Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):41–46. doi: 10.1042/bj2620041

The presence of acyl-CoA hydrolase in rat brown-adipose-tissue peroxisomes.

S E Alexson 1, H Osmundsen 1, R K Berge 1
PMCID: PMC1133226  PMID: 2573347

Abstract

The subcellular distribution of acyl-CoA hydrolase was studied in rat brown adipose tissue, with special emphasis on possible peroxisomal localization. Subcellular fractionation by sucrose-density-gradient centrifugation, followed by measurement of short-chain (propionyl-CoA) acyl-CoA hydrolase in the presence of NADH, resulted in two peaks of activity in the gradient: one peak corresponded to the distribution of cytochrome oxidase (mitochondrial marker enzyme), and another peak of activity coincided with the peroxisomal marker enzyme catalase. The distribution of the NADH-inhibited short-chain hydrolase activity fully resembled that of cytochrome oxidase. The substrate-specificity curve of the peroxisomal acyl-CoA hydrolase activity indicated the presence of a single enzyme exhibiting a broad substrate specificity, with maximal activity towards fatty acids with chain lengths of 3-12 carbon atoms. The mitochondrial acyl-CoA hydrolase substrate specificity, in contrast, indicated the presence of at least two acyl-CoA hydrolases (of short- and medium-chain-length specificity). The peroxisomal acyl-CoA hydrolase activity was inhibited by CoA at low (microM) concentrations and by ATP at high concentrations (greater than 0.8 mM). In contrast with the mitochondrial short-chain hydrolase, the peroxisomal acyl-CoA hydrolase activity was not inhibited by NADH.

Full text

PDF
43

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexson S. E., Cannon B. A direct comparison between peroxisomal and mitochondrial preferences for fatty-acyl beta-oxidation predicts channelling of medium-chain and very-long-chain unsaturated fatty acids to peroxisomes. Biochim Biophys Acta. 1984 Oct 24;796(1):1–10. doi: 10.1016/0005-2760(84)90231-5. [DOI] [PubMed] [Google Scholar]
  2. Alexson S. E., Nedergaard J. A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria. J Biol Chem. 1988 Sep 25;263(27):13564–13571. [PubMed] [Google Scholar]
  3. Bartlett K., Watmough N. J., Causey A. G. Intermediates of beta-oxidation. Biochem Soc Trans. 1988 Jun;16(3):410–416. doi: 10.1042/bst0160410a. [DOI] [PubMed] [Google Scholar]
  4. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berge R. K., Aarsland A. Correlation between the cellular level of long-chain acyl-CoA, peroxisomal beta-oxidation, and palmitoyl-CoA hydrolase activity in rat liver. Are the two enzyme systems regulated by a substrate-induced mechanism? Biochim Biophys Acta. 1985 Nov 14;837(2):141–151. doi: 10.1016/0005-2760(85)90237-1. [DOI] [PubMed] [Google Scholar]
  6. Berge R. K., Døssland B. Differences between microsomal and mitochondrial-matrix palmitoyl-coenzyme A hydrolase, and palmitoyl-L-carnitine hydrolase from rat liver. Biochem J. 1979 Jul 1;181(1):119–125. doi: 10.1042/bj1810119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berge R. K., Farstad M. Dual localization of long-chain acyl-CoA hydrolase in rat liver: one in the microsomes and one in the mitochondrial matrix. Eur J Biochem. 1979 Mar 15;95(1):89–97. doi: 10.1111/j.1432-1033.1979.tb12942.x. [DOI] [PubMed] [Google Scholar]
  8. Berge R. K., Flatmark T., Osmundsen H. Enhancement of long-chain acyl-CoA hydrolase activity in peroxisomes and mitochondria of rat liver by peroxisomal proliferators. Eur J Biochem. 1984 Jun 15;141(3):637–644. doi: 10.1111/j.1432-1033.1984.tb08239.x. [DOI] [PubMed] [Google Scholar]
  9. Berge R. K., Hosøy L. H., Farstad M. N. Influence of dietary status on liver palmitoyl-CoA hydrolase, peroxisomal enzymes, CoASH and long-chain acyl-CoA in rats. Int J Biochem. 1984;16(4):403–410. doi: 10.1016/0020-711x(84)90139-3. [DOI] [PubMed] [Google Scholar]
  10. Berge R. K., Skrede S., Farstad M. Effects of clofibrate on the intracellular localization of palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase in rat liver. FEBS Lett. 1981 Feb 9;124(1):43–47. doi: 10.1016/0014-5793(81)80050-6. [DOI] [PubMed] [Google Scholar]
  11. Berge R. K., Slinde E., Farstad M. Intracellular localization of long-chain acyl-coenzyme A hydrolase and acyl-L-carnitine hydrolase in brown adipose tissue from guinea pigs. Biochem J. 1979 Aug 15;182(2):347–351. doi: 10.1042/bj1820347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bernson S. M. Acetyl-CoA hydrolase; activity, regulation and physiological significance of the enzyme in brown adipose tissue from hamster. Eur J Biochem. 1976 Aug 16;67(2):403–410. doi: 10.1111/j.1432-1033.1976.tb10705.x. [DOI] [PubMed] [Google Scholar]
  13. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  14. Diczfalusy U., Alexson S. E., Pedersen J. I. Chain-shortening of prostaglandin F2 alpha by rat liver peroxisomes. Biochem Biophys Res Commun. 1987 May 14;144(3):1206–1213. doi: 10.1016/0006-291x(87)91439-2. [DOI] [PubMed] [Google Scholar]
  15. Diczfalusy U., Alexson S. E. Peroxisomal chain-shortening of prostaglandin F2 alpha. J Lipid Res. 1988 Dec;29(12):1629–1636. [PubMed] [Google Scholar]
  16. Grigat K. P., Koppe K., Seufert C. D., Söling H. D. Acetyl-coenzyme A deacylase activity in liver is not an artifact. Subcellular distribution and substrate specificity of acetyl-coenzyme A deacylase activities in rat liver. Biochem J. 1979 Jan 1;177(1):71–79. doi: 10.1042/bj1770071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hiltunen J. K., Kärki T., Hassinen I. E., Osmundsen H. beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem. 1986 Dec 15;261(35):16484–16493. [PubMed] [Google Scholar]
  18. Hovik R., Osmundsen H. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J. 1987 Nov 1;247(3):531–535. doi: 10.1042/bj2470531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee K. Y., Schulz H. Isolation, properties, and regulation of a mitochondrial acyl coenzyme A thioesterase from pig heart. J Biol Chem. 1979 Jun 10;254(11):4516–4523. [PubMed] [Google Scholar]
  21. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mannaerts G. P., Van Veldhoven P., Van Broekhoven A., Vandebroek G., Debeer L. J. Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane. Biochem J. 1982 Apr 15;204(1):17–23. doi: 10.1042/bj2040017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miyazawa S., Furuta S., Hashimoto T. Induction of a novel long-chain acyl-CoA hydrolase in rat liver by administration of peroxisome proliferators. Eur J Biochem. 1981 Jul;117(2):425–430. doi: 10.1111/j.1432-1033.1981.tb06356.x. [DOI] [PubMed] [Google Scholar]
  24. Nedergaard J., Alexson S., Cannon B. Cold adaptation in the rat: increased brown fat peroxisomal beta-oxidation relative to maximal mitochondrial oxidative capacity. Am J Physiol. 1980 Nov;239(5):C208–C216. doi: 10.1152/ajpcell.1980.239.5.C208. [DOI] [PubMed] [Google Scholar]
  25. Nedergaard J., Becker W., Cannon B. Effects of dietary essential fatty acids on active thermogenin content in rat brown adipose tissue. J Nutr. 1983 Sep;113(9):1717–1724. doi: 10.1093/jn/113.9.1717. [DOI] [PubMed] [Google Scholar]
  26. Osmundsen H., Neat C. E., Borrebaek B. Fatty acid products of peroxisomal beta-oxidation. Int J Biochem. 1980;12(4):625–630. doi: 10.1016/0020-711x(80)90015-4. [DOI] [PubMed] [Google Scholar]
  27. Prass R. L., Isohashi F., Utter M. F. Purification and characterization of an extramitochondrial acetyl coenzyme A hydrolase from rat liver. J Biol Chem. 1980 Jun 10;255(11):5215–5223. [PubMed] [Google Scholar]
  28. Schepers L., Casteels M., Vamecq J., Parmentier G., Van Veldhoven P. P., Mannaerts G. P. Beta-oxidation of the carboxyl side chain of prostaglandin E2 in rat liver peroxisomes and mitochondria. J Biol Chem. 1988 Feb 25;263(6):2724–2731. [PubMed] [Google Scholar]
  29. Snoswell A. M., Tubbs P. K. Deacylation of acetyl-coenzyme A and acetylcarnitine by liver preparations. Biochem J. 1978 May 1;171(2):299–303. doi: 10.1042/bj1710299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Söling H. D., Rescher C. On the regulation of cold-labile cytosolic and of mitochondrial acetyl-CoA hydrolase in rat liver. Eur J Biochem. 1985 Feb 15;147(1):111–117. doi: 10.1111/j.1432-1033.1985.tb08726.x. [DOI] [PubMed] [Google Scholar]
  31. Van Broekhoven A., Peeters M. C., Debeer L. J., Mannaerts G. P. Subcellular distribution of coenzyme A: evidence for a separate coenzyme A pool in peroxisomes. Biochem Biophys Res Commun. 1981 May 15;100(1):305–312. doi: 10.1016/s0006-291x(81)80097-6. [DOI] [PubMed] [Google Scholar]
  32. Van Veldhoven P. P., Just W. W., Mannaerts G. P. Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem. 1987 Mar 25;262(9):4310–4318. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES