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Using smartphones to optimise and scale-up the
assessment of model-based planning
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Model-based planning is thought to protect against over-reliance on habits. It is reduced in

individuals high in compulsivity, but effect sizes are small and may depend on subtle features

of the tasks used to assess it. We developed a diamond-shooting smartphone game that

measures model-based planning in an at-home setting, and varied the game’s structure

within and across participants to assess how it affects measurement reliability and validity

with respect to previously established correlates of model-based planning, with a focus on

compulsivity. Increasing the number of trials used to estimate model-based planning did

remarkably little to affect the association with compulsivity, because the greatest signal was

in earlier trials. Associations with compulsivity were higher when transition ratios were less

deterministic and depending on the reward drift utilised. These findings suggest that model-

based planning can be measured at home via an app, can be estimated in relatively few trials

using certain design features, and can be optimised for sensitivity to compulsive symptoms in

the general population.
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Model-based or goal-directed planning is a cognitive
capacity that involves building a mental map of
potential action-outcome links and using that to make

considered, flexible and optimal decisions1,2. A consistent finding
in the literature suggests that compulsive behaviours, as seen in
Obsessive-Compulsive Disorder (OCD), addiction and aspects of
eating disorders, are associated with impairments in model-based
planning. This has been shown in online general population
samples where individuals vary on a spectrum of compulsivity3,
in clinical cohorts4,5, and is suggested to have a developmental
origin6. Mechanistically, theories suggest these deficits arise due
to a failure to create accurate internal models of the world7,8,
which leaves patients vulnerable to getting stuck performing
habits9. Although the finding is consistent, like many studies
assessing the relationship between cognition and mental health
symptoms, the effect size is small. To progress our understanding
of if and how model-based planning causally relates to compul-
sivity and develop real-world clinical or public health applica-
tions, we need to rethink how we measure it, in whom, and in
what setting. One option is to consider population approaches -
studying small behavioural effects such as this in larger samples,
in real-world settings, and where possible, repeatedly through
time. Smartphone-science is a promising way to achieve this,
though there are concerns that a departure from the experimental
control of a lab environment, coupled with changes to core design
features of cognitive tasks may come at the cost of validity,
reliability, and data quality. Indeed the latter has been a source of
considerable debate in the cognitive neuroscience literature.

In recent years, several studies have raised issues with how
alterations to key parameters of a task commonly used to assess
model-based planning, the two-step task, can affect its measure-
ment. One of the earliest studies in this area illustrated that
model-based planning is reduced when there are concurrent
working memory demands, and that this reduction depends on
individual differences in working memory capacity10. Kool and
colleagues11 gathered data on two versions of a two-step task; the
original version developed by Daw et al.,1 and a modified version,
which their simulations suggested would increase the incentive
value of engaging in model-based planning. They found that the
modified version (which included several changes to key task
parameters) indeed elicited greater model-based planning com-
pared to the original. Others have shown through simulation that
changes to reward probabilities may undermine the validity of
standard analyses of the task12. For example, in cases where
reward probabilities are unequal (i.e., one-second stage state is
more rewarding than another), simulated model-free agents can
produce behaviour that appears model-based. In another study,
they found model-based estimates were significantly greater when
participants received in-depth instruction and more practice trials
compared to the original task13. More recently, researchers
assessed the emergence of model-based planning in a task that
was initially absent of any instruction whatsoever14. They found
that only a minority of participants adopted a model-based
approach to solving a two-step task without instruction, and once
instructions were provided, model-based planning estimates rose
rapidly. Across all of these studies, an important facet remains
untested – do these task variations shift model-based planning
scores equivalently across individuals, or do alterations to task
design fundamentally change the meaning of the quantity under
study, i.e., its external validity. Recent work suggests mixed evi-
dence. Assessing differences in task motivations, Patzelt et al.,15

found that offering larger reward amounts increased mean-level
model-based planning levels, but this did not affect its association
with compulsivity. Castro-Rodrigues14, on the other hand, found
evidence to suggest that differences between OCD patients and
controls may be smaller when detailed instructions are provided,

though the sample (N= 46 OCD patients) was perhaps too small
to test this definitively.

A second and important issue is how task modifications affect
reliability, which sets a ceiling for the size of the association one
can observe with compulsivity. Test-retest estimates of model-
based planning from the traditional task have been mixed, ran-
ging from poor to good (r= [0.14–0.40])16, or non-existent to
excellent (r= [−0.10–0.91], median= 0.45)17, depending on
analytic choices. This finding is common to many tasks used for
individual difference research18 and is thought to in part be the
result of the reliability paradox, where tasks designed to examine
within-subject effects (such as Flanker, Stroop) have low between-
subject variability19. One simple way to increase reliability is to
increase the amount of data (i.e., trial number) gathered per-
participant20. While this helps, reliabilities eventually plateau,
often below an acceptable level. For example, Stroop reaction time
can become more reliable with additional trials to a point but
intraclass correlation coefficient (ICC) values plateau around
0.419. Similarly, Price et al.,21 found relatively consistent ICC
values for an attentional bias metric measured from just 48 trials
compared to an estimation from 320 trials suggesting that the
benefit of adding trials may be tenuous. Further, it is unclear if
and how reinforcement learning tasks like the two-step task
benefit from additional trials and importantly if improvements in
reliability translate into improvements in external validity. For
example, early trials might measure something qualitatively dif-
ferent from later trials, particularly in high-order cognitive tests
where rules are learned and then deployed, allowing more auto-
matic forms of behaviour to take over.

The present study aimed to address these issues by gamifying
and then optimising a commonly-used task that tracks individual
differences in compulsivity, testing if key features of task design
and trial number could boost its reliability and external validity.
This requires large samples, and so we developed a diamond-
shooting game called Cannon Blast that could be played by
members of the public, aka citizen scientists22, from anywhere in
the world in an at-home environment. Cannon Blast was
designed to be fun and repeatable, but critically it contained key
features of the classic two-step task allowing us to assess model-
based planning. We aimed to validate the game in two ways: first
by establishing that it elicits model-based behaviour similar to the
traditional task and then by demonstrating that model-based
estimates correlate across tasks. Next, we released the game to the
general public through our labs non-profit Neureka app (http://
www.neureka.ie), and by leveraging large-scale data collection,
aimed to test if the estimates of model-based planning derived
from the gamified task would show the same associations with
demographic individual difference measures such as older
age23,24, female gender3 and lower IQ and processing speed3,25

but also specific negative associations with compulsivity3,5,26.
Finally, we wanted to utilize these associations as ‘ground truth’
to assess if the external validity of model-based planning esti-
mates are affected by modifications to the task set-up. We com-
pared transition probabilities that were more or less deterministic
(80:20 vs. 70:30), used different sets of drifting reward prob-
abilities, varied concurrent task demands (i.e., the difficulty of the
diamond shooting task itself), compared earlier vs later trials of
the game and tested the impact of increasing trial numbers.

Methods
The procedure and statistical plan for both experiments described
below were not preregistered.

Ethical considerations and data protection. This research was
granted ethical approval by the Research Ethics Committee of the
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School of Psychology at Trinity College Dublin (Approval
number: SPREC072019-01). The Neureka app is a non-profit
smartphone application developed and maintained by the Gillan
Lab, Trinity College Dublin. For Experiment 1, prospective par-
ticipants received an information sheet and gave informed con-
sent through the online survey platform Qualtrics. Participants
across both experiments were required to also read the infor-
mation sheet and consent to participation embedded to the
registration process for Neureka. This described the wider sci-
entific aims of the Neureka Project, what participation involves,
terms of data use, data protection procedures, health risks,
withdrawal of data procedures and points of contact. For more
detail on the exact contexts of this information sheet provided to
participants, see Supplementary Note 1. Data collected through
Neureka is stored and processed in accordance to EU General
Data Protection Regulations.

Experiment 1
Participants. We recruited participants to complete the traditional
two-step task in a web-browser and Cannon Blast in the smart-
phone app Neureka. We targeted a minimum sample size of
N= 50, which provides 80% power to detect a medium effect
with a significance level set at p < 0.05. To allow for data-loss and
exclusions, data were collected from N= 68 participants who
were 18 years or older and have access to both smartphone and
computer devices with an internet connection. Participants were
compensated €10 upon completion of both tasks. Post exclusion
criteria, N= 57 remained for analysis (43 women (66%) and 14
men (34%) aged between 18–46 (M= 22.95, SD= 5.6)). Gender-
identification was collected in-app by asking ‘What gender do you
most identify with” and a list of seven options: male (hereafter
‘man’), female (hereafter ‘woman’), transgender male (hereafter
‘non-cisgender’), transgender female (hereafter ‘non-cisgender’),
non-binary (hereafter ‘non-cisgender’), not-listed (hereafter ‘non-
cisgender’), or prefer not to say.

Procedure. Participants were recruited and tested online. During
the sign-up process, they provided electronic consent, along with
self-reporting basic demographic (age, gender, education) and
eligibility information. They completed the traditional two-step
task in a web-browser on a laptop or desktop computer and
Cannon Blast on an iOS or Android smartphone. The order of
task was counterbalanced across subjects and the entire study
took less than 60 min.

Cannon Blast: The goal of Cannon Blast is to hit as many dia-
monds as possible in 100 shots (Fig. 1a). On each trial, partici-
pants first aimed their cannon and then selected between two
containers containing purple and pink balls. The left cannon
always contained more purple balls (80%) and the right more
pink balls (80%). In contrast to the traditional task, this transition
structure did not have to be learned or remembered; it was visibly
displayed on-screen i.e., each container possessed eight balls of
the corresponding colour and two balls of the alternate colour.
After the container was selected, a ball was randomly pulled from
this container, and was consistent with the most prominent
colour (80%, a common transition) or produced the minority
colour (20%, a rare transition) (Fig. 1b).

On what we define as rewarding trials, participants received a
good ball that exited from the cannon and could be used to hit the
diamond (Fig. 1c). There was no guarantee that a good ball would
actually hit a diamond, this depended on the participant’s aim
and timing. Alternatively, participants were unrewarded if the ball
disintegrated upon firing, thus reducing the chance of hitting a
diamond to zero. The probability of being rewarded (in other

words receiving a good ball) drifted independently over the
course of the task, much like the second-stage outcomes in the
traditional task. However, the traditional task typically utilises a
single pre-determined drifting reward probability structure for
the 200 trials of the task. To allow us to assess the potential
impact of drift dynamics on parameter estimation (in Experiment
2), Cannon Blast instead used two possible drift structures for
each block of trials. Participants were randomly assigned drift A
or drift B for each of their 100 trial blocks, leading to a total of
four reward probability drift sets combinations for Cannon Blast
participants (A-A, A-B, B-A, B-B: Fig. 1d).

The similarities and differences between the original two-step
task and our gamified Cannon Blast are presented in Supple-
mentary Table 1. Like the original, Cannon Blast consisted of 200
trials which was divided into two blocks of 100 trials. The first
block was set at an easy difficulty, and the second at a medium
difficulty. Level had no direct bearing on the core parameters-of-
interest (which container participants select, rewards, drifts etc),
and instead reflected how challenging the aim and shoot
trajectory was. However as we explore in Experiment 2, level
difficulty can be conceived of as a distraction manipulation. Easy
levels included trials where the diamond did not move, had static
obstructions that limited the angle at which it could be hit, or
where diamonds moved slowly around the screen. Medium
difficulty levels included more challenging trials with both
moving diamonds and moving obstructions (Supplementary
Table 2). While on average medium trials are more difficult than
easy (average hit rate Medium=45%, Easy=52%), there was
variation within both Easy levels (hit rates 83%, 53%, 44%, 29%)
and Medium (hit rates 75%, 20%, 39%, 45%) (Supplementary
Table 2). Reward probabilities in Cannon Blast were set higher on
average (average reward probability: AA= 0.80 [0.64–0.94],
AB= 0.72 [0.41–0.94], BA= 0.72 [0.41–0.94], BB= 0.64
[0.41–0.94]) than the original task (mean reward probability=
0.52 [0.25–0.75]) to promote enjoyment and limit frustration. In
contrast to the traditional two-step task, which includes 40
practice trials, Cannon Blast starts with a short, passive walk-
through demonstration of the task (Supplementary Figure 1).
While the traditional task design has both first- (choice of rocket)
and second-stage (choice of alien) actions, Cannon Blast has first-
stage (choice of container) actions only. The decision to remove
second-stage actions was in part done for gameplay reasons but
also has been shown to increase the importance of model-based
contributions in the first stage choice11. A final major distinction
between the tasks was the stated goal; in the traditional task,
participants are directly told to earn rewards (space treasure). In
Cannon Blast, participants are told to shoot as many diamonds as
possible, and that this can be facilitated by ensuring they
maximise rewards (good balls).

Traditional two-step reinforcement learning task: Participants
completed an adapted version of the two-step reinforcement
learning task1, developed by Decker et al.11. The contents of this
task have been described in detail in Decker, et al.27 and are
summarised Supplementary Figure 2 and Supplementary Table 1.

Data analysis
Exclusion criteria. Participants were excluded from the traditional
task if they: (a) missed more than 20% of trials (N= 2)7, (b)
responded with the same key press at the first stage of the task on
more than 95% of trials (N= 5)3. Exclusion criteria for Cannon
Blast were harmonised with these as much as possible. We
excluded participants if they had (a) missed more than 20% of
trials (N= 1) or (b) selected the same container more than 95% of
the time (N= 4). However, it is important to note that for
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criterion (a) as there was no time limit to make this response
(unlike the traditional task), participants could not miss trials due
to being too slow or disengaged (unless they quit the experiment
entirely). Notwithstanding, we noted that some trials were
missing for 2 users from our app database (presumably due to a
technical glitch) and for one of these, this exceeded the 20%
threshold and were therefore excluded. Combining all exclusion
criteria for both tasks, N= 11 (16%) participants were excluded
with N= 57 remaining for analysis (37 women, aged between
18–32 (M= 22.01, SD= 4.12)).

Quantifying model-based planning. All analysis were performed
through RStudio version 1.4.1106 (http://cran.us.r-project.org).
Across both task versions, data distribution was assumed to be
normal (Fig. 2a, b) but this was not formally tested. Hierarchical
logistic regression (HLR) models, which are mixed effects models
for a binary outcome variable, were conducted using mixed
effects models implemented with the lme4 package in R. The
model tested if participants’ choice behaviour in the first stage
state (coded as switch: 0 and stay: 1, relative to their previous
choice) was influenced by reward (coded as unrewarded: −1 and
rewarded:1), transition (coded as rare: −1 and common: 1), and
their interaction, on the trial preceding. Within participants
factors (main effect of reward, transition and their interaction)
were modelled as random effects. Model-based index (MBI) is
quantified as the interaction between Reward (traditional task:

space treasure vs. dust; Cannon Blast: good vs. dud ball) and
Transition (traditional task: common vs rare transition to a planet
from the chosen rocket; Cannon Blast: common vs rare ball
colour appearing from the chosen container). In line with prior
work on the traditional task, we also quantified model-free index
(MFI: the main effect of Reward) and choice repetition (the
Intercept of the model). Individual estimates for each parameter
(MBI, MFI, choice repetition (hereafter ‘stay’) and transition)
were extracted for each task and compared across tasks using
Pearson correlation. We assessed the internal consistency of each
task using split-half correlation (odds-even split method) using
the guidelines from Cicchetti28: <0.4 poor, 0.4–0.7 fair, 0.7–0.9
good and >0.9 excellent.

Experiment 2
Participants. Between June 2020 and October 2022, we collected
data from 7466 unpaid Citizen Scientist users of the Neureka app.
After applying exclusions detailed below, N= 5005 remained for
analysis with 3225 (64%) women, 1683 (34%) men, 82 (2%) who
did not identify as cisgender (including transgender, non-binary
or not listed) and 15 who preferred not to disclose (0.3%)
(Supplementary Table 3). The sample included a wide age range
of 18–84 (M= 45.38, SD= 14.54) and 64% had attained post-
secondary degree or higher (N= 3220). The sample was well-
powered for individual difference analysis; a priori power analysis
based on a prior paper3 indicated that a sample size of N= 541

80%
(common)

80%
(common)20%

(rare)

Outcome 

a b

c

d Drift A-A

Drift A-B

Drift B-A

Drift B-B

Fig. 1 Task structure of Cannon Blast, a smartphone game to assess model-based planning. a In this game, participants’ goal is to shoot as many
diamonds as possible before their total number of shots (100 per block) runs out. To do so, they must aim a central cannon and then select which circular
container to draw from. b Purple and pink balls dynamically bounce around each of the flanked containers which depict the probability of a pink or purple
ball being released. For example, the left container displays 8 purple balls and releases a purple ball 80% of the time (a common transition) and displays 2
pink balls, giving a pink ball on 20% of trials (a rare transition). c The purple and pink balls have different values that dynamically change throughout the
game. The value of the ball is defined as the probability of it being a ‘good ball’, i.e., one that remains intact after firing (rewarding trial), or a dud ball (non-
rewarding trial) that explodes shortly after being fired, and therefore cannot reach the diamond. d We included 2 drifting reward probabilities (A, B) that
quantitively differed on various metrics (see Supplementary Table 6). Participants were randomly assigned a reward drift set at each block leading to four
distinct drift set combinations (A-A, A-B, B-A, B-B).
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participants was required to achieve 80% power (two-tailed test,
p < 0.05) in detecting the association between self-reported
compulsivity symptoms and model-based planning measured
from the traditional task using an online paid sample, controlling
for covariates of age, gender and IQ (r= 0.12).

Procedure
Cannon Blast: Data was collected from citizen scientists who
downloaded the Neureka app from the Play Store (Android users)
or Apple’s App Store (iPhone users), provided informed consent
and completed tasks designed to help scientists learn about the
brain. Participants completed Cannon Blast within the Neureka
app in two ways: as part of a science challenge called Risk Factors
designed to measure aspects of cognition and individual-level risk
factors, or as a stand-alone challenge within the Free Play section
of the app. Risk Factors included two other games along with a
battery of self-report sociodemographic and lifestyle ques-
tionnaires which were used to collect information on participants
age, gender and education. The order in which games and
questionnaires were presented where pseudo-randomised such
that a game was always delivered first, followed by alternating
blocks of questionnaires and games. The majority of users com-
pleted the version of Cannon Blast described in Experiment 1
(N= 2884), but N= 2138 (gathered from July 2021 onwards)
completed a version where the transition structure was set to
70:30, allowing us to examine the impact of transition probability
on model-based planning. In Free Play participants could

reengage with Cannon Blast as a stand-alone game. Here, parti-
cipants selected a difficulty level of their choice and completed
100 trials in that setting. This allowed us to examine the test-
retest reliability of model-based planning, assess how collecting
more trials per participant affects the reliability and validity of
estimates, and disentangle the impact of block difficulty (Easy,
Medium) from order effects (1st Block, 2nd Block). An additional
Hard difficulty level was available in the Free Play section only,
with even more challenging diamond movements and obstacles to
navigate.

Self-report psychiatric questionnaires and transdiagnostic factors:
The Neureka app contains another science challenge called My
Mental Health, where participants can complete validated ques-
tionnaires assessing nine aspects of mental health (209 items). Of
the N= 5005 participants for whom we had Cannon Blast data,
N= 1451 additionally completed this section. The nine ques-
tionnaires were used to measure alcohol dependency (Alcohol
Use Disorder Identification Test, AUDIT:29), apathy (Apathy
Evaluation Scale, AES:30), depression (Self-rated Depression
Scale, SDS:31), eating disorders (Eating Attitudes Test, EAT-
26:32), impulsivity (Barratt Impulsivity Scale, BIS-11:33), obsessive
compulsive disorder (Obsessive Compulsive Inventory Revised,
OCI-R:34), schizotypy (Short Scale for Measuring Schizotypy,
SCZ:35), social anxiety (Liebowitz Social Anxiety Scale, LSAS:36)
and trait anxiety (Trait portion of the State-Trait Anxiety
Inventory (STAI:37. All questionnaires were presented to

a

dc e

b

Fig. 2 Validation of Cannon Blast against the traditional two-step task (N= 57). Box-plot of stay probabilities across all trials and all participants from
(a) the tradition task and (b) Cannon Blast. Each dot represents a participant. c Model-based indices (MBI) from the traditional two-step task positively
correlated with model-based indices derived from Cannon Blast. Internal consistency of model-based indices in traditional task (d) and Cannon Blast (e)
using the split-half odds-even reliability approach. For c–e, each dot represents a participant, the red line indicates line of best fit while grey area represents
95% confidence interval.
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participants in a randomized order. Mean and standard devia-
tions of the mental health questionnaire total scores along with
their associations with age, gender and education are presented in
Supplementary Table 4. Internal consistency of all questionnaires
ranged from good to excellent, Cronbach’s α= [0.87–0.95]. Prior
work has shown that these item level responses can be sum-
marised as three transdiagnostic factors Anxious-Depression
(AD), Compulsivity and Intrusive Thought (CIT), and Social
Withdrawal (SW)3. We applied the weights from Gillan et al.3 to
the Neureka data for all analyses reported here, but additionally
repeated the factor analysis to ensure that there were no major
differences across the samples. Correlations between the weights
derived from Gillan, et al.3 and the present study were very high
for each dimension, r= [0.95–0.97]. Noteworthy, there was a
typographical error in the response options. Sensitivity analysis
presented in the online supplement suggest this has little bearing
on the results, and indeed the correlation across derived factors
from the two datasets suggests a high degree of consistency
(Supplementary Method 2). Other science challenges within the
app collected data to derive transdiagnostic scores of compulsivity
and anxious-depression using a reduced set of items from those
scales. Previous work has validated this reduced set against the
original set of items38. Using these items, we had task and
compulsivity data from N= 2369 participants. We used data
from N= 1451 who had compulsivity score from the full set of
items to test for independent clinical associations with MBI along
with testing a covariate model with anxious-depression, com-
pulsivity and social withdrawal. We then used data of N= 2369
with a compulsivity score from reduced items in the analyses
related to associating with game play metrics and also for testing
the impact of task-optimizations on external validation.

Data analysis
Exclusion criteria. As in Experiment 1, participants were excluded
for (a) missing more than 20% trials on their first session
(N= 2394, most of whom started, but did not complete the
game), and (b) selecting the same container on more than 95% of
the trials (N= 797). A further N= 48 were excluded for having
incomplete demographic data required for external validation
leaving N= 5005 remaining for analysis (33% data loss).

Quantifying model-based behaviour. We used the same basic HLR
as in Experiment 1 for all analyses. Data distribution was assumed
to be normal (Fig. 3a) but this was not formally tested. Additional
analyses comparing the reliability and external validity of alter-
native approaches of deriving model-based planning scores as
point estimates (PE) and using Hierarchical Bayesian modelling
(HB) can be found in the supplementary material (Supplementary
Method 3, Supplementary Table 18). Overall the results were
highly similar, but there was an advantage for the HLR and so this
estimation method was brought forward for analyses (Supple-
mentary Method 4, Supplementary Table 19). Participant’s indi-
vidual regression co-efficient for the interaction between Reward
and Transition (the model-based index, MBI) were extracted
from the basic HLR and brought forward for analyses (e.g., to
assess association with clinical and individual differences, test the
impact of task-modifications and to assess split and test-retest
reliability).

Examining how task parameters affect model-based estimates. We
carried out a series of analyses designed to test if alterations to
task parameters affect (i) mean MBI levels, (ii) its external
validity: defined as the associations between MBI and individual
difference measures of compulsivity, age, gender and education
and (iii) it’s internal consistency using split-half correlation and/

or test-retest reliability using intraclass coefficients. The structure
of these analyses varied across parameter manipulations due to
between vs within-subject manipulations and data availability.
First, we examined transition structure, which was manipulated
between-subject. As fewer participants experienced the 70:30
(N= 2138) transition ratio compared to the 80:20 (N= 2884), we
down-sampled the 80:20 group and propensity score matched
them on age, gender and education using the MatchIt R package
(for descriptive information on this matching see Supplementary
Table 3). Secondly, we manipulated task difficulty and order
within-subject. We tested for differences in model-based planning
estimates during the Easy (1st Block) vs. Medium (2nd Block)
trials, and complemented this with analysis of Free Play data. As
each block consisted of just 100 trials, we used the Spearman-
Brown prophecy formula to assess reliability which allows for
corrections when trial number is reduced16,39: corrected relia-
bility = [2*reliability] / [1+reliability]. A subset of participants
(N= 785) had repeated plays of Cannon Blast, accessed in the
Free Play section of the app. These data allow us to disentangle
practice/order effects from difficulty. Descriptive information
relating to these Free Play sessions are presented in Supplemen-
tary Table 5. Thirdly, the classic version of this task includes a
single drift sequence that all subjects experience and little is
known about the implications of using different sequences. To
address this, we randomised participants (i.e., between subject) to
possible drifting reward probability conditions that differed in
several potentially important dimensions, including their distin-
guishability, average reward rate and the changeability of reward
probabilities (Supplementary Table 6). To avoid a wash-out of
effects we tested the impact of drifts experienced in the first block
of their first play. Also, to keep data as homogenous as possible,
we decided to implement in a participants first play, only two out
of the possible ten reward drifts used in app. In a between-
subjects design, participants were either assigned Drift A
(N= 2139) or Drift B (N= 2345). In repeated plays, participants
were randomly assigned to one of the ten possible drifts (Drift A-
J, Supplementary Figure 3). Unfortunately at the time of sub-
mission we did not have the sufficient power to present work
using the other eight possible drifts. Finally, we tested the impact
of trial number on model-based estimates. To do this, we
examined within-subjects data from those who played at least 300
trials of Cannon Blast (N= 716). Here, we estimated MBI with
varying trials collected per participant starting at 25 trials and
increasing in bins of 25 trials until 300 trials.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Construct validity and reliability of Cannon Blast. Cannon
Blast embeds the classic two-step task structure (i.e., drifting
rewards, a probabilistic transition structure) within a diamond
shooting game. In this game, users aim a cannon at a diamond
presented on screen, which might be static, moving around the
screen or partially obstructed, depending on the difficulty level.
Next, they select which of two containers they want to draw a ball
from. The containers each have a mix of purple and pink balls;
one has 80% pink balls and the other 80% purple, corresponding
directly to the probability that a ball of that colour will be
released. Not all balls work; some explode upon being released
from the cannon. This is partially predictable from the colour of
the ball, whereby the chances that a pink/purple ball will explode
drifts slowly and independently over the course of the task.
Unlike the traditional task, where rewards are an end onto
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themselves, in Cannon Blast, rewards (i.e., a good ball to shoot
with) have value insofar as they allow the user to shoot the dia-
mond. This means there are two potential forms of reward in this
task – getting a good ball and hitting the diamond. For clarity, we
define Reward in Cannon Blast as the former, but unpack the
impact of the latter on choice in our later analyses. To validate the
task, 57 paid participants played Cannon Blast and the Tradi-
tional version of the task. Both tasks demonstrated a significant
main effect of Reward (model-free index, hereafter ‘MFI’) and a
Reward x Transition interaction (model-based index, hereafter
‘MBI’) (Table 1, Fig. 2a). In both tasks, participants tended to
repeat choices across trials (i.e., a positive intercept), but the tasks
differed in the main effect of transition, which was positive and
negative in the traditional and gamified tasks respectively. To
directly compare behaviour across the two tasks, an analysis of
the entire dataset was conducted with Task Type (Cannon Blast,
Traditional) as a fixed effect. This revealed a number of differ-
ences across tasks. Participants playing Cannon Blast tended to
repeat their choices more often, they were more model-based, and
less likely to stay following a common transition (Table 1). There
was a moderate positive association between MBI derived from
Cannon Blast and the Traditional task (r(55)= 0.40, p= 0.002,
95% CI= [0.16, 0.60], Fig. 2b). Split-half reliability for MBI were
similar for both the traditional (r(55)= 0.81, p < 0.001, 95%

CI= [0.70, 0.88]) and Cannon Blast (r(55)= 0.78, p < 0.001, 95%
CI= [0.66, 0.87], Fig. 2c).

Next, we replicated the findings reported above in a larger
cohort of unpaid citizen scientists (N= 5005) who played
Cannon Blast after downloading the smartphone app Neureka.
There was evidence of model-free behaviour (main effect of
Reward: β= 0.47, 95% CI= [0.45, 0.48], SE= 0.01, p < 0.001),
model-based behaviour (Reward x Transition: β= 0.27, 95%
CI= [0.25, 0.28], SE= 0.01, p < 0.001), an overall tendency to
repeat choices (Intercept: β= 1.33, 95% CI= [1.30, 1.35], SE=
0.01, p < 0.001), and participants were more likely to stay
following a rare transition (Transition: β=−0.08, 95% CI=
[−0.07, −0.08], SE= 0.00, p < 0.001) (Fig. 3a; Supplementary
Table 7). Internal consistency of the MBI was lower than in the
smaller paid cohort (r(5003)= 0.65, p < 0.001, 95% CI= [0.63,
0.67], Fig. 3b). An intra-class correlation (ICC) was used to assess
the test-retest reliability of the MBI from those who had played at
least 4 blocks of Cannon Blast (i.e., 400 trials, N= 423) within a
30-day timeframe. Specifically, we compared MBI from their first
session of Cannon Blast (200 trials, which were completed
alongside questionnaires and other games) with their next 200
trials (completed in a section of the app where participants could
repeatably play Cannon Blast exclusively). We found test-retest
reliability estimates were moderately associated (ICC1:

a

Symptoms Dimensions

b

d e

c

Fig. 3 Large-scale external validation of Cannon Blast in citizen scientists (N= 5005). a Box-plot of stay probabilities across all trials and all participants
for Cannon Blast (N= 5005). Each dot represents a participant. b. Internal consistency of model-based index (MBI) using split-half (odds vs evens)
method. c. Test-retest reliability of MBI from N= 423 who had 400 trials of Cannon Blast using intraclass correlation coefficient (ICC). MBI estimates from
participants first 200 trials (Baseline Trials) plotted against MBI estimates from participants next 200 trials (Follow-up Trials). For b, c, each dot represents
a participant, the red line indicates line of best fit while the grey area represents 95% confidence interval. d. Model-based associations with individual
differences (age, gender, and education) in N= 5005 citizen scientists. Reductions in MBI associated with older adults, women and those less educated. E.
Model-based associations with individual clinical questionnaires and transdiagnostic dimensions in a sub-sample (N= 1451) who had completed a battery
of self-report clinical questionnaires. Greater levels of eating disorder and impulsivity symptom severity were associated with deficits in MBI. A
transdiagnostic dimension of Compulsivity and Intrusive Thought (CIT) showed a specific association relative to Anxious-Depression (AD) and Social
Withdrawal (SW). For d, e, error bars reflect the standard errors of mean. Both analyses controlled for age, gender, and education. *p < 0.05; **p < 0.01;
p < 0.001***.
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r(421)= 0.63, p < 0.001, 95% CI= [0.57, 0.67], Fig. 3c). Mean
time elapsed between first and last session was 6.12 (±6.93) days,
with a median interval of 4 days.

External validation of Cannon Blast. Using data collected from
citizen scientists (N= 5005) playing Cannon Blast remotely, we
replicated previous lab-based associations between MBI and
individual differences (Fig. 3d, Supplementary Table 8). Older
adults (β=−0.02, 95% CI= [−0.03, −0.01], SE= 0.00,
p < 0.001), women (β=−0.02, 95% CI= [−0.03, −0.01], SE=
0.00, p= 0.001), and those with less education (β=−0.04, 95%
CI= [−0.05, −0.03], SE= 0.00, p < 0.001) all showed reductions
in MBI. N= 1451 completed an additional section of the app that
contained a comprehensive battery of self-report mental health
questionnaires. We observed associations between MBI and eat-
ing disorder symptoms (β=−0.02, 95% CI= [−0.04, −0.00],
SE= 0.01, p= 0.031) and impulsivity (β=−0.02, 95% CI=
[−0.04, −0.00], SE= 0.01, p= 0.026), controlling for age, gen-
der, and education (Fig. 3e, Supplementary Table 8). We refac-
tored the raw questionnaire items (209 items) into three
transdiagnostic dimensions and defined them as; Anxious-
Depression (AD), Compulsivity and Intrusive Thought (CIT)
and Social Withdrawal (SW) based off previous work3. These
factors were entered together as IVs in a model predicting MBI
with age, gender and education controlled for. Consistent with
prior work using the traditional task, we found a specific pattern
of a statistically significant association between MBI and CIT
(β=−0.03, 95% CI= [−0.05, −0.01], SE= 0.01, p= 0.004) but
no statistically significant evidence for the association between
MBI and AD (β=−0.00, 95% CI= [−0.03, 0.02], SE= 0.01,
p= 0.733) or SW (β= 0.02, 95% CI= [−0.00, 0.04], SE= 0.01,
p= 0.106) (Fig. 3e, Supplementary Table 8). For completeness, we
also assessed the association of these individual difference mea-
sures and model-free and stay behaviour. There was no statisti-

cally significant evidence for the associations between individual
differences or clinical associations with the tendency to repeat
choices (Supplementary Table 9). However, individual differences
in model-free learning behaved similarly to model-based plan-
ning in our task. The MFI was statistically associated with age,
gender, education, and compulsivity, in the same direction as
MBI (Supplementary Method 1; Supplementary Table 9).

Broader patterns of gameplay by citizen scientists. On average
participants received rewarding good balls on 145/200 trials
(~75%). Consistent with the set-up of the task, the more parti-
cipants utilised a model-based approach, the more good balls they
received (β= 1.76, 95% CI= [1.21, 2.31], SE= 0.28, p < 0.001);
there was no statistically significant evidence for individual dif-
ferences in model-free learning (β= 0.27, 95% CI= [−0.10,
0.63], SE= 0.19, p= 0.149). Those with less education were less
likely to receive good balls (β=−0.26, 95% CI= [−0.43, −0.09],
SE= 0.09, p= 0.003) and this trended in the same direction for
women (β=−0.36, 95% CI= [−0.73, 0.01], SE= 0.19,
p= 0.057). There was no statistically significant evidence for the
association between receiving good balls and age (β=−0.13, 95%
CI= [−0.31, 0.04], SE= 0.09, p= 0.134). In N= 2369 partici-
pants who completed an abbreviated compulsivity scale (20 items
versus 209, see Methods38), we found no statistically significant
evidence for an association between number of good balls
received and CIT (β= 0.16, 95% CI= [−0.22, 0.53], SE= 0.19,
p= 0.416) or AD (β=−0.06, 95% CI= [−0.43, −0.09], SE=
0.20, p= 0.762). In terms of hitting, older adults (β=−3.39, 95%
CI= [−3.72, −3.07], SE= 0.17, p < 0.001), women (β=−9.48,
95% CI= [−10.16, −8.79], SE= 0.35, p < 0.001), and those less
educated (β=−0.47, 95% CI= [−0.79, −0.16], SE= 0.16,
p= 0.003) were less likely to hit the diamond (considering only
trials with good balls). This was also the case for those with
greater self-report CIT (β=−1.29, 95% CI= [−1.88, −0.71],
SE= 0.30, p < 0.001), while AD was associated with being more
likely to hit the diamond (β= 0.89, 95% CI= [0.32, 1.47], SE=
0.29, p= 0.002), controlling for age, gender, and education. Both
model-based (β= 6.57, 95% CI= [5.58, 7.55], SE= 0.50,
p < 0.001) and model-free (β= 4.38, 95% CI= [3.72, 5.03],
SE= 0.33, p < 0.001) behaviours were positively associated with
hitting the diamond, suggestive of a general attention/engagement
effect.

The diamond hitting task was fairly challenging in that on
trials where participants received good balls (and therefore a hit
was possible), they hit the target on just 36.5% of shots. This
would also mean that on ~27% of all trials, users received not
only a good ball, but also received the additional reward of hitting
a diamond, which increased their score. This additional reward
could plausibly impact model-based/free behaviour by amplifying
the reward signal on those trials. Another possibility however is
that because the diamond moves location after it is successfully
hit, this could in fact interrupt learning and so have the opposite
effect. We tested this by entering Diamond Hit into the model
with reward and transition on stay behaviour. We found no
statistical significant evidence for a main effect of lagged diamond
hit on stay behaviour (β=−0.05, 95% CI= [−0.10, 0.00],
SE= 0.03, p= 0.053). Similarly, on trials following a diamond
hit, users had reduced model-free behaviour (Reward*Diamond
Hit interaction, β=−0.14, 95% CI= [−0.19, −0.09], SE= 0.03,
p < 0.001), and reduced model-based behaviour (Reward *Transi-
tion* Diamond Hit interaction, β=−0.09, 95% CI= [−0.14,
−0.04], SE= 0.03, p < 0.001) (Supplementary Table 10). Together
these findings suggest that the receipt of a diamond functioned to
impair learning, not potentiate it.

Table 1 Mixed effects logistic regression analysis of the
Traditional Task and Cannon Blast.

β (SE) z value p-value

Traditional Task
Intercept 1.11 (0.13) 8.84 <0.001***

Reward 0.35 (0.05) 7.08 <0.001***

Transition 0.11 (0.04) 2.58 0.010**

Reward: Transition 0.32 (0.07) 4.82 <0.001***

Cannon Blast
Intercept 1.51 (0.11) 13.31 <0.001***

Reward 0.48 (0.07) 6.61 <0.001***

Transition −0.11 (0.05) −2.19 0.030*

Reward: Transition 0.52 (0.08) 6.13 <0.001***

Full Comparison Model
Intercept 1.32 (0.09) 15.31 <0.001***

Reward 0.41 (0.05) 8.86 <0.001***

Transition −0.01 (0.04) −0.16 0.873
Task −0.21 (0.09) −2.46 0.014*

Reward: Transition 0.42 (0.06) 6.64 <0.001***

Reward: Task −0.06 (0.04) −1.48 0.142
Transition: Task 0.11 (0.03) 3.98 <0.001***

Reward: Transition:
Task

−0.10 (0.04) −2.43 0.015*

N= 57.
*p < 0.05, **p < 0.01, ***p < 0.001.
SE Standard Error.
Dependent variable in the model ‘Stay’ coded as (1,0: Stayed, Switched).
Independent variables in the model coded as: Reward (1,-1: Rewarded, Non-Rewarded),
Transition (1,-1: Common, Rare); Task (1,-1: Traditional, Cannon Blast).
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Effect of task modifications on the external validity and relia-
bility of model-based planning
Transition structure. The initial set of participants completed a
version of the task with an 80:20 transition ratio (i.e., probability
of purple/pink balls from the respective containers). To test if this
adjustment to transition ratio impacted estimates of model-based
planning, we adjusted this in-app to 70:30 (as per the classic two-
step task) and continued to gather data. We subsampled our total
dataset to achieve two age, gender, and education-matched
samples of N= 2138 that completed the 80:20 and 70:30 versions,
respectively. Participants in both groups had a main effect of
Reward, Transition, and a Reward x Transition interaction
(Supplementary Table 7). The 80:20 transition ratio yielded sig-
nificantly greater MBI (M= 0.30, SD= 0.34) compared to those
who experienced the 70:30 version (M= 0.22, SD= 0.31),
t(4233.1)= 8.40, p < 0.001 (Table 2, Fig. 4a(i)). However, transi-
tion ratio structure did not affect its reliability with both versions
showing similar split-half reliability (r(2136)= 0.67, p < 0.001,
95% CI= 0.64–0.69 for 80:20 and r(2136)= 0.63, p < 0.001, 95%
CI= 0.61–0.66 for 70:30, Table 2).

From this sample, N= 2071 participants (80:20: N= 1020,
70:30: N= 1051) had compulsivity scores and demographic
information available. A significant negative association between
MBI and CIT was observed in the 70:30 group (β=−0.05, 95%
CI= [−0.07, −0.03], SE= 0.01, p < 0.001) but there was no
statistically significant evidence for the same relationship in the
80:20 group (β=−0.01, 95% CI= [−0.03, 0.01], SE= 0.01,
p= 0.374) (Fig. 4b(i); Supplementary Table 11). This difference
was confirmed by entering Transition Ratio (80:20, 70:30) into
the model, where we found a significant CIT x Transition Ratio
interaction (β=−0.02, 95% CI= [−0.03, −0.00], SE= 0.01,
p= 0.022, Supplementary Table 12). In terms of the other
individual differences, we found a significant Gender x Transition
interaction in the full comparison model (β= 0.02, 95% CI=
[0.01, 0.04], SE= 0.01, p= 0.009, Supplementary Table 12). This
was driven by a negative association between MBI and Gender in
80:20 ratio (β=−0.04, 95% CI= [−0.06, −0.02], SE= 0.01,
p= 0.001, Supplementary Table 11) but this was not statistically
significant in the 70:30 group (β= 0.00, 95% CI= [−0.02, 0.03],
SE= 0.01, p= 0.689, Supplementary Table 11). We found no
statistical significant evidence that transition ratio effects the
relationship between MBI and age (β=−0.00, 95% CI= [−0.02,
0.01], SE= 0.01, p= 0.658) or education (β= 0.00, 95% CI=
[−0.01, 0.02], SE= 0.01, p= 0.874) (Supplementary Table 12).

Difficulty and Order Effects. Difficulty in Cannon Blast referred to
how challenging the diamond shooting task was on a given trial,
with harder levels requiring more timing and spatial reasoning to
hit the target than easy trials (where the diamond was unob-
structed or static). We hypothesised that this would put a strain
on the cognitive resources required for maintaining an accurate
model of the task environment and therefore impede model-
based planning. As part of their first play of Cannon Blast during
the Risk Factors section, all participants completed two blocks of
trials; a block of 100 Easy difficulty trials (Easy-1st Block), fol-
lowed by a block of 100 Medium difficulty trials (Medium-2nd

Block). In each of the two blocks (Easy-1st Block, Medium-2nd

Block), we observed main effects of Reward, Transition, and their
interaction (Supplementary Table 7). However, we found MBI
estimates were significantly larger in the Easy-1st (M= 0.30,
SD= 0.32) than Medium-2nd (M= 0.22, SD= 0.29) blocks,
t(5004)= 20.16, p < 0.001 (Table 2, Fig. 4a(ii)). Because difficulty
and order are confounded with one another, we cannot confirm if
this reduction was driven by increased task difficulty, order, or
both. To isolate the effect of difficulty from order, we turned to
data from the Free Play section of the app, where a subset of
participants re-engaged with Cannon Blast at a chosen difficulty
level for short games of 100 trials. We compared their initial play
(first play) at each difficulty level (Easy, Medium) with their next
play (second play) of that difficulty. In N= 689 participants who
had completed two sessions of Cannon Blast at an Easy difficulty,
we found MBI was greater at their first play (M= 0.32, SD=
0.33) compared to their second (M= 0.21, SD= 0.23),
t(688)= 8.91, p < 0.001. Importantly, we did not find this dif-
ference when we repeated this analysis in N= 556 who had two
sessions of play at Medium difficulty (first play (M= 0.24,
SD= 0.33); second play (M= 0.25, SD= 0.33), t(555)=−0.59,
p= 0.552). This suggests that our difficulty manipulation did not
affect model-based planning, but that there was an effect of order
–MBI estimates are greatest during the first play of Cannon Blast,
which reduces and stabilises across subsequent sessions. To
confirm this, we compared model-based estimates in N= 335
who had sessions at both difficulties (Easy, Medium) and at two-
time points (First play, Second play). We found MBI at Easy-First
play (M= 0.33, SD= 0.35) was significantly larger than all other
times, including Medium-First play (M= 0.25, SD= 0.34,
p= 0.002), Easy-Second play (M= 0.22, SD= 0.23, p < 0.001),
and Medium-Second play (M= 0.25, SD= 0.32, p= 0.002). More
evidence for the uniqueness of the first block in which people play

Table 2 The impact of different task modifications on mean-level model-based estimates and its reliability.

N MBI Score Split-half [95%CI]a t/F

M(SD) Range

Overall Task n/a
5005 0.26 (0.33) [−0.49–2.26] 0.65 [0.63−0.67]

Transition Ratio (Between-subject)b 8.40***

80:20 2138 0.30 (0.34) [−0.47–2.03] 0.67 [0.64−0.69]
70:30 2138 0.22 (0.31) [−0.45–2.16] 0.63 [0.61−0.66]
Difficulty/Order (Within-subject) 20.16***

Easy/1st Block 5005 0.30 (0.32) [−0.49–1.90] 0.71 [0.71−0.76]
Medium/2nd Block 5005 0.22 (0.29) [−0.53–1.92] 0.68 [0.66−0.70]
Reward Drift Set (Between-subject) −5.33***

Drift A/1st Block 2395 0.28 (0.32) [−0.46–1.84] 0.74 [0.71−0.76]
Drift B/1st Block 2610 0.33 (0.33) [−0.51–1.93] 0.69 [0.66−0.71]

aData was split using odds-evens method, reporting Pearson R.
bSubsample of total dataset to achieve two age, gender and education-matched samples.
***p < 0.001.
MBI Model-based Index, M Mean, SD Standard Deviation, CI Confidence Interval.
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comes from an analysis of test re-test reliability of task sections.
MBI estimated from the Easy-1st Block of the game was weakly
associated with their second sessions at Easy (N= 689, ICC1=
0.35). The same analysis of Medium plays yield higher reliability
(N= 556, ICC1= 0.51) (Supplementary Table 13). In terms of
reliability within each block, we found comparable split-half
reliability estimates (Easy-1st Block: r(5003)= 0.72, p < 0.001,
95%CI= 0.70–0.74; Medium-2nd Block r(5003)= 0.68, p < 0.001,
95%CI= 0.66–0.70, Table 2).

Having established mean-level differences across the blocks of
the task, we next tested if the observed relationships with
compulsivity, age, gender, and education varied across these
blocks (Easy-1st Block, Medium-2nd Block). In each block, we
found deficits in MBI were associated with greater compulsivity,
older adults, and those with less education (Fig. 4b(ii); Supple-
mentary Table 11). In the full comparison model where
Difficulty/Order (Easy-1st Block, Medium-2nd Block) was entered
into the model, we found no statistical significant evidence that
Difficulty/Order impacts the association between MBI and
compulsivity (β= 0.00, 95% CI= [−0.01, 0.01], SE= 0.00,
p= 0.476). There was a significant interaction between Age x
Difficulty/Order (β= 0.01, 95% CI= [0.00, 0.02], SE= 0.00,
p= 0.017) and between Education x Difficulty/Order (β= 0.01,
95% CI= [0.00, 0.01], SE= 0.00, p= 0.032), such that the
association between MBI and age and MBI and education were
greater when estimated from the Easy-1st Block (Supplementary
Table 12).

Reward Drifts. At each block, participants were randomly
assigned to one of two drift sets (Drift A, Drift B). It is important
to note that these drifts differed in more than one dimension
(Fig. 1d); but descriptively, Drift A included two relatively stable
reward probabilities (SD: purple= 0.053, Pink= 0.049) and
relatively high reward rates (purple= 0.845, pink= 0.748), with
purple balls outperforming pink, though at times there was very
little evidence to distinguish the most rewarding ball colour. Drift
B, in contrast, had lower overall reward rates (purple= 0.774,
pink= 0.501). Purple and pink balls started out with a similar
level of reinforcement and throughout the 100 trials the value of
the purple steadily increased, while pink remained low (close to
0.5). Participants were randomly assigned their drifts indepen-
dently across blocks, creating four possible reward drift combi-
nations: A-A, A-B, B-A and B-B for their first 200 trials of the
game. To avoid washing out effects in the mixed conditions (A-B,
B-A), we compared A and B in the 1st Block only (100 trials).
N= 2139 were randomly assigned Drift A and N= 2345 Drift B.
In both drift sets, we observed main effects of Reward, Transition,
and their interaction (Supplementary Table 7), but MBI estimates
were significantly larger in those who received Drift B (M= 0.33,
SD= 0.33) compared to Drift A (M= 0.23, SD= 0.31),
t(4475)=−5.33, p < 0.001 (Table 2, Fig. 4a(iii)).

N= 1135 in the Drift A group and N= 1234 in Drift B group
had compulsivity scores and demographic information. We found
a negative association between MBI and compulsivity when
estimated in those who experienced Drift A (β=−0.05, 95%

Fig. 4 Impact of task modifications on model-based estimates and its association with compulsivity and individual differences. a Distribution and mean
value of model-based scores across (i) transition ratio, (ii) difficulty/order, and (iii) reward drift set. Mean model-based scores were larger when estimated
from an 80:20 transition ratio structure compared to 70:30, in easy/1st play compared to Medium/2nd play and in those who experienced Drift set B
compared to Drift set A. b Model-based associations with compulsivity (CIT) and individual differences (age, gender and education (‘Less Edu’)) across (i)
transition ratio, (ii) difficulty/order, and (iii) reward drift set. The association between greater self-report compulsivity and MBI was greater when
estimated from 70:30 transition ratio structure and using drift set A. Error bars reflect standard errors of the mean. *p < 0.05; **p < 0.01; p < 0.001***.
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CI= [−0.07, −0.03], SE= 0.01, p < 0.001, Supplementary
Table 11), but no statistically significant evidence for this
association when estimated from Drift B (β=−0.01, 95%
CI= [−0.03, 0.01], SE= 0.01, p= 0.540). In a full comparison
model where Drift (Drift A, Drift B) was entered into the model,
this difference was confirmed by a significant CIT x Drift
interaction (β= 0.02, 95% CI= [0.01, 0.04], SE= 0.01, p= 0.002,
Supplementary Table 12). We also observed a significant Age x
Drift set interaction (β= 0.02, 95% CI= [0.00, 0.03], SE= 0.01,
p= 0.024, Supplementary Table 12), with estimates between age
and MBI greater when estimated from those in Drift A.

Trial Number. To test the impact of increasing the total number
of trials used to estimate MBI per participant, we generated each
participant’s MBI several times, starting with a participant’s first
25 trials and increasing by 25 trials in each iteration, until 300

trials per participant was reached. In all cumulative trial number
sets, we observed main effects of Reward, Transition, and their
interaction (Supplementary Table 15). This was done in the sub-
sample of participants who had 300 trials of Cannon Blast
(N= 716). We found there was overall a reduction in MBI as trial
number increased (β=−0.02, 95% CI= [−0.04, 0.00], SE= 0.01,
p= 0.004, Figure 5ai, Supplementary Table 16). As expected,
increasing the amount of data collected per participant improved
internal consistency of MBI estimates; reliability at 25 trials was
r(714)= 0.41, p < 0.001, 95% CI= 0.35−0.47 and increased to
r(714)= 0.71, p < 0.001, 95% CI= 0.68–0.75 at 300 trials (Fig-
ure 5bi; Supplementary Table 14). However, in terms of external
validity, there was no statistical evidence that the association
between MBI and compulsivity was impacted by additional trials
(CIT x Trial Number: β=−0.00, 95% CI= [−0.00, 0.00], SE=
0.00, p= 0.819, Figure 5ci, Supplementary Table 17), which was

Fig. 5 The impact of increasing number of trials on mean-level model-based estimates, its reliability and their association with individual differences
(N= 716). a Mean MBI estimated with (i) cumulative trials i.e., increasing trial numbers sequentially by 25 at a time, until 300 trials per participant was
reached, and (ii) binned trials i.e., bins of 25 trials sampled sequentially through the task, in chronological order. Mean-level MBI decreased with more
trials. Error bars reflect standard errors of the mean. b Split-half reliability co-efficient as a function of increasing trial number using (i) cumulative trials and
(ii) binned trials. Using the cumulative trials, reliability of the MB estimate increased with additional trial collected per participant. Error bars reflect 95%
confidence intervals c Model-based associations with compulsivity, age, gender and education using (i) cumulative trials and (ii) binned trials. Increasing
the number of trials per participant did not significantly increase the association between model-based planning and individual differences. No statistical
significant difference was found between model-based associations with compulsivity when estimated at participants’ first 25 vs 300 trials. Model-based
associations with age and education became stronger with the addition of trials while the association between model-based and gender reduced. Data from
the binned analysis demonstrated that this effect is in part driven by stronger signal in earlier versus later trials. dWe repeated this analysis using a publicly
available dataset of N= 1413 individuals who completed the traditional two-step task (200 trials). Here we found (i) the association between model-based
planning and individual differences increased as trials collected per participant increased and (ii) this effect is driven by later trials compared to earlier
trials. For c and d, error bars reflect standard errors of the mean.
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significant when estimated with as few as 25 trials (β=−0.04,
95% CI= [−0.07, −0.02], SE= 0.01, p= 0.002, Supplementary
Table 16). There were significant interactions between Age x Trial
Number (β=−0.01, 95% CI= [−0.00, −0.00], SE= 0.00,
p= 0.044), Gender x Trial Number (β= 0.00, 95% CI= [0.00,
0.00], SE= 0.01, p.<0.001) and Education x Trial Number
(β= 0.00, 95% CI= [−0.00, 0.00], SE= 0.01, p= 0.042) (Sup-
plementary Table 17).The association between both age and
education and MBI became stronger with the addition of more
trials while the association between gender and MBI reduced.

Next, we wanted to test if any specific collection of trials were
driving these effects. To do this, we repeated the above analyses
using bins of 25 trials (0–25, 26–50, etc). Similar to cumulative
trials, we found an overall reduction in MBI for later trial bins
(Figure 5aii). Reliability estimates were relatively stable across the
bins of trials (Figure 5bii). But associations between MB and CIT
reduce as the task progresses (β= 0.002, 95% CI= [0.00, 0.00],
SE= 0.00, p= 0.010, Figure 5cii). To test if this pattern is specific
to our task, we carried out the same analysis on data from the
traditional task in a previously published study (N= 1413 who
completed the traditional two-step task remotely online)3. In the
traditional task, participants must learn the transition probabil-
ities through trial and error (unlike our task where they are
shown on-screen throughout), so it follows that the early trials
should not be informative for assessing model-based planning.
Indeed this was the case; in the traditional task, associations with
CIT increase with more trials when examined cumulatively
(Figure 5di) and associations with CIT were absent from the first
2 bins of trials, and only become significant later (Figure 5dii).

Discussion
We developed a smartphone-based diamond-shooting game
capable of assessing model-based planning in out-of-the-lab
unconstrained settings. We demonstrated that estimates derived
from the game are valid by replicating previously established
correlates of model-based planning: age24, gender3, education
(similar to previous work on IQ3 and processing speed25) and
compulsivity3–5,7,15 in a large sample of citizen scientists and by
demonstrating comparable psychometrics to the traditional. We
then used this task to tackle a question posed by recent
studies11–15,41: are associations between compulsivity and model-
based planning dependent on key aspects of the task’s design? In
a series of within and between-participant experiments, we found
that some task parameters (i.e., transition and reward drifts) are
associated with better capture of individual differences. The
association between model-based planning and compulsivity was
greater when using a less deterministic transition ratio structure
(70:30 compared to 80:20) and that this association also depends
on the specific nature of the drifting reward probabilities used.
We additionally showed that previously established effects could
be observed in as few as 25 trials, and that increasing trial
numbers had little impact. We did not find the association
between model-based planning and compulsivity significantly
differed between manipulations made to task difficulty. However,
this could be a limitation of our task design, which used a rela-
tively weak dual-task manipulation. Specifically, difficulty in this
context referred to the extra demands placed on participants to
shoot the diamond on harder levels, which required taking into
account the geometry of the screen and timing the shot. Perhaps
crucially, this demand occurs after the model-based update had
occurred and participants have presumably already decided
which container to fire from. A more potent dual-task demand
would impact the update itself10.

Previous findings suggest that model-based planning problems
in compulsivity arise from issues in building accurate mental

models of action-outcome contingencies7, which may arise from
problems with learning probabilistic action-state transitions8, and
assigning credit to actions42. Recent work extended this idea,
finding that differences between OCD patients and controls are
largest when instructions are absent and individual must learn the
structure of the task from scratch14. In our task, the relationship
between an action (choosing left or right) and the resulting state
(ball colour) was visible on-screen throughout the game as the
proportion of balls displayed in each container. Despite this, we
found the characteristic reduction in model-based planning in
compulsive individuals. This suggests that the mechanisms
underlying this relationship reflect more than a failure to learn
about the statistical properties of action-state transitions through
experience. One possibility is that in compulsivity, broader issues
in executive function might cause individuals to simplify tasks to
avoid overload of working memory or other finite cognitive
resources43. This notion is supported by the finding from the
present study that the association between model-based planning
and compulsivity is greater when the action-state transitions are
more uncertain, i.e., less deterministic (i.e., 70:30), and model-
based planning is more effortful to employ (i.e., requires more
win-switch and lose-stay actions).

In our task, the drift that had the stronger association between
model-based planning and compulsivity had higher overall
reward rates, a fairly stable time course and relatively low dis-
tinguishability between the two states compared to a drift rate
with lower over-reward rates and higher distinguishability
between states. On a similar note to the above point, it could be
that the cost-benefit of engaging in model-based behaviours is not
worthwhile in environments where there isn’t a noticeable dif-
ference in reward magnitudes of outcomes. However, because the
drifts used differed on more than one dimension, future research
is needed to understand and further optimise the selection of
drifts. This finding is nonetheless important, as studies often vary
in the drifts employed with no established best-practice. One
suggestion is to revisit these analyses using all ten possible drift
sets available in the app, once we have collected a sufficient
amount of data per drift set. Any candidate drift properties (e.g.,
boundaries, variance, drift rate) that affect the relationship
between model-based planning and compulsivity can later be
more systematically confirmed in new drift sequences optimised
to maximally compare relevant dimensions.

In many areas of psychology, collecting more data per parti-
cipant can improve the reliability and therefore the strength of
associations with individual difference measures44. However, it is
important to note that the relationship between trial number and
reliability is non-linear; reliability improves steeply until it
reaches asymptote21,45. In line with this, we observed the split-
half reliability of model-based estimates increased with the
addition of trials however began to taper off at around 125 trials.
A second issue when considering trial number is that additional
trials can change the nature of the measurement, not just its
reliability. Depending on the design, behaviour on tasks that
involve some element of learning can signal different processes at
different stages of the task. That is, the initial trials where a
participant explores and becomes familiar with the task can
reflect a different cognitive process than later trials when a par-
ticipant is updating and executing what they have learned. This is
consistent with what we observed in the present study; model-
based planning was greatest during participants first block of
trials and decreased steadily over time. and test-retest estimates
were lower for the 1st play than the 2nd. The learning that takes
place in the first trials of the task may mean that those trials carry
maximal variation in the process of interest, and so counter-
intuitively it could mean that additional trials in fact reduce the
magnitude of group differences. This finding is important for
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future research studies considering to use tasks with elements of
reinforcement learning measured over multiple time points for
example pre- and post-treatment. To make these sessions more
homogenous, longer intervals between sessions may be required
to restore the initial block effect. In the present study, we found
that additional trials did not affect the strength of the observed
relationship with compulsivity, which was apparent with just 25
trials of data. More trials did however modestly improve the effect
sizes for the link between MBI and age and education, but this
was mostly driven by gains from 25 to 100 trials. This early signal
in the task stands in contrast to the traditional version, where we
show that early trials do not carry much individual difference
signal. We speculate that this difference is because in the tradi-
tional task, participants must learn the transition probabilities
through trial and error (and so model-based planning cannot be
executed from trial 1), whereas in Cannon Blast, the probabilities
are displayed on-screen. This simple change in design may have
major implications for future studies aiming to reduce the trials
required to estimate model-based planning.

We found that model-free estimates were associated with the
same individual and clinical associations as model-based plan-
ning. This is in line with a prior study that also observed reduced
model-free learning in compulsivity5, but it is important to note
that the majority of studies have not observed this3,4,6. In fact,
conceptually, one might expect model-free behaviour to be
enhanced in compulsivity, given the popular framework that
describes their trade-off1. This apparent inconsistency follows a
growing literature that has raised doubts about what the model-
free estimates truly represent. Prior work has shown that model-
free learning is not related to the gold-standard index of habit,
and performance at a devaluation test9 and as we report here,
studies consistently show a positive correlation between model-
based and model-free estimates3,7. Recent work suggests model-
free behaviour on this task may be better understood as a dif-
ferent form of model-based choice, that we fail to model
accurately13. In line with this, Konovalov and Krajbich46 found
that model-free participants made more fixations prior to choice,
indicating choice deliberation rather than habitual selection. In
the present study, we embedded the classic two-step task within a
game, that is, we made model-free and model-based behaviour
operate in the service of a reward (gaining good balls), which was
itself only valuable insofar as it served the higher-order goal of
shooting diamonds. This meant that model-free behaviour was no
longer the lowest level of engagement with the task and it is
therefore possible that those with the lowest cognitive capacity
may have focused exclusively on the primary task of shooting the
diamonds, adding new model-based signal to the model-free
estimate. Indeed, the cross-task correlations in the present study
support this idea as model-free measures from Cannon blast were
positively associated to both model-free and model-based esti-
mates measured from the traditional task.

There is increasing evidence that true correlations between
cognitive test performance and individual differences in mental
health are small. This is increasingly recognised to be the case for
various levels of analysis in psychiatry, such as neuroimaging47,
studies of environmental risk48, and genetics49. Small effects can
nonetheless have big impact50, if tackled at a population level,
from a public health perspective. But in order to estimate these
effects and interpret them accurately, we need larger samples in
our research studies. One way to achieve this is by taking our
assessments out of the lab and into daily life through gamification
and smartphones51,52. Our results add to the growing evidence
that smartphones can deliver valid cognitive tests data with
clinical implications53–55. In this paper, we emphasise another
advantage of smartphone science in the cognitive space: it facil-
itates AB testing so we can systematically begin to improve the

psychometric properties of our tasks and optimise them for
specific clinical populations18. Another key advantage of this
method is that it leverages citizen scientists, rather than exclu-
sively relying on university students. This results in a more
diverse sample and makes research more accessible to those living
farther from research centres or unable to attend during working
hours. Other forms of remote assessment, such as Amazon’s
Mechanical Turk (MTurk), connect users to studies for payment.
However, recently these platforms have been at the mercy of
increasing issues with data quality56,57. In citizen science,
incentives of researcher and participant may be better aligned and
this may have a positive impact on data quality58.

Limitations. This research is not without limitations to consider.
Taking cognitive and clinical assessments out of controlled
laboratory settings and into the noisy real world can introduce
concerns related to data quality. For example, task performance
and self-report scores may be affected by lapses in attention,
distractions or careless responding and there is a risk that this
creates spurious or inflated associations between cognitive per-
formance and mental health symptomatology59. To mitigate this,
participants in our study are not tied to specific time constraints
and have the freedom to engage with assessments suited to stop
the game if interrupted, and are not financially induced to par-
ticipate. A second limitation concerns sampling bias; smartphone
science in some respects helps us to tackle issues with small and
unrepresentative samples in psychology research, but it too comes
with its own biases. Participants in this study self-selected to
engage with this research and did so without remuneration. They
may carry certain characteristics that are not representative of the
broader population, particularly compared to those with low
digital literacy or who don’t have internet access.

Conclusions
In a brief smartphone game, where participants shot at diamonds,
we replicated robust associations with socio-demographics and
compulsivity at-scale, and demonstrate canonical effects of
model-based behaviour with psychometric properties similar to
its traditional version. Overall, we present evidence that smart-
phone science opens the door to data-driven task-optimization,
increasing their protentional be translated into clinical decision
tools in the future, bringing research into practice.

Data availability
The data sourced from previously publicly available data sets can be found at https://osf.
io/usdgt/3,40 and https://osf.io/mx9kf/7,26. The processed data that supports the findings
of this study are publicly available at https://osf.io/arhng/ without restrictions. Due to the
sensitive nature of the unprocessed data generated in this study (i.e., responses to mental
health questionnaire items) and to comply with data protection regulations, the
unprocessed data are not shared publicly. These data can be made available from the
authors upon request through the corresponding author.

Code availability
Code to reproduce the findings and figures are available at https://osf.io/arhng/.
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