DLBCL) is the most common pathological type of non-Hodgkin lymphoma, and is
closely associated with hepatitis B virus (HBV) infection status and hepatitis B X (HBx) gene integration. This
project investigated the cellular biological effects and molecular mechanisms responsible for lymphomagenesis
and the progression of HBx integration in DLBCL. The data showed that clinical DLBCL cells demonstrated HBx
integration, and the sequencing analysis of integrated sites validated HBx integration in the constructed HBx-
transfected cells. Compared with control cells, HBx-transfected cells had a significantly reduced proportion of
mitochondrial membrane potential, signals of chromosomal DNA breaks, and proportion of apoptotic cells.
Further studies found that this decreased apoptosis level was associated with a significant reduction of cleaved
Caspase-3 and downstream poly ADP-ribose polymerase (PARP) proteins, revealing the molecular mechanisms of
HBx-associated apoptosis in DLBCL. Animal experiments also demonstrated that the protein expression of
cleaved Caspase-3 and PARP was prominently reduced in HBx-transfected cells from subcutaneous tumors in
mice. Furthermore, the HBx-integrated cells in clinical tissues had significantly lower cleaved PARP levels than
the HBx-negative samples. Therefore, HBx integration inhibits cell apoptosis through the Caspase-3-PARP
pathway in DLBCL indicating a potential biomarker and therapeutic target in HBV related DLBCL.

1. Introduction

Non-Hodgkin lymphoma (NHL) is one of the most common cancers,
accounting for 4 % of all cancers [1,2]. Diffuse large B-cell lymphoma
(DLBCL) is the primary pathological type accounting for 30-50 % of
NHL [3,4]. The cause of this disease is strongly correlated with host
infection status, with HIV infection having a 650-fold increased risk of
developing DLBCL [5]. Some clinical studies have shown that a higher
prevalence of hepatitis B surface antigen (HBsAg) is associated with
lymphomagenesis in DLBCL patients [6,7]. However, regardless of
HBsAg clearance, the infected population has a higher risk of B-cell NHL
[8]. Unlike the hepatitis C virus, which is associated with extrahepatic
manifestations of autoimmune-related lymphoproliferative disorders

[9], hepatitis B virus (HBV) infection is correlated with DLBCL in part
from HBV directly entering B lymphocytes [10,11].

HBV infection is a worldwide health problem, with an estimated 296
million carriers of chronic hepatitis B infection (WHO, 2019). HBV
straddles the line between DNA and RNA viruses, with a DNA genome
replicated by reverse transcription. Double-stranded linear DNA mole-
cules can also integrate into the host cell genome at random sites by non-
homologous end joining [12]. Therefore, it is speculated that intracel-
lular HBV DNA may be integrated in DLBCL.

Hepatitis B also results in an estimated 820 thousand deaths yearly
(WHO, 2019), mostly from cirrhosis and hepatocellular carcinoma
(HCC). The mechanisms of HBV-driven carcinoma include the expres-
sion of viral proteins from viral gene X (hepatitis B X, HBx) to modulate
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cell viability, integration of HBV DNA into the host genome to alter gene
function, and accumulation of genetic damage due to inflammation [13,
14]. HBx integration is observed more frequently in HCC and is associ-
ated with cancer-related gene expression and patient survival [15,16].
However, the effect of HBx integration on DLBCL remains unclear.

To assess the cellular biological effects and molecular mechanism of
HBx gene integration in DLBCL, integration of the HBx gene in clinical
DLBCL tissues was studied. HBx integrated cell lines were constructed to
evaluate the biological effects and related molecular mechanisms by ex
vivo experiments, verifying the results in experimental animals and
clinical cases. This study aimed to investigate the etiology of a novel
interpretation of HBV-related DLBCL and to facilitate the development
of new strategies to prevent and treat this disease.

2. Materials and methods
2.1. Cell culture

Originally from the American Type Culture Collection, Pfeiffer cells
were cultured in RPMI 1640 (Gibco, USA) containing 10 % FBS and 1 %
penicillin/streptomycin, and maintained at 37 °C in a humidified 5 %
CO; incubator. Cells were passaged every three days and maintained at a
density of 3 x 10° and 3 x 10° cells/ml.

2.2. Electroporation of HBx gene

HBx plasmid (Addgene 24931) was transfected into the DLBCL cells
of the Pfeiffer strain by electroporation [17]. Pfeiffer cells were resus-
pended and maintained in RPMI 1640 medium supplemented with 10 %
FBS at room temperature. The cell density was 2 x 107 cells per ml, and
the volume used per electroporation was 0.4 ml in the 0.4 cm cuvettes. A
20 pl dilution of 15 pg HBx or control plasmid (pEGFP-C2) was used for
electroporation. A capacitance of 960 pF was used, with a voltage of 250
V. Cells were placed into growth media for culture, and 800 pg/ml G418
was added into the media at 48 h post-electroporation to screen positive
cells, for two weeks.

2.3. HBx gene detection in cells

DNA from transfected cultured cells and DLBCL tissues was extracted
using a supporting magnetic kit (EmerTher Company, China). PCR was
performed via a protocol previously described, with some modifications
[18]. In particular, primer pairs for detecting the HBx gene (1689F:
CGACCGACCTTGAGGCATAC and 1826R: AAAAGTTG-
CATGGTGCTGGT, reference site from NC_003977.2) were validated and
used for PCR, which was performed using an Ex Tagq kit (Takara Bio) on
an ABI ProFlex instrument (Applied Biosystems). Amplification of the
138 bp products was performed using routine denaturation, annealing
(60 °C), and elongation. The products were separated using electro-
phoresis and sequenced for further verification.

The Genome Walking Kit (Takara Bio) was used to detect HBx inte-
gration. With an HBx gene primer at one end and the human genome
random primer at the other, specific HBx-integrated fragments in the
human genome were amplified after three nested PCR cycles, according
to the manufacturer’s instructions [19]. Based on the known HBx
sequence, three specific interval primers were designed in the same di-
rection (F1: CTGGTGCGCAGACCAATTTATGCC, F2:
TAATCTCCTCCCCCAACTCCTCCC, and F3: GGTCGGTCGTTGA-
CATTGCTGAGA). The reverse primer was AP1 for all PCR reactions,
which was supplied in the kit. The PCR products were separated and
visualized by electrophoresis. Due to the complexity of the integration
event, there may be limitations of false negative cases existence.

2.4. Next-generation sequencing for HBx transfected cells

A total amount of 0.5 pg DNA per sample was used as input material
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for whole-genome sequencing (WGS). DNA libraries were sequenced on
the Illumina HiSeq platform following cluster generation. Genomic DNA
was purified by paired-end sequencing with at least 30-fold coverage.
The paired-end reads were mapped to the human reference genome
(UCSC hg38) and HBx plasmid genome (Addgene 24931). If a cluster of
multiple (>2) read pairs was identified with close mapping positions
linking an end of hg38 to an end of the HBx plasmid, it was considered as
a candidate integration breakpoint.

The Circos graph shows the frequency of HBx plasmid integration
breakpoints at a particular locus in the human genome. Chromosome
numbers and scale bars indicate the number of reads discovered. The
frequency of the integration breakpoints at different loci in the HBx
plasmid genome is depicted using a blue histogram. Genomic positions
are numbered, and the locations of breakpoints and EGFP, HBx, HA, and
neo genes are shown.

2.5. Cell proliferation by CCK8

Cell proliferation was analyzed using the CCK8 assay (Beyotime,
China). Triplicate cells were cultured at a density of 2.5 x 10%/well in
100 pl of medium in 96-well microplates. Sufficient wells for monitoring
cell growth over six days were reserved, with the necessary blank wells.
The absorbance was analyzed at 450 nm with a microplate reader
(Spectramax M5, Molecular Devices, USA) after a 2-h-treatment of 10 pl
CCKS8 reagent.

2.6. Phenotype detection of apoptosis

Pfeiffer cells and transfected cells were cultured and harvested at a
density of 1 x 10° cells per test. The cells were washed twice with PBS.
Mitochondrial membrane potential was assessed using flow cytometry.
Cells were suspended in warm RPMI 1640 and stained with 200 nM
mitochondrial dye MitoTracker Red CMXRos (Invitrogen, USA) at 37 °C
for 20 min. After centrifuging and discarding the staining solution, the
pellets were gently resuspended in warm culture medium and analyzed
using CytoFlex S (Beckman Coulter, USA).

Apoptosis levels were determined using the Annexin V/7-AAD
staining method and detected using flow cytometry. Cells were stained
with PE labelled Annexin V and nucleic acid dye 7-AAD on ice, ac-
cording to the instructions for the PE Annexin V Apoptosis Detection Kit
I (BD Biosciences, USA). The stained cells were immediately analyzed
using CytoFlex S (Beckman Coulter, USA).

The Tunnel assay was used to assess the level of apoptosis using a
laser confocal microscope and a Tunnel apoptosis detection kit (Yeasen,
China). The cells were fixed with 4 % paraformaldehyde on ice for 20
min and permeabilized with 0.2 % Triton X-100 for 5 min at room
temperature. Cells were incubated with Alexa Fluor 640-12-dUTP
labelling mix and recombinant TdT enzyme in the dark for 1 h, ac-
cording to the manufacturer’s instructions. EDTA was added to termi-
nate the reaction, followed by washing with 0.1 % Triton X-100
containing 5 mg/ml BSA. Finally, the images were visualized and ac-
quired using DMI6000B/DFC365FX (Leica, Germany).

2.7. Apoptosis array

Proteins in the human apoptosis signaling pathway were detected
using a human apoptosis antibody array (R&D Systems, USA) following
the manufacturer’s instructions. Briefly, total proteins of wild-type
Pfeiffer cells (Pfeiffer), HBx-transfected (pHBx), and control plasmid-
transfected (pControl) Pfeiffer cells were extracted, and the concentra-
tions were measured using a BCA protein quantification kit (Yeasen,
China) adjusted to 300 pg in 250 pl lysis buffer per array. The membrane
array was blocked and incubated with the protein samples overnight at
4 °C. The membranes were washed and incubated with an antibody
cocktail and streptavidin-HRP solution. Chemi Reagent Mix was used
for visualization, and the intensity was measured using an Amersham
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Imager 600 (General Electric Company, USA).
2.8. Western blot

Whole-cell proteins were extracted with Western IP lysis buffer
(Beyotime, China) supplemented with protease inhibitors, and the pro-
tein concentrations were measured using a BCA protein quantification
kit (Yeasen, China). Protein samples were separated by 10 % poly-
acrylamide gel electrophoresis, transferred to polyvinylidene fluoride
membranes (Merck Millipore, USA), and blocked with 5 % non-fat milk
(Sangon Biotech, China). The primary antibodies used were -actin
(catalogue 66009-1-Ig, Proteintech, USA), Bax (5023, Cell Signaling
Technology (CST), USA), poly ADP-ribose polymerase (PARP) (9532,
CST), cleaved PARP (5626, CST), Caspase-3 (SC-7272, Santa Cruz
Biotechnology, USA), and cleaved Caspase-3 (9664, CST). The second-
ary antibodies were HRP-conjugated AffiniPure goat anti-mouse IgG
(SA00001-1, Proteintech) and HRP-conjugated AffiniPure goat anti-
rabbit IgG (SA00001-2, Proteintech). Signals were detected using an
Amersham ECL chemiluminescence system. The relative expression
levels of apoptosis-related proteins were represented by signal intensity
of each band, which was normalized by the respective control signal
intensities, for example, Bax/f-actin, cleaved PARP/PARP, and cleaved
Caspase-3/Caspase-3.

2.9. Animal experiment

Four-week-old SPF male BALB/c nude mice (GemPharmatech Co.,
Ltd.) were randomly divided into three groups with four mice in each
group. Mouse xenograft models were established by subcutaneous in-
jection of 100 pul (1 x 107/mouse) of cell suspensions of Pfeiffer,
pControl, and pHBx. The weight, tumor length, and width of mice were
measured periodically, and the tumor volume was calculated. Four
weeks post-injection, the mice were euthanized by carbon dioxide
asphyxiation, and the tumors were removed and fixed with para-
formaldehyde. HE staining was performed on tumor tissues, and tumor
cells were selected to create a tissue chip for subsequent experiments. All
animal experiments (FUSCC-IACUC-2022010) performed in the current
study were approved by the Ethics Committee of the Fudan University
Shanghai Cancer Center.

2.10. Fluorescence in situ hybridization (FISH)

The experiment was performed using FISH on paraffin sections of
tissue chips using a specific fluorescence probe of the HBx gene
(GTGAAAAAGTTGCATGGTGCTGGT and ACCAATTTATGCCTA-
CAGCCTCCTA) labelled with Cy3 (red). After dewaxing, dehydration,
and digestion, hybridization solution was added to the sections with a
probe concentration of 600 nM and incubated in a humidity chamber
overnight at 40 °C. The solution was discarded, and the sample was
washed with an SCC solution. The probe2 hybridization solution was
added and incubated in a humidity chamber at 40 °C for 45 min. The
same procedure was performed for signal probe hybridization. The cell
nuclei were stained with DAPI in the dark. FISH slides were examined
using a fluorescence microscope (NIKON ECLIPSE CI, Japan) and scan-
ned using a whole-section in situ imaging system (PANNORAMIC MIDI,
3DHISTECH, Hungary) to analyze fluorescent signals using the match-
ing software (CaseViewer version 2.4, 3DHISTECH). Experiments using
clinical DLBCL tissue chips (HLymB085PT01, Shanghai Outdo Biotech,
China) were approved by the Ethics Committee of Shanghai Outdo
Biotech (YB M-05-01).

2.11. Immunohistochemistry
Primary antibodies against HBx antigens, Bax, cleaved Caspase-3,

and cleaved PARP were used for immunohistochemistry (IHC)
following the standard recommended protocols. Antigen expression was
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categorized by determining a previously described immunoreactive
score (IRS) [20]. Each spot was assigned an intensity score from 0 to 3,
and the proportion of tumor staining for that intensity was recorded in
25 % increments in the range of 0-100 (PO, P1-4), with less than 5 %
recorded as zero. A final IRS (range, 0-12) was obtained by adding the
products of scores obtained for each intensity multiplied by the pro-
portion of the area stained.

2.12. Statistical analysis

Statistical analysis was performed using SPSS version 20.0 (IBM
Corporation, USA), and figures were generated using the GraphPad
Prism software version 5.0. The data are expressed as mean + standard
deviation. The mean values obtained from the experiments were
compared using one-way analysis of variance with a post-hoc test. Two-
way ANOVA with Sidak’s multiple comparisons test was used to
compare the growth curves. A P-value of less significance was set at P <
0.05.

3. Results
3.1. HBx can be integrated in DLBCL

DLBCL is an HBV-defining condition characterized by strong HBx
expression [11]. To explore stable intracellular existence of HBx, we
performed PCR experiments on DNA extracted from clinical DLBCL
tissues. Three HBx-positive tissues derived from previous study [11]
were detected owing to HBx integration from serum HBV-positive pa-
tients (numbers 1 to 3, marked with a red box). In contrast, two
HBV-negative patients (numbers 4-5, marked with a blue box) were
negative for PCR detection and genome working experiments (Fig. 1A).

For further studies, an HBx-integrated model in vitro was developed.
HBx plasmid (pHBx, Addgene 24931) and control plasmid (pControl)
were transfected into DLBCL Pfeiffer cells by electroporation. Pfeiffer
pHBx cells were found with specific HBx integrated fragments (marked
in the red box) through Genome Walking method, confirming the inte-
gration of the HBx gene into the constructed cells (Fig. 1B). WGS was
performed using Illumina HiSeq and seven breakpoints of plasmid
fragment integration were found in the human genome (Fig. 1C, left).
After analyzing the distribution of plasmid fragments, the middle and
downstream fragments of HBx were mainly enriched, and breakpoints
on the plasmid during integration were obtained (Fig. 1C, right). This
complex genetic profile confirmed the integration of HBx into trans-
fected cells.

3.2. HBx integration induces anti-apoptosis effects

To evaluate the function of the HBx gene in DLBCL cells, variation in
biological phenotypes of HBx-transfected (pHBx) Pfeiffer cells compared
to wild-type DLBCL Pfeiffer cells (Pfeiffer) and control plasmid-
transfected (pControl) Pfeiffer cells were monitored. The proliferative
ability of pHBx cells was no significant changes in comparison against
Pfeiffer and pControl cells using the CCK8 method (Fig. 2A). Regarding
the level of cell apoptosis, mitochondrial membrane potentials were
investigated using flow cytometry. The proportion of pHBx cells with
decreased mitochondrial membrane potential was significantly reduced
(Fig. 2B). Flow cytometric analysis of Annexin V/7-AAD also showed a
significant reduction in the proportion of apoptotic cells in pHBx cells
(Fig. 2C). Data using the Tunnel method (confocal microscopy) showed
that the chromosomal DNA break signal was significantly reduced in
pHBx cells (Fig. 2D). These findings indicated that HBx integration
significantly reduced apoptosis in DLBCL cells.

3.3. Anti-apoptosis effects are related to the Caspase-3-PARP pathway

Since HBx can influence the apoptotic phenotype, we further
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Fig. 1. HBx integration in DLBCL.

(A) Five clinical tissue samples of DLBCL from serum HBsAg positive patients (Number 1 to 3) and negative patients (Number 4 and 5) were produced following
nucleic acid extraction. HBx gene (HBx) was detected using the PCR method, and a Genome Walking analysis of integration (GW3) was performed. (B) HBx plasmid
was electrotransferred into DLBCL cells, Pfeiffer strain. Genome walking was used to verify the integration of the HBx gene into the genome of clonal cells. (C) WGS
analysis of HBx transfected DLBCLs performed using the next-generation sequencing platform (Illumina HiSeq). The left panel shows the breakpoint location of HBx
integration found in the human genome. The right panel shows the distribution of cytoplasmic reads during sequencing and the breakpoint location of the plasmid
during HBx integration.
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Fig. 2. HBx inhibited apoptosis of DLBCL cells strain Pfeiffer.

Wild-type DLBCL cells Pfeiffer strain (Pfeiffer), HBx-transfected (pHBx), and control plasmid-transfected (pControl) Pfeiffer cells were tested for proliferative and
apoptotic phenotypes. (A) Cell proliferation was detected using CCK8 method and the proliferation curve was plotted according to the absorbance. (B) Mitochondrial
membrane potential was detected using flow cytometry method and the proportion of cells exhibiting decreased mitochondrial membrane potential was determined
based on the threshold line in histogram. (C) The level of apoptosis was detected using the Annexin V/7-AAD method by flow cytometry and the proportion of
apoptotic cells was calculated according to the Q2 and Q3 cells in scatter plot. (D) The level of apoptosis was detected by laser confocal microscopy using the TUNEL

method. ***P < 0.001, ns for no statistical difference.

analyzed the molecular mechanisms that cause phenotypic changes.
Apoptosis-related proteins were detected in the Pfeffer-transfected cells.
Changes in the differential proteins were screened using antibody hy-
bridization of the human apoptosis array (Fig. 3A). Cleaved Caspase-3
levels were lower in pHBx cells than in Pfeiffer and pControl cells,
which was consistent with the phenotype of reduced apoptosis levels. No
significant differences were detected in the molecular levels of other
upstream proteins, such as Bax (marked in the blue box). Western blots
of apoptosis-related proteins, such as Bax, Caspase-3 and PARP, were
performed (Fig. 3B). Variance analyses and post-hoc tests on the West-
ern blot data revealed that downstream proteins of cleaved Caspase-3
and cleaved PARP, rather than Bax protein, were significantly reduced
in pHBx cells, differentiating the Caspase-3-PARP pathway of apoptosis

as the most likely molecular mechanism induced by HBx (Fig. 3C).

3.4. HBx integrated DLBCLs inhibit apoptosis in vivo

Experiments on the constructed cells in vivo were performed to
validate the data obtained in this study. Following subcutaneous injec-
tion of Pfeiffer, pControl, and pHBx cells, tumor growth in the mice was
monitored. Compared with control cells, pHBx cells showed no signifi-
cant difference in proliferative ability measured by tumor size
(Fig. 4A-B). Regarding the apoptotic molecular pathways, cleaved
Caspase-3 and cleaved PARP expression significantly decreased in HBx-
transfected cells compared with control cells, whereas Bax expression
did not change significantly according to the IRS (Fig. 4C). These results
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Fig. 3. Related molecules of HBx inhibiting apoptosis in Pfeiffer cells.
Proteins from wild-type Pfeiffer cells (Pfeiffer), HBx-transfected (pHBx), and control plasmid-transfected (pControl) Pfeiffer cells were extracted to detect apoptosis-
related proteins. (A) Differentially expressed molecules screened by an apoptosis array. (B) Western blot analysis was used to verify the apoptosis-related proteins. (C)
Western blot results were analyzed using one-way ANOVA and post-hoc statistics. *P < 0.05, ns indicates no statistically significant difference.
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3.5. HBx integration is clinically related to DLBCL apoptosis

Finally, the results of previous experiments were validated in clinical
DLBCL patients. The HBx gene in situ was detected using FISH in a tissue
chip (HLymB085PTO01) containing 15 tonsillitis lymph node tissues (A1-
B3) and 70 DLBCL tissues (B4-H1). HBx gene integration, illustrated in
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Suspensions of wild-type Pfeiffer cells (Pfeiffer), HBx-transfected (pHBx), and control plasmid-transfected (pControl) Pfeiffer cells were subcutaneously injected into
the backs of BALB/c nude mice (1 x 10”/animal, with four mice in each group). (A) Tumor tissue was taken for observation of tumor size; (B) Length and width of the
tumor in mice were measured three times per week, and the volume change was calculated; (C) Tumor tissue was fixed, and the expression of Bax, cleaved Caspase-3

and cleaved PARP was detected using the IHC method.

red, was observed in 26 DLBCL cases (37.1 %, 26/70) (Fig. 5A). The
cleaved PARP protein was assessed using IHC method and visualized
under the corresponding field of view (Fig. 5B). The apoptotic molecular
levels in HBx-integrated and HBx-negative DLBCL samples were
compared. The HBx-integrated cells had lower cleaved PARP levels than

the HBx-negative samples, according to the IRS (P < 0.0001) (Fig. 5C).
Notably, the decreased apoptosis induced by HBx observed in the
experimental samples was validated in the clinical samples.

Therefore, HBx gene integration inhibits apoptosis and is correlated
with the Caspase-3-PARP pathway in DLBCL. These data validate the
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Fig. 5. HBx integrated into clinical DLBCL tissues and was associated with apoptosis marker.

(A) HBx molecules were detected using FISH method in the DLBCL tissue chip (HLymB085PT01), and the integration of HBx genes in situ was demonstrated using
specific Cy3 probe-red. The HBx positive (n = 26, 37.1 %) and negative (n = 44, 62.9 %) groups were stratified based on the results of FISH test. (B) The tumor tissue
chip was fixed, and the expression of cleaved PARP was detected using IHC method. The IRS between HBx integration and negative group was compared in (C). And
the framed spots labelled with coordinates in (A) and (B) were enlarged and displayed in (D) and (E) respectively. (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version of this article.)

critical role of HBx in DLBCL, which requires close clinical monitoring
and active intervention.

4. Discussion

This study demonstrated the existence of HBx integration in clinical
DLBCL tissues (Figs. 1 and 5), and the constructed HBx-integrated cells
exhibited a significantly reduced apoptosis cytological phenotype
(Fig. 2). The critical molecules of HBx-related apoptosis were associated
with cleaved Caspase-3 and PARP proteins (Fig. 3) and were validated in
vivo using a mouse model (Fig. 4) and in clinical cases (Fig. 5). Notably,
the wild-type DLBCL Pfeiffer strain and control plasmid transfected cells
simultaneously used in this study contribute to assessing the effects of
long-term drug screening and cell homeostasis maintenance to avoid
controversy from potential integration of plasmid drug resistance gene
as compared between wide-type Pfeiffer and pControl cells, and to
ensure the effectiveness of integrated HBx function as compared be-
tween pHBx and pControl cells.

Integrated HBV DNA has been investigated as a driver of hep-
atocarcinogenesis [21]. The integration of viral DNA into the host
genome may induce genome instability and influence gene expression
profile changes near the integration site [22]. However, regardless of
whether HBV integration was at a promoter, intron, or exon, some genes
were recurrently affected in tumor samples. Sung et al. reported that
samples with HBV integration had significantly higher expression levels

of TERT, MLL4, and CCNE1 than tumors without HBV DNA integration
[15]. Regardless, the integration sites leading to the same phenotypic
outcomes could be caused by the integrated viral fragment itself.
Therefore, although the constructed HBx integration DLBCL cells
showed various integration sites in the current study, data for cells with
no differentiation of integration origin were involved, reflecting the
changes in the overall level brought about by HBx itself. It is essential to
elucidate the viral integration segment of HBx and the integration site
within the cell genome in order to further investigate the functional
mechanism underlying the interaction between HBV and DLBCL in the
future study.

The role of HBx in modulating cell proliferation and programing cell
death is replete with controversies regarding different molecular path-
ways. Decreased apoptosis level may not necessarily be correlated with
the level of cell proliferation [23]. Our experiment demonstrated a
simultaneous decrease in both apoptotic cells and proliferating mitotic
cells of pHBx (raw data available upon request), potentially explaining
the lack of difference in total cell proliferation as measured by CCK8
methods. Further exploration of the intermediate regulatory mecha-
nisms is warranted. Regarding the molecular pathway of apoptosis,
HBx-induced hepatic apoptosis was determined through the activation
of the TNFR1-NFkB pathway [24], although cell malignancy caused by
HBx integration was related to reduced apoptosis levels in PARP-related
pathways in HCC [25]. The expression of cleaved PARP is efficiently
suppressed by HBx [26]. Ren et al. showed a distinctive set of mutated
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genes in HBsAg-positive DLBCLs, affecting multiple key pathways
involving lymphomagenesis [27]. The current study demonstrated that
HBx in DLBCL decreased apoptosis through the PARP pathway, which is
consistent with the findings in HCC pathogenesis. Declining cleaved
PAPR indicated an increase in active PARP, which is essential for
maintaining cell stability, and suggests a potential therapeutic target for
PARP in DLBCL.

Due to the lack of a lymphoma protein expression database and
prognostic information on experimental tissues, no prognostic analysis
was performed in this study. However, a considerable number of DLBCL
patients are infected with HBV, which is correlated with poor clinical
outcomes [28]. The prognostic potential of HBx integration and
HBV-related DLBCL remains unknown. HBV infection confers resistance
to chemotherapeutic agents that induce S-phase arrest by explicitly
inhibiting the activation of CHK2 signaling in DLBCL [29]. Further
investigation into apoptotic mechanisms is warranted to elucidate the
role of HBx’s function in chemotherapy and its impact on prognosis of
DLBCL. Given that cleaved PARP levels were reduced in HCC and that
the decrease in apoptosis level is beneficial to the survival of tumor cells,
a PARP inhibitor was used to induce cell apoptosis in HCC treatment,
particularly for HBV-associated tumors [30]. In DLBCL, prophylaxis
using antiviral agents in HBsAg-positive patients improves the survival
of patients with HBV infection [31]. Therefore, it is reasonable to
speculate that treatment targeting PARP in HBV-related DLBCL may
have favorable outcomes and warrants further investigation. Investi-
gating whether the integration of HBx impact the treatment efficacy for
DLBCL will also be a focus of future research.

In summary, HBx integration inhibits apoptosis through the Caspase-
3-PARP pathway in DLBCL. However, the value of PARP as a potential
biomarker and therapeutic target in DLBCL requires further study.
Thorough characterization of the HBx integration pathway that induces
the development of DLBCL remains the focus of improved treatment
strategies.
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