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A B S T R A C T   

Background: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of 
heart disease; however, limitations of CMR include long exam times and high complexity compared to other 
cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great 
potential to address many CMR limitations. While the developments are remarkable, translation of AI-based 
methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the 
full potential of AI for CMR. 
Methods: Herein we review recent cutting-edge and representative examples demonstrating how AI can advance 
CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, clas-
sification and diagnosis. 
Results: These advances can be applied to speed up and simplify essentially every application including cine, 
strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a 
unique technology based on training models using data. Beyond reviewing the literature, this paper discusses 
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important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for 
training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations 
around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the 
development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. 
Conclusions: Understanding and consideration of all these factors will contribute to the effective and ethical 
deployment of AI to improve clinical CMR.   

1. Background 

Cardiovascular magnetic resonance (CMR) is the most comprehen-
sive non-invasive technique for assessing cardiac structure, function, 
perfusion, tissue characterization, and cardiovascular hemodynamics, 
providing high-quality data for diagnosing heart disease and predicting 
outcomes. CMR is widely used in clinical practice, but its efficiency and 
accessibility are hindered by the complexity of performing CMR studies, 
long exam times, high cost, and the requirement for manual image 
analysis by experts. Artificial intelligence (AI), particularly deep 
learning (DL), has demonstrated remarkable progress recently and 
holds great potential to overcome many of the limitations of CMR. 
However, despite the large volume of research studies related to this 
topic, translation of AI methods into the real-world clinical CMR 
workflow remains challenging. In this article, we use the terms AI, DL, 
and machine learning (ML), which have distinct meanings that have 
been previously defined [1]. Briefly, and in practical terms for this 
paper, AI is a broad umbrella term that refers to the ability of computers 
to mimic human intelligence, DL refers to deep neural networks that 
learn from large datasets, and we use ML to refer to shallow learning 
algorithms, such as support vector machines and decision trees. 

A number of papers have reviewed research in this field. Some fo-
cused on AI methods for specific CMR sequences, such as parametric 
mapping [2], perfusion [3], fingerprinting [4], and late gadolinium 
enhancement (LGE) [5]. Other review papers summarized the state-of- 

the-art for specific tasks, such as reconstruction [6], segmentation  
[7,8], motion and deformation analysis [9], and outcome prediction  
[10]. Review papers summarizing AI applications for specific diseases, 
such as myocardial infarction (MI) [11] and dilated cardiomyopathy  
[12], have also been written. Additionally, there are publications that 
provide an overview of AI basics with exemplar CMR applications  
[13,14] or in the context of multi-modality imaging [15]. Most of these 
prior articles focus on reviewing evidence of a specific aspect at the 
research and development stage, while consideration of a roadmap 
toward their clinical adoption is in demand, but absent. 

The intention of this article is not to be overly technical but to 
provide an overarching introduction of cutting-edge and illustrative 
examples for the reader hoping to understand the general concepts and 
clinical applications in this rapidly growing area. Specifically, we in-
troduce image reconstruction, post-processing, quality control (QC), 
classification, and prognostication tasks that can be accelerated, im-
proved, and/or automated with AI. We then review the roles and ap-
plications of AI in common CMR sequences. Beyond reviewing the lit-
erature, we brought together CMR clinicians, AI scientists, CMR 
physicists, industry partners, and experts in regulatory sciences to en-
vision a roadmap to clinical translation of AI CMR methods. The au-
thors convened a meeting of the Society for Cardiovascular Magnetic 
Resonance (SCMR) AI Special Interest Group during the 2023 SCMR 
annual scientific sessions (San Diego, LA, 2023) where more than 50 
people gathered and provided input. The authors hope that this article 

Fig. 1. Graphical abstract. This paper introduced image processing tasks that can be accelerated or automated with AI and reviewed the applications of AI in 
common CMR sequences. It then discussed important AI-specific issues when translating AI CMR methods to clinical practice. AI artificial intelligence, 
CMR cardiovascular magnetic resonance, DTI diffusion tensor imaging, ECG electrocardiogram, LGE: late gadolinium enhancement. For abbreviations of checklist, 
see section 3.2 below. 
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can summarize recent developments in AI applied to CMR and suggest 
approaches to accelerate the adoption of AI in clinical CMR to gain the 
advantages offered by AI and to do so in a manner that is fair, re-
sponsible, and equitable. A graphical abstract is provided in Fig. 1. 

2. Review of literature—current AI CMR methods and applications 

To conduct this narrative review, we performed comprehensive 
PubMed searches using varying combinations of keywords [“artificial 
intelligence”, “machine learning”, “deep learning”] and keywords 
[“CMR”, “cardiac MRI”, “cardiovascular MRI”] within the 5-year period 
of 2019 and 2023. Articles studying primarily other modalities or or-
gans were manually excluded, and the search was supplemented by 
manually identified papers, leading to an aggregate of 751 original 
research articles that were examined and contributed to our synopsis. 
The number of AI CMR publications per year is increasing rapidly, re-
flecting the growing interest and activity in this field (Fig. 2A). All re-
search articles were dissected to show the spectrum of these studies in 
terms of AI tasks (Fig. 2B) and CMR sequences (Fig. 2C). The AI CMR 
literature (N = 751 articles) was further visualized in a bipartite graph, 
which unveiled a comprehensive translation of AI approaches and tasks 
to various CMR sequences (Fig. 3). Based on this framework, our review 
of the literature is presented in the following sub-sections. 

2.1. AI tasks for CMR 

AI can significantly impact the entire CMR workflow, including 
image reconstruction, image analysis, QC, and diagnosis/prognosis. 
Recent research advancements promise to speed up scan protocols, 
automate CMR planning and image processing, improve image quality, 
and support medical diagnosis and prognostication. 

2.1.1. Acceleration and reconstruction 
Due to the sequential acquisition of data samples in k-space and 

electrocardiogram (ECG) synchronization, CMR image acquisition is 
inherently slow. One approach to accelerate the acquisition is to un-
dersample k-space. However, undersampling introduces aliasing arti-
facts when the image is reconstructed. A variety of data acquisition and 
image reconstruction techniques have been developed to produce 
images of acceptable quality from undersampled data. These techniques 
exploit coil sensitivity profiles (parallel imaging) [16], sparsity of data 
in a transform domain (compressed-sensing) [17–20], and low-rank 

properties in spatial and/or temporal dimensions [21]. Those ap-
proaches, however, come at the cost of high computational burden and 
long reconstruction times, and are dependent on the choice of the re-
construction parameters, which might not perfectly model the spatio-
temporal complexity of CMR imaging [22–24]. DL approaches have 
recently been proposed to learn up-front the non-linear optimization 
processes employed in CMR reconstruction, making use of large data-
sets to learn the key reconstruction parameters and priors. These 
methods differ in terms of their intended tasks and include image de-
noising using image-to-image regressions [25]; direct mapping from 
acquired k-space to the reconstructed image [26,27]; physics-based k- 
space learning or unrolled optimizations [28–30]; and combinations of 
these. An alternative approach for accelerating image acquisition is the 
use of DL–based super-resolution, where images are acquired at a low 
resolution, with or without undersampling, and retrospectively re-
constructed to the high-resolution target [31]. Examples demonstrating 
various CMR sequences are illustrated in Fig. 4. 

2.1.2. Segmentation 
Image segmentation, which partitions images into anatomically 

meaningful regions, represents the earliest and most mature application 
of DL in CMR and is a crucial step in numerous post-processing appli-
cations including visualization and quantification. Most commonly, 
segmentation is used to define epicardial and endocardial borders of the 
left ventricular (LV) myocardium to calculate myocardial mass and 
function on cine images [36–39], to quantify myocardial tissue prop-
erties on parametric T1- and T2-mapping [40,41] and to calculate scar 
volume on LGE imaging [42–44] (Fig. 5A-C). DL has also been em-
ployed to segment the right ventricle (RV) to assess RV function  
[37,45], the left and right atria to calculate volumes and surface areas  
[37,46], and the great arteries to measure flow velocity [47] and aortic 
distensibility [48]. A popular DL architecture for segmentation tasks is 
the U-Net [49]—an encoder-decoder convolutional neural networks 
(CNN) with skip connections, and variants, such as the 3D U-Net [50] 
and nnU-Net [51], have also been employed. More recently, Vision 
Transformers [52–54] using an alternative architecture to the CNN 
have demonstrated potentially superior performance in CMR segmen-
tation. 

2.1.3. Image registration 
Image registration is a process that aligns two or more images of the 

same object. Cardiac image registration is a complex problem due to 

Fig. 2. Five-year literature review between 2019 and 2023. (A) Number of original AI CMR research papers per year (totaling N=751 papers). (B) Published AI CMR 
studies categorized by AI tasks. (C) Published AI CMR studies categorized by CMR sequences. “Whole-heart” imaging includes 3D coronary MR angiography. “Flow” 
includes 2D phase-contrast imaging and 4D flow. “Text” includes patient characteristics, history, and CMR reports. 2D: two-dimensional, 3D: three-dimensional, 4D: 
four-dimensional; AI: artificial intelligence, CMR: cardiovascular magnetic resonance, DTI: diffusion tensor imaging, ECG: electrocardiogram, ECV: extracellular 
volume, LGE: late gadolinium enhancement. 
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non-rigid motion, mixed motion patterns caused by both intrinsic heart 
motion and breathing, limited anatomical landmarks, and variations in 
spatial and temporal resolutions and contrast between images. DL- 
based registration methods have emerged as a promising alternative to 
conventional methods due to their ability to handle complex image 
features and adapt to different image contrasts and registration sce-
narios [57]. DL image registration for CMR can utilize supervised 
learning [58,59] (Fig. 6A). It can also utilize unsupervised learning 
using generative models [60,61] guided by similarity in intensities 
between images [62,63] (Fig. 6B). Image registration is a fundamental 
step in cardiac image processing, and the result can facilitate or be 
combined with further analysis, such as image segmentation [58], 
motion correction [64], and motion estimation [65]. Compared to 
traditional methods, DL registration methods are typically much more 
inference-efficient, providing the possibility of real-time guidance and 
inline processing. 

2.1.4. Landmark detection 
Localization of landmarks and anatomical structures is a common 

pre-processing step for CMR view planning and image analysis. DL has 
been applied to detect key landmarks and use them to prescribe ima-
ging planes [66]. This can automate CMR pilot imaging and view 
planning [67], reduce human intervention in imaging, and reduce the 
overall exam time. Landmark localization in CMR post-processing 
commonly includes the detection of RV insertion points on short-axis 
images to assign American Heart Association (AHA) segments [36], and 
the tracking of the mitral valve plane and apical points on long-axis 
images [56] (Fig. 5C and D). These networks usually take one of two 
forms, either an image-to-image translation model to output the prob-
ability map of landmark locations [56,68] or an image-to-vector re-
gression model to output the predicted coordinates of the landmarks on 
the images [69]. 

2.1.5. Quality control 
QC of images should occur before or be integrated into the image 

analysis pipeline, as insufficient image quality can result in image 
segmentation and other errors and may compromise diagnostic and 

prognostic accuracy. Also, QC applied during a CMR exam could fa-
cilitate image reacquisition to replace low-quality images [70]. Cur-
rently, in clinical practice, image quality assessment is performed vi-
sually; however, this practice will likely change in the context of fully- 
automated DL-based image analysis pipelines for CMR. 

Pre-analysis QC can address multiple quality issues. Multiple stu-
dies have developed QC methods to detect motion-related artifacts 
like those from mis-triggering, arrhythmias, and inconsistent breath- 
holding using a variety of AI methods [71–78]. Suboptimal image 
contrast can also be identified [70–72]. In addition, DL has been used 
to detect improper slice orientation, such as the presence of the LV 
outflow tract in a four-chamber view, foreshortening of the apex, and 
the absence of valves in the three-chamber view [73,76]. AI methods 
can also detect incomplete coverage of the LV in short-axis stacks 
using methods, such as Fisher-discriminative 3D CNNs [79] and hy-
brid decision forests [71,72]. It has also been shown that a CNN can 
mimic the image quality assessment of an expert using a numerical 
quality scale [70]. 

Post-analysis QC has mainly focused on the evaluation of the output 
of segmentation models. 

QC-driven segmentation frameworks attempt to infer well-known 
validation metrics, such as the Dice score [38,80], the Hausdorff dis-
tance, or uncertainty estimates by using ensemble DL models [38,78], 
multi-task learning [77], a multi-view network [81], or multi-level two- 
dimensional (2D) and three-dimensional (3D) DL-based methods [82]. 
More studies use a QC framework to detect CMR segmentation failures 
using descriptors in a random forest classifier [83], using the approach 
of Reverse Classification Accuracy [84], and combining uncertainly 
maps with DL models [85,86]. Other post-analysis QC can be performed 
by detecting abnormalities in the computed LV/RV volumes and strain 
curves using a support vector machine [73]. 

2.1.6. Classification (diagnosis) 
Classification and regression AI models allow for automated diag-

nosis, prognosis, therapy response prediction, and risk stratification. 
These algorithms may take parameters derived from image pre-pro-
cessing and quantification steps, or directly process images or chamber 

Fig. 3. Visualization of 751 original studies applying AI to 
CMR between 2019 and 2023. Segmentation of cine ima-
ging is the most intensively studied as a crucial step for 
assessing cardiac structure and function. Additionally, AI 
has been applied to almost all common CMR sequences to 
automate the segmentation, classify diseases, accelerate 
reconstruction, perform image registration, improve 
image quality, localize anatomies, and synthesize new 
data. AI artificial intelligence, CMR cardiovascular mag-
netic resonance, DTI diffusion tensor imaging, ECG 
electrocardiogram, ECV extracellular volume, LGE late 
gadolinium enhancement. 
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volumes, automatically extracting pertinent features to make predic-
tions. An exemplar DL model using quantitative displacement CMR to 
predict survival is given in Fig. 7A. Multi-sequence CMR contains 
complementary information regarding myocardial tissue properties and 
heart function. Many AI models have been developed utilizing multiple 
sequences for diagnosis and outcome prediction for a variety of heart 
conditions; a non-exhaustive list of studies is summarized in Table 1. 
Additionally, AI has been used to identify ECG phenotypes, such as in 
hypertrophic cardiomyopathy (HCM) [87,88] and MI [89], and these 
combined with CMR and clinical variables, such as patient character-
istics and laboratory data, can improve diagnostic accuracy and con-
fidence [90]. 

Further, the ability of AI techniques to handle high-dimensional data has 
led to the development of radiomics, a novel field in which digital medical 
images are converted into mineable high-dimensional data by extracting a 
large number of quantitative features [109–112] (Fig. 7B). Within the field of 
CMR radiomics, texture analysis allows for analysis and classification of 
medical images based on underlying tissue inhomogeneities [11,93,113,114]. 

2.2. AI applications in CMR sequences 

The previously described AI methods have been applied to a wide 
range of CMR sequences (Fig. 3). In this section, we summarize several 
of these studies. 

Fig. 4. AI in CMR image reconstruction. (A) DEep learning-based rapid Spiral Image REconstruction (DESIRE) technique for high-resolution spiral first-pass 
myocardial perfusion imaging with whole-heart coverage, reprinted with permission [32]. (B) Convolutional neural network for reconstruction of real-time radial 
data acquired in 18  ±  3 s [33]. (C) Deep-learning framework for removal of aliasing artifacts from accelerated radial real-time phase-contrast MRI, reprinted with 
permission [34]. (D) CMR fingerprinting T1 and T2 maps correspond to dictionary-based pattern matching reconstruction (> 4 min per slice) and the time-efficient 
deep-learning based reconstruction (336 ms per slice), reprinted with permission [35]. AI: artificial intelligence, CMR: cardiovascular magnetic resonance, DL: deep 
learning, ECG: electrocardiogram, MRI: magnetic resonance imaging, NUFFT: non-uniform fast Fourier transform, SPIRiT: self-consistent parrallel imaging, RT: real 
time, CS: compressed sensing, L!-SPIRIT: L1 Iterative self-consistent parallel imaging reconstruction, ReLU: Rectified Linear Unit, BH bSSFP: breathhold balanced 
steady state free precession, GRASP RT: Golden-angle radial sparse parallel real-time, U-Net RT: U-Net real-time. 
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2.2.1. Cardiac cine imaging 
CMR cine imaging provides accurate and reproducible measure-

ments of cardiac anatomy and function. Cine images are routinely 
collected using ECG-gated segmented acquisitions during multiple 
breath-holds. For patients who exhibit difficulty with breath-holding or 
with an irregular cardiac rhythm, real-time cine imaging can be ac-
quired, albeit with reduced spatial and temporal resolution. 

Accelerated acquisition and advanced reconstruction methods can in-
crease temporal and spatial resolution or reduce the scan time for both 
segmented and real-time cine imaging. Diverse DL methods have been 

applied in this context, including methods using image-domain-based artifact 
reduction [25,29,33,115,116], hybrid techniques with direct mapping from 
k-space to the image domain [117–120], and super-resolution reconstruction 
from low-resolution inputs [121]. Some proposed methods have achieved 
12-fold and 13-fold undersampling for accelerated acquisition. Many of the 
studies to date were limited to retrospective undersampling of the data 
(usually using a single coil) [29,33,115,117,120], healthy subjects  
[29,115,116], and image quality evaluation using non-clinical quantitative 
metrics only [29,115]. Two of the aforementioned studies involved testing in 
prospectively undersampled data from patients [33,118]. 

Fig. 5. AI in CMR image segmentation and landmark localization. (A) A recent convolutional network was developed to segment cine images from the UK Biobank, 
reprinted with permission [55]. (B) A quality-control driven framework for segmentation of T1-mapping [38]. (C) A deep-learning approach for landmark locali-
zation and LV segmentation for automated strain analysis of DENSE CMR [36]. (D) Landmark detection in long- and short-axis CMR images [56]. AI: artificial 
intelligence, CMR: cardiovascular magnetic resonance, DENSE: displacement encoding with stimulated echoes, DL: deep learning, LV: left ventricle, RV: right 
ventricle, QCD: quality control driven, ED: end diastole, ES: end systole. 
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Detection of landmarks and anatomies is an important pre-proces-
sing step for the automated analysis of cine imaging. For example, lo-
calizing the structure of interest (e.g., the LV) can improve the con-
fidence and accuracy of anatomical segmentation [50]. Detecting the 
mitral valve plane and the LV apex on the long-axis cine image de-
termines the orientation and length of the ventricle [56]. Tracking of 
these landmarks through time on long-axis cine images provides key 
metrics of systolic and diastolic function [69]. Segmentation of the LV 
allows automated extraction of anatomical parameters, such as LV 
myocardial mass and wall thickness, and functional parameters, such as 
LV ejection fraction (LVEF). Segmentation of the RV [45], left atrium 
(LA) [122], and great arteries [123] on cine images has also been stu-
died, with similar tasks of quantifying anatomical and functional 
parameters for those chambers. As the most intensively studied se-
quence in the area of AI for CMR, automated reporting on cine imaging 
may soon become available as inline methods on scanner platforms  
[56]. 

A number of studies have used DL-based automated segmentation of 
cine images for outcome prediction. For example, one study showed 
that DL-based segmentation to compute LVEF is as effective as con-
ventional analysis of cine images for predicting major adverse cardiac 
events in MI patients [124]. Another study evaluated the performance 
of a DL-based multi-source model (trained using clinical and extracted 
motion features) for survival prediction and risk stratification in pa-
tients with heart failure and reduced ejection fraction (HFrEF). The 
proposed model could independently predict the outcome of patients 
with HFrEF better than conventional methods [125]. Another example 

used DL-based segmentation of cine images along with motion tracking 
of the RV to improve survival prognostication in patients with pul-
monary hypertension [126]. Additionally, DL-based automated seg-
mentation of cine images has been shown to be successful for prog-
nostication in patients with tetralogy of Fallot [125,127,128]. 

In the area of diagnosis, DL was used to segment the LV and extract 
motion features from cine CMR to detect chronic MI [129]. Also, re-
cently multilinear subspace learning was employed to identify and 
learn diagnostic features in patients with suspected pulmonary arterial 
hypertension (PAH) without the need for manual segmentation [130]. 
In this study, learned features were visualized in feature maps, which 
confirmed some known diagnostic features and identified other, po-
tentially new, diagnostic features for PAH. 

2.2.2. Strain 
Strain and strain-rate imaging quantify deformation of myocardial 

muscle and provide a quantitative assessment of myocardial function 
with greater sensitivity to LV dysfunction than LVEF. DL-based auto-
matic or semi-automatic segmentation of the LV, RV, and LA facilitates 
the efficient use of feature tracking or other methods to compute strain 
for each of these chambers [100,131–133]. Indeed, DL-facilitated fully- 
automated feature-tracking strain from LV cine images has achieved 
prognostic accuracy equivalent to that of manual-based segmentation 
for acute MI as shown in a study of over 1000 patients [131]. Similarly, 
in light-chain amyloidosis, DL-facilitated LA strain was shown to pro-
vide independent and additive prognostic value for all-cause mortality  
[133]. In addition to segmentation, DL can further improve the 

Fig. 6. AI in CMR image registration. (A) Supervised learning for T1-mapping motion correction [59]. (B) Unsupervised learning-based deformable registration of 
cine for generating synthetic cine sequences from a single frame [61] AI: artificial intelligence, CMR: cardiovascular magnetic resonance, IRW: inversion recovery 
weighted, DVF: displacement vector field, MOCOnet: motion correction network, STN: Spatial transformer network, LReLU: Leaky Rectified Linear Unit, LSTM: Long 
Short-Term Memory. 
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Fig. 7. Classification AI models for diagnosis and prognosis. (A) A recent survival prediction neural network. The input is the DENSE displacement through time, the 
outputs are the DENSE displacement reconstructed from latent features, and the probability of 4-year survival after CRT. ROC curves are for 4-year survival 
prediction [108]. (B) A radiomics and deep-learning approach for scar screening in hypertrophic cardiomyopathy [109]. AI: artificial intelligence, DENSE: dis-
placement encoding with stimulated echoes, bSSFP: balanced steady state precession, FCNN: fully connected neural network, BN: batch normalization, ReLU: 
Rectified linear unit, CNN: Convolutional neural netwrok, CRT: cardiac resynchronization therapy, ROC: receiver operating characteristic. 

Table 1 
Examples of studies combining multi-sequence CMR for diagnosis or outcome prediction of various heart conditions.           

Cine T1 map T2 map Perfusion ECV LGE Disease or conditions  

Khozeimeh et al. [91] ✓  ✓ ✓  ✓ CAD 
Pezel et al. [90]    ✓  ✓ CAD 
Khozeimeh et al. [91] ✓  ✓ ✓  ✓ CAD 
Shu et al. [92] ✓     ✓ DCM 
Shi et al. [93]  ✓   ✓  HCM 
Agibetov et al. [94] ✓ ✓    ✓ Cardiac amyloidosis 
Martini et al. [95] ✓     ✓ Cardiac amyloidosis 
Sharifrazi et al. [96] ✓ ✓ ✓   ✓ Myocarditis 
Moravvej et al. [97] ✓ ✓ ✓ ✓  ✓ Myocarditis 
Ghareeb et al. [98] ✓ ✓ ✓   ✓ Myocarditis 
Eichhorn et al. [99] ✓ ✓ ✓  ✓ ✓ Myocarditis 
Cau et al. [100] ✓ ✓ ✓   ✓ Takotsubo 
Mannil et al. [101]   ✓   ✓ Takotsubo 
Dykstra et al. [102] ✓     ✓ Atrial fibrillation 
Cornhill et al. [103] ✓     ✓ HF hospitalization 
Bivona et al. [104] ✓     ✓ Resynchronization 
Kwak et al. [105] ✓    ✓ ✓ Aortic stenosis 
Lu et al. [106] ✓     ✓ Sarcoidosis 
Okada et al. [107] ✓     ✓ Sarcoidosis 

ECV extracellular volume, LGE late gadolinium enhancement, CAD coronary artery disease, DCM dilated cardiomyopathy, HCM hypertrophic cardiomyopathy, HF 
heart failure.  
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diagnosis based on strain. A fully-connected neural network taking 
strain features as the input has outperformed conventional methods to 
discriminate HCM from its mimic states, namely cardiac amyloidosis, 
Anderson–Fabry disease, and hypertensive cardiomyopathy [134]. In 
addition to feature tracking analysis of cine CMR, unsupervised DL has 
been explored to compute displacement and strain from cine CMR, 
leading to the DeepStrain method [63] (Fig. 8A). Using supervised 
learning, displacement encoding with stimulated echoes (DENSE) data 
have been employed to develop StrainNet [135], and velocity-encoded 
data have been used to develop synthetic strain [136], both of which 
can be applied for strain analysis of cine CMR (Fig. 8B). 

DL for strain also extends beyond the analysis of cine imaging to 
strain-dedicated CMR sequences. For example, DL-based methods to 
analyze tagged CMR images have been shown to be superior to har-
monic phase analysis with regard to tag tracking accuracy and in-
ference efficiency [62]. For the analysis of DENSE CMR, DL for LV 
segmentation and phase unwrapping provides fully-automated, highly 
accurate and reproducible results for both global and segmental cir-
cumferential strain [36]. 

2.2.3. Late gadolinium enhancement 
LGE is an established and validated CMR technique to distinguish 

myocardial fibrosis and injury from normal myocardium [137,138]. 
Routine clinical use involves 2D acquisitions and is limited by spatial 
resolution, long scan times, and the requirement for breath-holds [139]. 
Novel frameworks enabling 3D acquisitions have been proposed and DL 
has been applied to accelerate LGE reconstruction [140]. DL-based 
noise reduction has also been applied to improve the image quality of 
fast, low-resolution LGE images [141]. 

In current clinical practice, LGE scar reporting usually relies on vi-
sual assessment by experienced clinicians. In research, scar quantifi-
cation is currently based on manual delineation of myocardial borders 
and regions of enhancement, followed by thresholding techniques. For 
automated quantification, landmark localization [56] and LV segmen-
tation [142,143] applied to LGE images can be performed with DL. 
Subsequently, scar/fibrosis segmentation is essential for quantifying 
scar size and volume fraction [7,143–145]. Automated segmentation 
has been applied to LGE for LV myocardium and ischemic scar seg-
mentation [145,146], while LGE scar segmentation and quantification 

Fig. 8. AI in feature tracking and strain analysis. (A) An end-to-end automatic strain analysis from cine MRI to quantitatively characterize cardiac mechanics with 
deep learning-based cine segmentation and feature tracking [63]. (B) A convolutional neural network trained with DENSE data for displacement and strain esti-
mation applied to cine MRI showed better performance than commercial feature tracking, reprinted with permission [135]. 3D: three-dimensional, AI: artificial 
intelligence, CMR: cardiovascular magnetic resonance, DENSE: displacement encoding with stimulated echoes, MRI: magnetic resonance imaging, AEPE: average end 
point error, MEVIS: Fraunhofer MEVISIUCL: Imperial College London - University College London, UPF: Universitat Pompeu Fabra, INRIA: Inria-Asclepios project 
(The National Institute for Research in Digital Science and Technology), CarMEN: cardiac motion estimation network, CarSON: cardiac segmentation network, EPE: 
end point error, VCN: ventricular centering network. 

Q. Zhang, A. Fotaki, S. Ghadimi et al.                                                                                                               Journal of Cardiovascular Magnetic Resonance 26 (2024) 101051 

9 



for non-ischemic heart disease remain challenging due to the complex 
patterns of myocardial fibrosis and variations in gadolinium kinetics. 

Quantification and segmentation of LGE images can be assisted by 
routine cine CMR, as cine provides complementary features and better- 
defined myocardial borders compared to LGE. For example, registration 
of LGE and cine CMR is beneficial for improving localization and 
quantification of infarcted regions [147]. Further, joint approaches for 
image registration and segmentation of LGE and cine offer better per-
formance than segmentation of LGE images alone [148]. 

2.2.4. Parametric T1 and T2 mapping 
Parametric quantitative mapping measures the relaxation times of 

tissue protons and reflects physical tissue composition [149]. These 
methods typically require the acquisition of a series of images sampled 
at various inversion times or echo times and/or utilize preparation 
modules to develop contrast. Fitting the series of images to a corre-
sponding signal model, in a pixel-wise manner, enables the generation 
of a quantitative map of T1 or T2 tissue relaxation expressed in units of 
time (e.g., milliseconds). Current clinical protocols entail relatively 
lengthy 2D acquisitions with moderate spatial resolution that require 
breath-holding. In the case of accelerated acquisitions, conventional 
model-fitting reconstruction techniques are susceptible to aliasing ar-
tifacts and noise [150]. 

A DL-based network that allows sharing information across pixels 
has recently been applied to T1 mapping which reduced image noise by 
performing spatial and temporal regularization [150]. Additionally, a 
neural network, termed Robust artificial-neural-networks for k-space 
interpolation, which applies non-linear physics-based k-space estima-
tion from undersampled k-space data, has been utilized to recover ac-
celerated SAturation Pulse Prepared Heart rate independent Inversion- 
REcovery sequence T1 maps [28]. The technique can be regarded as a 
DL extension of the Generalized Autocalibrating Partially Parallel Ac-
quisition (GRAPPA). A unique aspect of this method is that it is scan- 
specific; i.e., the network is trained from the center k-space lines of the 
same scan, therefore obviating the requirement of large training sets. 
This method was evaluated in retrospectively undersampled data from 
healthy subjects with quantitative metrics and outperformed traditional 
GRAPPA reconstruction particularly at five-fold acceleration [28]. 

Segmentation of LV myocardium is a necessary step for measure-
ment of T1 and T2 values, which can be automated with DL [38]. Pa-
tient movement during a CMR scan can cause changes in heart position 
between the raw images, leading to motion artifacts in the resulting 
maps. Motion correction can be performed using DL techniques  
[59,151] to register the raw images and restore precise T1 and T2 va-
lues and parametric maps. Deep generative models have also been de-
veloped to enhance T1-mapping signals, combing them with cine for 
more robust and informative scar imaging in the presentation of “vir-
tual native enhancement” (VNE) [152–154] that resembles “virtual 
LGE”, holding promise for fast and gadolinium-free myocardial tissue 
characterization with further technical development. 

2.2.5. Multiparametric quantitative MRI 
Simultaneous multiparametric quantitative MRI, where several 

parameters of interest are obtained from a single scan, has recently 
gained attention to preclude confounding of the different parameters 
and achieve a shorter scan time. Several models have been investigated 
including magnetic resonance fingerprinting (MRF) [155], multitasking  
[156], and others [22,157–160]. Particular hurdles for cardiac MRF 
include long acquisition and reconstruction times and the requirement 
for scan-specific dictionary generation based on the patient- and scan- 
specific heart rhythm. 

To overcome some of these limitations, a combination of DL-based 
denoising and low-rank modeling has been applied to accelerate the 
MRF acquisition and shorten the breath-hold duration [161]. Further-
more, a fully-connected neural network to directly quantify T1 and T2 
from MRF images, bypassing dictionary generation and pattern 

matching and reducing computation time and memory requirements, 
has been proposed [35]. Cardiac multitasking has been applied using a 
low-rank tensor approach with two spatial dimensions and three time- 
dimensions (cardiac phase, respiratory phase, and inversion time), to 
enable non-ECG-gated, free-breathing dynamic imaging, and was de-
monstrated for T1-mapping. Validation in healthy subjects demon-
strated similar-quality images and T1 maps to conventional iterative 
methods, while reducing the reconstruction time by greater than 3000 
fold [162]. 

2.2.6. 3D whole-heart imaging 
3D whole-heart imaging is an integral part of anatomical imaging in 

cardiac disease and recent advances are promising for the assessment of 
coronary arteries using CMR [31]. Nevertheless, long scan times asso-
ciated with higher spatial resolution and concurrent motion artifacts 
hinder wider clinical usage. Advances in DL-based reconstruction 
methods have been investigated to overcome those limitations. The 
respective algorithms can be divided into three main categories [27]: 
(1) algorithms that apply non-linear physics-based k-space estimation 
from acquired k-space data [163], (2) end-to-end data-to-image tech-
niques, where the network parameters are trained to recover the images 
directly from undersampled k-space data [27,30], and (3) an end-to-end 
network that recovers motion fields between highly undersampled re-
spiratory-resolved images that are utilized for motion-corrected re-
construction [164]. Further advances include approaches that achieve 
super-resolution reconstruction from rapidly acquired low-resolution 
data [31,165]. The aforementioned techniques have been tested on 
healthy subjects [163] and patient cohorts against clinical coronary or 
anatomical 3D whole-heart imaging with satisfactory quantitative and 
qualitative image quality metrics, providing significantly shorter ac-
quisition time. It is worth mentioning that DL may be able to leverage 
the high-resolution data of CT angiography and transfer the knowledge 
to CMR to optimize the contrast and resolution of CMR angiography  
[31]. 

Current 3D whole-heart frameworks use diaphragm-based naviga-
tion, which limits respiratory scan efficiency [166]. Image-navigator 
and self-navigated [167] techniques have been proposed to account for 
the complex non-rigid respiratory-induced cardiac motion to achieve 
high-resolution 3D isotropic scans. However, non-rigid motion estima-
tion/correction is frequently dependent on image registration  
[168,169] and laborious image reconstruction techniques. To address 
these limitations, DL-based estimation of non-rigid cardiac motion has 
been proposed and validated. A fundamental network enabled a 20-fold 
speed up in the non-rigid motion estimation step, reducing computation 
time of the image registration step [170]. The pipeline was further 
extended to the final motion-corrected reconstruction, reducing the 
total computational time by 50-fold [171]. Automated image quality 
assessment for 3D whole-heart imaging has been implemented. It is 
proposed to estimate image quality with good agreement with respect 
to human expert reading and may help identify the optimal re-
construction framework or define termination criteria of an iterative 
reconstruction process [70]. 

2.2.7. 2D phase-contrast MRI 
Phase-contrast MRI is an integral component of CMR protocols en-

abling quantification of blood flow in the great vessels, estimation of 
valvular regurgitation, and internal validation of the ventricular stroke 
volumes [172]. Conventional phase-contrast MRI methods use ECG 
synchronization and, frequently, strategies of k-space segmentation to 
reduce acquisition time to a breath-hold duration. Free-breathing ac-
celerated acquisitions are also clinically relevant for patients with dif-
ficulty in breath-holding (for example, for children and patients with 
dyspnea) and for real-time applications, such as exercise stress CMR  
[34]. 

DL-based reconstruction methods have been applied to recover 
images acquired using undersampled radial [34] and spiral trajectories  
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[173]. Both methods have been trained using synthetic breath-held and 
ECG-gated datasets and evaluated in prospectively acquired free- 
breathing undersampled phase-contrast images [34,173]. Qualitative 
and quantitative metrics and quantifiable hemodynamic parameters 
demonstrated satisfactory agreement with conventional acquisition and 
reconstruction techniques with acquisition times that were 28-fold and 
18-fold faster, respectively. 

2.2.8. 4D flow 
Four-dimensional (4D) flow MRI is an emerging technique where 3D 

blood velocity over time can be captured with full volumetric coverage 
in a single scan. Challenges for further improvement of 4D flow include 
velocity aliasing due to suboptimal velocity encoding, low spatio-
temporal resolution, and long reconstruction times [174]. 

Approaches to optimize 4D flow acquisition and reconstruction 
methods have been investigated. DL-based velocity antialiasing has 
been tested in healthy-volunteer datasets, demonstrating moderate to 
excellent agreement to ground truth [175]. Furthermore, a physics- 
based model has been applied to ECG-gated and breath-hold datasets, 
achieving reconstruction in under 1 min, which was 30 times faster 
than state-of-the-art compressed-sensing methods [176]. 

DL-based segmentation techniques have been applied to 4D flow to 
delineate the vessel lumen to facilitate calculation of mean velocities 
and aortic flow quantification [177]. Segmentation can be performed 
on 2D images [47], bSSFP cine images (with interpolation onto flow 
CMR) [178], or 3D phase-contrast MR angiograms [179]. Fully-auto-
mated 4D flow segmentation remains challenging due to the low blood- 
tissue contrast in magnitude images, insufficient phase-contrast signal 
with low velocities, and the requirement for 3D analysis [177]. 

2.2.9. Perfusion MRI 
CMR perfusion imaging is a non-invasive test to assess myocardial 

blood flow and ischemia. Myocardial perfusion is assessed by imaging 
the LV myocardium during the first pass of a contrast agent bolus. To 
detect ischemia, perfusion imaging is performed both at rest and at 
stress, where stress imaging utilizes vasodilation by a pharmacological 
agent such as adenosine. High temporal resolution is required, often 
compromising spatial resolution and coverage. Accelerated imaging 
techniques are required to optimize the balance between those para-
meters. 

Several approaches for DL-based image enhancement networks have 
been proposed. Those have been trained in a supervised manner using 
conventional compressed-sensing reconstruction outputs as reference 
images [32,180]. Evaluation included both quantitative and qualitative 
image quality scores in healthy subjects [32,181] and in patients [180], 
demonstrating comparable or superior image quality scores compared 
to compressed sensing with a much shorter reconstruction time. A 
physics-guided neural network, based on a signal intensity informed 
multi-coil encoding operator, has been recently proposed to capture the 
signal intensity variations across time-frames, allowing highly-ac-
celerated simultaneous multislice myocardial perfusion cardiac MRI  
[181]. This physics-guided DL framework enabled self-supervised 
training from undersampled k-space data only, obviating the require-
ment for reference images and large training datasets. The physics- 
guided DL framework outperformed multiple regularized reconstruc-
tions, demonstrating improved image quality, and reduced noise am-
plification and aliasing. 

Myocardial perfusion analysis involves the delineation of a time 
series of images to compute myocardial perfusion reserve and present it 
using the format of the AHA model, which is time-consuming when 
using conventional methods. DL has been proposed to automate the 
process by localizing the RV insertion points and LV in a time series of 
perfusion images [182–184]. Furthermore, DL algorithms have been 
successfully applied to the segmentation of LV cavity and myocardium, 
where the quantification of myocardial blood flow and perfusion re-
serve parameters produced outputs comparable to manual analysis  

[182]. In another study, the automatic segmentation and quantification 
of perfusion mapping provide a strong, independent predictor of ad-
verse cardiovascular outcomes [185]. 

2.2.10. Protocol planning and efficiency 
In addition to the role of AI for individual sequences, AI can improve 

the efficiency of the workflow by automating the CMR protocol plan-
ning. For example, by performing landmark detection or regression 
algorithms on short-axis views, long-axis views, or additional imaging, 
DL can determine the orientation of the LV for automated prescription 
of image planes. An EasyScan technique was reported to offer clinically 
acceptable planes on par with expert CMR technologists [186]. Another 
study has demonstrated that by predicting landmarks on multiple 
images and views, DL can prescribe common CMR view planes similar 
to those marked by a radiologist or those prescribed by a technologist at 
the time of image acquisition [187]. Further, in CMR imaging, careful 
shimming is required to establish a homogeneous B0 field and on-re-
sonance center frequency around the heart, especially for bSSFP se-
quences. AI-based shimming technique can automatically adjust the 
field, leading to increased signal-to-noise ratio and contrast [186]. 
These, together with post-processing DL techniques for common CMR 
sequences, can be integrated into typical CMR workflows, leading to 
“one-click” CMR scanning with reduced input demands on MR tech-
nologists and reduced scanning time. 

3. Roadmap to translate advances in AI CMR research to routine 
clinical use 

3.1. Need for high-quality and representative datasets 

Training and evaluating an AI prediction model requires reliable 
data at sufficient scale and diversity. An appropriate sample size is 
determined by the expected effect size and the classification accuracy of 
the model [188]. Models with a large number of tunable parameters 
may be overfit on small samples such that predictions do not generalize 
to new data. However, it may not be feasible or affordable to curate 
very large annotated clinical datasets for every use case. A technical 
proof-of-concept study may utilize a smaller dataset to show feasibility 
of a new method, whereas an AI model intended for widespread clinical 
use would require a larger and more comprehensive dataset for both 
development and validation. Increasing the dimensionality of the data, 
from 2D to 2D with a temporal dimension (2D+t), 3D or 3D+t, may 
also make the data relatively sparse and at risk of overfitting. Fig. 9 
summarizes the dataset distribution of 203 CMR-related AI papers, of 

Fig. 9. Distribution of number of subjects by dataset source in 203 AI CMR 
papers. UK Biobank (UKBB), Non-UKBB Open Data, and New Data are from 28, 
19, and 156 papers, with median of 4573 (Q1: 2022, Q3: 5745), 120 (Q1: 92, 
Q3: 264), and 139 (Q1: 43, Q3: 406) subjects, respectively. 
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which 47 utilized open access datasets, including from the UK Biobank  
[189,190], ACDC [191], M&Ms [192], HVSMR [193], MS-CMRSeg 
challenge [194,195], SunnyBrook Cardiac Data [196], Harvard radial 
raw data [120], and XCAT phantom data [197]. In the studies utilizing 
UK Biobank data (28 studies), open access data other than UK Biobank 
(19 studies), and newly acquired data (156 studies), the median (25th, 
75th percentiles) of subject numbers are 4573 (2022, 5745), 130 
(92,264), and 139 (43,406), respectively. The average training to 
testing dataset ratio reported from 124 papers is 5.49:1. 

Diverse and representative data are especially important in the 
translational stage of AI models. Many AI models have shown better 
performance than human operators on specific test sets [198,199] but 
may generalize poorly to other settings that have distribution shifts  
[200], which hinders their widespread clinical use. Data quality is si-
milarly important. Data annotation requires intensive manual analysis 
by experienced image analysts and is prone to error. Novel un-
supervised learning may obviate the need for laborious data annotation, 
but large, good quality CMR datasets are essential. 

Obtaining representative datasets is challenging due to the scarcity 
of properly annotated data, the shortage of data covering all relevant 
cardiovascular diseases, and the presence of artifacts that might result 
in low-quality training datasets. A useful AI solution to overcome this 
challenge is data augmentation, where deep generative models have 
been proposed for synthesis of large, high-quality medical images with 
variability in anatomical representation and appearance, comparable to 
real counterparts. The primary approaches in image synthesis are: i) 
mask-to-image synthesis, where segmentation masks are mapped to 
corresponding images (the inverse of image segmentation) [201–204], 
ii) image-to-image inference [205], and iii) regression models  
[201,206,207]. For example, augmenting real data with synthetic data 
during training has been shown to improve the performance of cine 
image segmentation [201,204]. Similarly, augmenting LGE with VNE 
modality in AI development improved the accuracy and reliability of 
LGE segmentation [44]. 

Nevertheless, for clinical application, DL models should be thor-
oughly validated on real data that are diverse in terms of gender, race, 
environment, body habitus, types of disease, sites, MRI vendors, and 
platforms to ensure model robustness and generalizability. While cross- 
validation techniques are useful for assessing internal validity, in-
dependent external validation on the intended population will assess 
transportability of the model. Even external validation is not a one-off 
process before clinical implementation and may require further cycles 
of recalibration if the model is sensitive to small population differences  
[208]. Regulatory agencies have also identified evidence for other AI 
tools in medical imaging that include impact on clinical decision- 
making, diagnostic accuracy alongside physician review and patient 
perceptions [209]. Guiding principles on the safe and equitable de-
ployment of AI algorithms may include effective governance oversight, 

multi-disciplinary evaluation, continuous surveillance, and incorpora-
tion of consensus guidelines on the use of AI tools [210]. 

CMR datasets that are discoverable and open access can accelerate 
advancements across the entire field. Organizations, such as the SCMR 
and the National Institute for Health, should encourage data sharing for 
training and testing AI algorithms, ensuring that data are findable, 
accessible, interoperable, and reusable [211]. In addition, they should 
promote the establishment of multi-site datasets accounting for vari-
abilities between sites, with ethics and data governance policies in 
place. It is also important to acknowledge that non-ideal but unique or 
distinctive datasets, with their inherent limitations, can make sub-
stantial contributions to the field, potentially offering opportunities to 
train unique AI models and/or demonstrate proof of concept in new and 
innovative directions. 

3.2. Need for guidelines for reporting AI CMR research 

To promote quality, improve reproducibility, and increase adoption, 
there is a need for guidelines for reporting AI-based research. Such 
guidelines will help the community better understand and assess study 
findings and their potential clinical impact. Several guidelines for AI in 
medicine and medical imaging have been proposed over the last few 
years or are currently under development. For example, CLAIM 
(Checklist for Artificial Intelligence in Medical Imaging) [212], a 
guideline for authors and reviewers, suggested a list of information that 
manuscripts should provide related to models, training procedure, da-
tasets, etc. Similarly, MINimum Information for Medical AI Re-
porting [213] specified the minimum information that authors of 
manuscripts should provide in terms of study population, data demo-
graphics, model architecture, and model evaluation. CONSORT-AI 
(Consolidated Standards of Reporting Trials) and SPIRIT-AI (Standard 
Protocol Items: Recommendations for Interventional Trials) [214,215] 
were extensions of CONSORT and SPIRIT and provided guidelines for 
reporting randomized trials involving AI-based methods. Also, FU-
TURE-AI [215] provided a list of best practices based on six principles: 
Fairness, Universality, Traceability, Usability, Robustness and Ex-
plainability (FUTURE) that should guide AI-based research to provide 
trustworthy solutions. Last, Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis - Artificial In-
telligence and Prediction model Risk Of Bias Assessment Tool - Artifi-
cial Intelligence [216] (extensions of TRIPOD and PROBAST guidelines) 
are currently under development as guidelines for reporting and risk of 
bias assessment of clinical prediction models using AI. The CMR com-
munity may adopt these guidelines (individual or a combination of 
these) [217,218] or extend and modify them to promote high-quality 
AI-based CMR research. A summary of the most relevant re-
commendations from these publications is provided in Table 2, this 
summary follows but also complements the CLAIM recommendations. 

Table 2 
Summary of best practices for authors and reviewers for AI in medical imaging.    

Section Best practices  

Manuscript title and abstract Clearly indicate the AI methodology used and provide a structured summary of the study’s design, methods, results, and conclusions. 
Introduction Provide the scientific and clinical background of the AI approach employed and state how the proposed approach will help addressing a 

significant clinical or scientific issue. 
Methods and results  • Provide details of the study design, including prospective or retrospective nature, data sources, pre-processing steps, and ground 

truth definitions.  
• Provide a comprehensive description of the model’s structure, training procedures (data partitions), and performance metrics.  
• Use appropriate metrics to evaluate model performance and report results with statistical significance.  
• Include validation or testing on external data.  
• Consider including experiments to address potential bias.  
• Consider including experiments to address generalization.  
• Consider sharing open-source code to enable reproducibility studies. 

Discussion Summarize results, discuss limitations including potential bias and generalizability issues, implications for practice, and future 
directions. 

This summary follows but also complements the CLAIM recommendations. 
AI artificial intelligence, CLAIM Checklist for Artificial Intelligence in Medical Imaging.  
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3.3. Considerations around clinical deployment 

AI-based methods are to a large extent data-driven, and hence may 
unintentionally replicate biases that are hidden in those data [219]. 
Lack of diversity in the training datasets on gender, race, age, ethnicity, 
weight, height, and social disparities with regards to access to health 
care (particularly at academic research centers) might lead to sub-
optimal performance. Several approaches have been proposed to ad-
dress this matter that span from the pre-training, training, and post- 
training stages of data, including comparing standard performance 
metrics across different sub-groups, and the employment of the fairness- 
specific criteria to audit for the presence of bias in a given model [220]. 
From a regulatory standpoint, several strategies have been developed to 
address the issue of biased data in AI systems. The STANDING Together 
initiative (standards for data diversity, inclusivity, and general-
izability), launched in September 2022, aims to develop re-
commendations for the composition (who is represented) and reporting 
(how they are represented) of datasets utilized in medical AI systems. 
The panel is comprised of patients and the public, clinicians and aca-
demic researchers across biomedical, computational, and social sci-
ences, industry experts, regulators, and policy-makers, and the final 
recommendations are rooted in an 18-month program of systematic 
reviews, surveys, in-depth interviews, and a modified Delphi study  
[221]. 

AI systems raise concerns about transparency and accountability, as 
they are programmed to “learn” a model from a large set of data, 
without providing a rationale for the outcome [222]. 

Before deploying a DL system in the critical infrastructure of med-
ical imaging, validation of the decision pathway and the ground-truth 
knowledge should be provided. From a technical perspective, various 
metrics and visualizations are available for evaluating the technical 
performance of AI algorithms [216]. Saliency methods, although widely 
used in medical studies for model interpretation and localization, have 
been scarcely applied in AI techniques for CMR, and their utility in non- 
CMR applications is debated [223,224]. To address trustworthiness in 
AI comprehensively, explainable AI models (XAI) have been introduced 
in cardiac imaging [225], which focus on exposing AI models to hu-
mans in an interpretable manner [226]. Three levels of evaluation of 
the outcomes of XAI have been proposed. The first one applies proxies 
and statistical methods (functionally grounded evaluation), followed by 
the evaluation by non-clinical evaluators (human-grounded), and lastly 
by medical experts (application-grounded) [225]. A list of open-source 
XAI tools currently available can be found in [227]. Furthermore, to 
promote accountability, several procedures are established and are 
anticipated to evolve to validate system performance in a tiered 
manner. A recent systematic review proposed a user-centered research 
design approach, whereby the model designers actively consider and 
work closely with the stakeholders (clinicians, patients, technologists, 
etc), particularly during the design and construction of AI models  
[228]. Explicit guidelines are published for the evaluation of clinical 
performance of AI applications [215,216,229,230,231]. To augment 
the generalizability of current data-driven AI techniques [232,233], 
testing of the algorithms—preferably in multiple sites and conditions in 
real-world settings—is crucial [199,229,234]. Paired and parallel study 
designs have been proposed to evaluate the benefits of AI in clinical 
practice [229] and randomized clinical trials remain the gold-standard  
[229]. Further approaches that incorporate human intervention in the 
network pipeline, the so-called human in the loop, have also been 
proposed [10]. 

Successful AI deployment in clinical practice requires the active 
involvement of all stakeholders, including patients, academics, clin-
icians, imaging technicians, hospital administrations, regulatory bodies, 
and industry. Academics and clinical associations can aid health care 
professionals acquire the basic knowledge of AI, to facilitate critical 
evaluation of datasets, integration within clinical workflows and bias 
control. A key theme that has to be implemented across the different 

stakeholders is the requirement for standardized high-quality datasets, 
to maximize the potential innovations derived and the transparency in 
how datasets are acquired, to allow better understanding of their con-
text and limitations [235]. This can be achieved by setting standards 
and guidelines in the entire process of medical image preparation, from 
the de-identification step to the data annotation step and especially in 
the data curation step [236]. Multi-disciplinary collaboration is also 
crucial to promote effective data-sharing models to optimize the model 
performance, respecting the legal and ethical aspects of the impact of AI 
adoption [237]. Communication among the stakeholders is important 
for the continuous appraisal of the applied AI models to foster quality 
assurance and product improvement. 

The application of AI in CMR that involves personal health in-
formation also raises concerns about data protection, autonomy, and 
privacy. In particular, concerns around meaningful consent and effec-
tive anonymization and de-identification of data are valid [216] and 
need to be addressed at a central regulatory and institutional level. All 
relevant stakeholders should be familiar with the proposed standards. 
Last, the social and cultural blueprint of AI is currently largely under- 
studied [238]. An interdisciplinary approach to the application of AI is 
advisable to expand its clinical potential in a safe, useful, and fair 
context [239]. 

3.4. Responsibility of the clinician and the need for interdisciplinary teams 

Clinicians in the current era are challenged to explore CMR through 
the lens of AI. Deployment of AI demands from the clinicians to re-
calibrate their approach to information. However, information/data 
does not constitute knowledge. Hence, a robust framework to integrate 
and interpret the data in a meaningful way for patients is required  
[240]. 

The processes of curation and anonymization of data and validation 
of the clinical performance of AI lie with both the clinicians and tech-
nical experts and have been covered in previous sections, highlighting 
the significance of a multi-disciplinary approach [216]. In addition to 
those, patient’s consent, accurate interpretation of the results, and 
communication with patients for optimal decision-making lie primarily 
with the clinician. In this context, two significant issues arise, namely 
respect for patients’ autonomy and the clinician’s accountability. Pa-
tient’s autonomy is honored in the process of informed consent where 
individuals must be given the opportunity to agree to and make choices 
between risks they are exposed to [219]. Furthermore, the clinician is 
accountable for decisions regarding patient management [241]. The 
accountability stretches above regulations and should encompass the 
accountability to the ecosystem in which the AI information will be 
shared (patients, caregivers, community, industry, health care profes-
sionals). Thus, if radiologists and cardiologists are to be incorporating 
AI into daily practice, basic proficiency in AI methodology and under-
standing both its potential and limitations are required [198,242,243] 
to address those issues. Several approaches have been proposed  
[242,244]. Creating the educational resources necessary for an AI 
curriculum requires the collaboration of multiple national and inter-
national societies, such as SCMR, as well as academic radiology and 
cardiology departments. These educational efforts will need the in-
volvement of and collaboration with technical experts, such as com-
puter scientists, statisticians, and biomedical engineers. Last, the fra-
mework of clinical applications based on AI should be laid in rigorous 
legislation, which clinicians, technical experts, and industry employees 
should familiarize themselves with. In Europe, the relevant laws 
(General Data Protection Regulation [GDPR] Article 22) prohibit any 
decision-making based solely on automatic processing of personal data, 
precluding in practice the possibility to rely only on the outcome of an 
algorithm for sensitive decision-making. Furthermore, Article 22 re-
quires the controller to implement suitable measures to safeguard the 
subject’s rights and freedoms and its legitimate interests, which has to 
include the right to obtain human intervention. This human 
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intervention has to be qualified, capable of discovering and recovering 
unfair outcomes or discriminations (European Data Protection 
Board) [219]. To our knowledge, there is no analogous legislation 
elsewhere to date. 

3.5. Industry considerations on AI in CMR 

AI presents great opportunities for improved automation  
[64,65,56], data analysis [7–9,36,37–39], scan time reduction  
[24–27], and image quality improvements [30] in MRI and many new 
products coming from an MRI vendor have an AI component. AI is 
especially relevant for CMR due to the higher complexity of the exam 
requiring complex and time-consuming planning, multiple breath-holds 
and the use of external devices for cardiac and respiratory gating. In 
addition, practically every single CMR exam is a subject of post-pro-
cessing and analysis resulting in a quantitative characterization of the 
cardiac anatomy, function, and tissue properties, which requires fast 
and reliable segmentation methods. Both the high complexity of CMR 
scans and the need for data post-processing dictate the demand and 
trend for automation in CMR, and AI will play a crucial role in realizing 
these advancements. Such advancements will facilitate the wider dis-
semination of CMR to low- and middle-income countries [245], bene-
fiting wider populations and promoting equity in access to health care 
resources globally. 

However, there are also several concerns related to the use of AI in 
MRI scanners. The topics related to data availability, data diversity, and 
data quality as well as privacy aspects were discussed in detail in pre-
vious sections. These are highly relevant in the development of AI- 
based products, where it is important to ensure generalization and 
stable performance on a large scale. 

There is a growing number of public databases containing CMR data 
aiming at supporting research activities on AI-based approaches [246]. 
This allows for more objective comparisons between different network 
architectures since the performance of an AI model depends both on the 
architecture and on the data. It also opens the field to research teams 
with AI expertise but no access to an MR scanner. However, the use of 
public databases for product development is typically very limited. This 
is related to several factors including the terms of use, privacy aspects, 
as well as the quality of the data. Due to the data-dependent perfor-
mance mentioned above, the gap between research and product de-
velopment can be much larger for AI models compared to conventional 
approaches. 

The need for acquiring large training datasets may increase the 
product development time and its costs substantially. If only limited 
data can be acquired for certain patient groups, this may lead to lim-
iting the product scope beyond these groups. Self-supervised and un-
trained methods are also seeing increased interest, but they require 
much longer processing times, which makes their adoption challenging  
[247–249]. On the positive side, the risk of reidentification based on 
image data alone is relatively low for CMR. This is different than in 3D 
brain imaging, where there is an additional concern of face re-
construction based on the images requiring face removal techniques to 
protect the participants’ privacy [250]. Nevertheless, caution should be 
taken to keep the risk of reidentification as low as possible, especially 
for small local datasets and rare diseases. 

Another risk that comes with the data-dependent performance of AI- 
based approaches is the use of multiple AI-based methods that were 
developed independently in different stages of the data processing pi-
peline. For example, an AI-based image reconstruction may change the 
output of an AI-based image enhancement that was trained on data 
processed with a different reconstruction. Even seemingly simple 
modifications in the image reconstruction like computing a magnitude 
instead of a complex image will have an effect on the performance of 
subsequent denoising [251]. Similarly, changes in the image re-
construction and enhancement may lead to changes in the image ana-
lysis and quantification [252,253]. The issue of variability in the 

performance/results of post-processing tools depending on the input 
data is not new; however, it becomes more acute with the introduction 
of AI approaches that are more sensitive to modifications in the data 
processing pipeline. It is especially difficult to predict the outcome of a 
combination of multiple AI methods that have been independently 
developed by different vendors. In-depth analysis of potential changes 
in end, results may be required to address this issue. 

It is interesting to speculate about how AI may impact CMR energy 
needs and its carbon footprint. On one hand, with the growth of data 
volume, model size, and training infrastructure, developing AI models 
for CMR will use energy, leading to a negative effect on the environ-
mental footprint. On the other hand, the application of AI methods 
could shorten CMR exams, leading to decreased energy usage and a 
positive effect on the environmental footprint. In this way, an analysis 
of the impact of AI for CMR on the carbon footprint should take a 
holistic approach [254], by considering both the savings and benefits 
that it brings to CMR exams, and the energy costs of AI development. 

From a regulatory perspective, it is also unclear how the compat-
ibility between different independently developed AI-based devices/ 
techniques should be handled. An even bigger challenge is ensuring the 
compatibility of multiple AI-based techniques that allow modifications 
from real-world training. 

Another challenge is the deployment of DL models on medical devices. 
Increasingly complex models (e.g., unrolled reconstruction networks) 
paired with high-dimensional input data (e.g., high-resolution 3D data, 4D 
flow, etc.) necessitate high-end hardware accelerators, such as graphics 
processing units, to ensure acceptable inference times. These must be 
available either directly within the scanner platform or the infrastructure 
needs to be in place to off-load computation to an edge or cloud com-
puting facility, which is not yet a common scenario. This may limit 
widespread availability of advanced applications by excluding systems 
already in the field and new lower-end systems due to cost. 

3.6. Regulatory perspectives and considerations related to AI in CMR 

For medical devices deployed clinically in the United States (US), 
the US Food and Drug Administration (FDA) Center for Devices and 
Radiological Health assures that patients and providers have timely and 
continued access to safe, effective, and high-quality medical devices. It 
is important to acknowledge that other regulatory agencies, such as 
Health Canada, the European Medicines Agency, and the Therapeutic 
Goods Administration (Australia) will have jurisdiction depending on 
the regions. While it would be ideal to provide and compare perspec-
tives across regulatory agencies with different jurisdictions, this article 
is limited to a detailed review and perspective from the FDA as an 
example. 

As of October 2022, over 500 medical devices incorporating AI/ML 
technology have been granted marketing authorization by the US FDA 
through a combination of the premarket approval, 510k, and De Novo 
regulatory pathways [255]. While the majority of these devices are 
intended for analyzing radiological data, the general approach to 
evaluating AI/ML-enabled medical devices is the same regardless of 
medical specialty. An overview of the regulatory considerations for 
medical imaging AI/ML devices in the US was recently published [256], 
of which the main points are briefly summarized here. 

Data hygiene is perhaps the most fundamental concern in the eva-
luation of AI/ML-enabled medical devices. A central principle is that 
the testing dataset should be independent of the training dataset. This 
generally means that the testing and training datasets should be col-
lected from different patients and at different clinical sites. At the same 
time, both development and evaluation datasets should be re-
presentative of the target population and the evaluation dataset should 
be of sufficient size to ensure statistical validity. As was pointed out in  
Section 3.1, scarcity of complete and properly annotated data is a sig-
nificant hurdle in the development of algorithms, and it can also be a 
significant hurdle toward approval of a commercial product. 
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While the specifics of the performance evaluation for a particular 
device are informed by both the technology of the device as well as its 
intended use, AI/ML devices in general are evaluated via standalone 
performance testing and/or clinical studies. Standalone performance 
testing is a measure of device performance alone with little to no in-
teraction or interpretation from a clinical end user. When a clinical user 
needs to interact with the device or interpret the device outputs, de-
pending on the risks posed by the device, an assessment of the device in 
the hands of the end users may also be needed. To ensure general-
izability of device outputs and to better understand performance lim-
itations, results of any performance assessment are generally reported 
both in aggregate as well by sub-groups based on patient characterizes 
(e.g., age, race, gender, disease type and stage, etc.) and data acquisi-
tion characteristics (e.g., data acquisition site, acquisition device, pro-
tocol, etc.). 

Guidance documents provide the medical device community with 
insight into current FDA thinking. While no guidance document specific 
to CMR currently exists, a series of guidance documents developed for 
radiological imaging-based AI/ML devices discuss premarket submis-
sion details [257] and clinical performance assessment [258] of com-
puter-assisted detection devices and may provide useful information for 
developers of AI/ML-enabled CMR devices. The guidance document 
related to the technical performance assessment of quantitative imaging 
in radiological device submissions may also be relevant [259]. A gui-
dance document broadly providing lifecycle management considera-
tions and premarket submission recommendations for AI/ML-enabled 
device software functions is promised to publish in draft form by the 
end of fiscal year 2024 [260]. 

In June of 2022, the National Heart, Lung, and Blood Institute held a 
workshop entitled “Artificial Intelligence in Cardiovascular Imaging: 
Translating Science to Patient Care” [261]. While not specific to CMR, 
the workshop hoped to address many of the same challenges discussed 
in this manuscript; that is, to identify challenges and opportunities for 
AI in cardiovascular imaging, focusing on how various stakeholders can 
support research and development to move AI from promising proofs of 
concept to robust, generalizable, equitable, scalable, and im-
plementable AI. The workshop identified both policy and technical 
needs to further advance clinical translation of AI in cardiovascular 
imaging [261]. Within this context of rapid innovation and regulatory 
challenges, the mission of FDA’s Office of Science and Engineering 
Laboratories (OSEL) is to accelerate patient access to innovative, safe, 
and effective medical devices through best-in-the-world regulatory 
science. Through the AI/ML program, OSEL scientists seek to address 
gaps related to limited training and testing data, bias, equity, and 
generalizability, develop least-burdensome metrics for the performance 
assessment of AI/ML devices in situations of high uncertainty, develop 
evaluation metrics for evolving algorithms, and develop approaches for 
the effective post-market monitoring of AI/ML-enabled medical de-
vices. OSEL develops and shares regulatory science tools (physical 
phantoms, methods, datasets, computational models, and simulation 
pipelines) to help advance medical device development and assessment  
[262]. 

4. Conclusion 

In summary, this article reviews the current landscape, challenges, 
and potential future directions of integrating AI approaches into CMR 
imaging. It emphasizes the potential for AI to address several challenges 
faced by CMR in terms of efficiency, accessibility, and manual image 
analysis and demonstrates the remarkable (and rapid) research progress 
in AI applications across various AI CMR tasks and diverse CMR mod-
alities/applications. However, despite these notable technical advances, 
there is still limited evidence of their practical value and impact in real- 
world clinical settings. To help address this gap, we discuss a roadmap 
to translate AI CMR research into routine clinical practice, aiming to 

accelerate the adoption of these techniques and to ensure their promise 
can be realized in a fair, responsible, and equitable manner. 

These considerations and recommendations emphasize the im-
portance of big, high-quality, and representative datasets for training 
and testing AI models, recognizing the challenges in dataset size, di-
versity, and quality. The role of guidelines for reporting AI CMR re-
search is also underscored to enhance study reproducibility and facil-
itate a better understanding of findings. Furthermore, the importance of 
generalizability, transparency, accountability, and explainability in the 
deployment of AI in CMR is highlighted. The article also touches upon 
industry considerations, pointing out several opportunities associated 
with the higher complexity and need for analysis of CMR, and ac-
knowledging challenges related to data privacy, compatibility between 
different AI-based methods/approaches for different tasks and the im-
portance of ensuring generalization and stable performance of products 
on a large scale. Last, it also provides insights into the US regulatory 
landscape, focusing on the US FDA's perspectives. 

In conclusion, this article emphasizes the necessity of inter-
disciplinary collaboration between MR physicists, clinicians, AI scien-
tists, and industry professionals to further advance AI CMR. This col-
laborative effort, coupled with rigorous regulatory and ethical 
considerations, is deemed essential to ensure the responsible and ef-
fective deployment of AI in routine clinical CMR workflows. The on-
going commitment of the SCMR community to prioritize these crucial 
aspects is therefore essential for the advancement of CMR through AI 
and for providing clinical evidence of their benefits. 
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