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Abstract

The International Society for Clinical Electrophysiology of Vision (ISCEV) standard for full-field 

electroretinography (ERG) describes a minimum protocol for clinical testing but encourages more 

extensive testing where appropriate. This ISCEV extended protocol describes an extension of 

the ISCEV full-field ERG standard, in which methods to record and evaluate the growth of the 

dark-adapted (DA) ERG b-wave with increasing stimulus energy are described. The flashes span 

a range that includes the weakest flash required to generate a reliable DA ERG b-wave and that 

required to generate a maximal b-wave amplitude. The DA ERG b-wave stimulus–response series 

(also known historically as the “intensity–response” or “luminance–response” series) can more 

comprehensively characterize generalized rod system function than the ISCEV standard ERG 

protocol and may be of diagnostic or prognostic value in disorders that cause generalized rod 

system dysfunction.
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Introduction

The International Society for Clinical Electrophysiology of Vision (ISCEV) standard for 

full-field electroretinography (ERG) describes a minimum set of tests but encourages the 

use of additional ERG protocols for clinical ERG testing [1]. This extended protocol 

describes the flash stimulus–response series for the dark-adapted (DA) ERG b-wave 

amplitude, referred to as the “intensity–response” or “luminance–response” function in 

many published studies. The protocol is a specialized procedure that is well established and 

broadly accepted by experts in the field and was prepared by the authors in accordance 

with ISCEV procedures (http://www.iscev.org/standards/index.html#guide2procedures). The 

protocol was approved by the ISCEV Board of Directors on February 27, 2019.

Scope and applications

The ERG is a graded response whereby amplitude, timing and waveform change with 

increasing stimulus strength (Fig. 1). This protocol describes the process of recording DA 

ERGs using a series of increasing stimulus strengths and of analyzing the data by their 

fit to a heuristic model. The derived parameters of the model characterize the maximal 

rod-mediated retinal response and provide a measure of retinal sensitivity that may aid 

understanding of pathophysiology in some retinopathies.

Naka and Rushton derived the stimulus–response (V–log I) function, expanded by others 

and detailed below, by recording intra-retinal voltage (S-potentials) in fish to a range 

of light stimuli [3]. The stimulus–response characteristics of human DA ERG b-waves 

were first described by Fulton and Rushton [4], who fit b-wave amplitude data with a 

saturating hyperbolic (H2) function. Later, the DA ERG stimulus–response relationship was 

refined in a letter to the editor by Massof and Johnson [5] that specifically documented 

an exponentiated form of a hyperbolic relationship. This function was referred to as the 

so-called Naka–Rushton equation in a 1984 study of ERGs in retinitis pigmentosa [6], and 

this name was retained in most subsequent studies of the ERG b-wave stimulus–response 

function (but see “Technical Issues: f. Nomenclature”).

The flash stimulus–response series for the DA ERG b-wave amplitude may be described 

reasonably well by the following function:

V = V maxIn/In + Kn,

where V (μV) is the ERG b-wave amplitude generated in response to flash intensity I 
(cd·s/m2). The derived parameter Vmax (μV) is the asymptotic amplitude of the function, K 
(cd·s/m2) is the flash intensity that elicits a response that is ½ Vmax, and n is a dimensionless 

number representing the slope of the curve and generally considered to equal 1. An 

exception to the approximation of n as 1 occurs in disorders producing marked heterogeneity 

in retinal sensitivity, such as retinitis pigmentosa (RP). In these disorders, “n” can be much 

< 1, and thus, it is necessary to allow “n” to vary in order to achieve a good approximation 

to the data. Vmax has been interpreted as an index of both the number of rods responding 

and the gain (μV/quanta) for each b-wave generator. A reduction in Vmax can result from 
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loss of photoreceptors, disruption of the dark current, inner retinal dysfunction or some other 

types of response compression. The parameter K has been interpreted as an index of retinal 

sensitivity that represents the efficiency of quantal capture. An increase in K would shift the 

entire function to the right, indicating that a stronger stimulus is required to elicit b-waves of 

comparable amplitude. Reductions in Vmax and increases in K may be seen individually, or 

more frequently, in combination in many retinal diseases. Figure 2 is an example of b-wave 

amplitude data recorded as a function of log flash intensity in a normal human observer.

Stimulus–response function parameters Vmax and K may be used to obtain additional 

information about the etiology or prognosis in a number of disorders. Such parameters have 

helped characterize fundamental differences between the mechanisms of rod dysfunction 

and degeneration in rod–cone dystrophy (RP) and cone–rod dystrophy [7]. Patients with 

RP typically show a loss in Vmax along with an increase in K, whereas patients with 

cone–rod dystrophy usually show normal values for these parameters. Exceptions include 

KCNV2 retinopathy (“cone dystrophy with supernormal rod ERG”), characterized by 

generalized cone system dysfunction, pathognomonic DA ERG changes and an abnormal 

ERG stimulus–response series [8, 9].

Figure 3 shows an illustrative example of a normal stimulus–response function compared 

with one from a case of venous stasis retinopathy (VSR). There is loss in Vmax in the 

affected eye of 0.13 log, but an increase in K of 0.92 log. The fellow eye also showed a 

large increase in K (0.61 log) with a normal Vmax, highlighting the possibility of subclinical 

involvement.

Stimulus–response functions also have been used to evaluate the timeline of retinal 

development and aging [10–13], and toxicity and efficacy in pharmaceutical studies [14–18]. 

They have been recorded in many degenerative retinal disorders [6, 7, 19–27], as well as in 

congenital stationary night blindness (CSNB), in which they reveal differences between the 

complete and incomplete forms [28]. The function has also been useful in other disorders 

such as age-related macular degeneration (AMD; [29]), altitude retinopathy [30], central 

retinal artery and vein occlusions [31–36] and diabetic retinopathy [37–39].

Patients who have an increase in log K will also have a delay in b-wave timing because peak 

times change with stimulus strength. ERG peak time measurements can be used to estimate 

retinal sensitivity loss and have been used to predict proliferative retinopathy in CRVO [31, 

35, 36] and diabetic retinopathy [37, 39].

Patient population

Patients of all ages, able to tolerate ganzfeld stimulation, are referred for investigation of 

rod-mediated retinal function. Using this paradigm, patients with selective cone-mediated 

abnormalities will usually show minimal changes in the derived parameters produced by the 

curve fit to the data [7].
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Technical issues

This protocol has the same requirements as those outlined under the basic technology 

section of the ISCEV ERG protocol [1]. Additional considerations are outlined below.

a. Range of flash strengths

To adequately characterize the stimulus–response series, flash stimuli must span 

a range that includes the dimmest flash required to generate a reliable DA ERG 

b-wave and that required to generate a maximal b-wave amplitude. This normally 

occurs over a flash range of 3.5 to 4 log units.

b. Inter-stimulus interval

The inter-stimulus interval should be sufficiently long to maintain the same level 

of dark adaptation throughout the procedure. The ISCEV ERG standard specifies 

an inter-stimulus interval of 2 s for DA 0.01 and 10 s for DA 3.0, but there are no 

specific recommendations for stimuli between these two stimulus strengths. It is 

recognized that the stimulus–response series will asymptote at stimuli well lower 

than DA 3.0 for most individuals.

c. Amplifier gain

Amplifier gain will need to be higher for the dim stimuli and should be increased 

until responses can be seen well enough to judge reliability.

d. Signal quality

Waveforms may be small or of long peak time and prone to noise or intrusion of 

blink and eye movement artifacts [40].

e. Fitting the series

Near the asymptote of the stimulus–response function, a second hyperbolic 

function can be seen in normal subjects (Fig. 4). By showing that this is observed 

in rod monochromats, Peachey et al. [41] suggested that the second limb did not 

result from an interaction between rod and cone systems but is more likely to 

represent interference between the processes responsible for the a- and b-waves, 

since b-wave amplitudes are measured from the trough of the a-wave to the peak 

of the b-wave.

The occurrence of a second limb may confound routine application of a single hyperbolic 

stimulus–response function and would result in a spuriously high Vmax and an elevated log 

K. The latter is illustrated in Fig. 5, which shows a single hyperbolic function fit to data 

obtained from one subject. When all of the data are included (dashed line), estimates of 

Vmax increased from 233 to 438 μV, and the corresponding log K estimates increased from 

− 1.89 to − 1.03, when compared to the parameters obtained from fitting just the first limb 

(solid line). Thus, in most patients, use of strong flashes will confound analysis unless the 

second limb is identified.

A heuristic method for identifying and excluding the second limb has been described [42]. 

The optimal stimulus increment size for recognizing the second limb was 0.4 log unit up 

Johnson et al. Page 4

Doc Ophthalmol. Author manuscript; available in PMC 2024 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to about the point the b-wave begins to grow rapidly, and 0.2 log unit steps afterward. The 

smaller increment is necessary to recognize the occurrence of a second limb when it exists. 

The second limb can also be excluded manually, i.e., those data points that do not form a 

part of the single hyperbolic function can be omitted prior to curve fitting.

(f) Nomenclature

In seminal studies and in most relevant publications, the light stimulus–response 

function is referred to as the ERG “intensity–response” function. The term 

“luminance–response” function has also been used. It is acknowledged that 

flashes should be described in terms of energy (luminous energy per unit 

solid angle per unit area) rather than intensity, but this and the widely used 

term “intensity–response” are retained in reference to historical data and to 

the parameter (I) used in the equation. The term “Naka–Rushton” equation is 

commonly used to describe the DA ERG b-wave amplitude stimulus–response 

function mathematically, but the eponym is difficult to justify based on the 

original studies that described a more basic equation (see above).

Calibration

All stimuli should be individually calibrated and rechecked over time following the current 

ISCEV standard and guidelines [1]. Nominal flash strengths or nominal increments in flash 

stimuli should not be used. Standard ERG stimuli may have a very short duration (10 μs 

for xenon bulbs), so a calibration device that can time-integrate flashes is required. Dim 

flashes from a xenon source generally vary more than flashes from a light-emitting diode 

(LED) and may require assessment of multiple flashes to measure mean flash intensity. LED 

sources can produce more reliable flash stimuli because their output is determined by the 

current applied to them. Most conventional ERG equipment that is manufactured currently 

uses LEDs, which produce more stable flash intensities.

Protocol specifications

This protocol follows the same procedures for patient preparation and recording that are 

outlined under the clinical protocol section of the ISCEV standard full-field ERG protocol 

[1]. Other specifications are listed below.

a. Flash strength

Flash stimuli should span a range of approximately 3.5 to 4.0 log units. In the 

absence of retinal dysfunction, the typical range would be approximately − 3.5 

to 0.5 log cd·s/m2, starting with the lowest flash strength that will generate 

a reliable DA ERG b-wave up to that required to elicit a maximal b-wave. 

Initially, stimuli should be recorded in increasing steps of about 0.4 log units, 

until the b-wave amplitude begins to grow rapidly (near log K). Thereafter, step 

sizes should be reduced to 0.2–0.3 log units to enable detection of the second 

limb. Thus, at a minimum, about a dozen points are required to characterize the 

stimulus–response series in the absence of dysfunction.

b. Inter-stimulus interval.
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To avoid light adaptation, this protocol specifies a time between flashes of 2 s for 

stimuli up to 0.01 cd·s/m2, 3 s for stimuli up to 0.1 cd·s/m2 and 5 s for stimuli up 

to 3 cd·s/m2. For most patients, the stimulus–response function will asymptote at 

values between 0.1 and 1.0 cd·s/m2.

c. Amplifier gain.

There is no specific requirement for amplifier gain except that it needs to be high 

enough to evaluate the waveform and may need to be increased for responses to 

dim stimuli.

d. Signal averaging.

Individual ERG waveforms should be assessed for repeatability, and inconsistent 

or artifactual waveforms should be eliminated before averaging. If signal 

averaging is needed, 3 to 10 sweeps are usually sufficient.

Response evaluation

The DA ERG b-wave amplitudes should be measured as described in the ISCEV ERG 

standard [1]. The b-wave amplitudes at different flash strengths should then be input into 

one of the many commercially or privately available computer programs that provide a fit 

to the data using a suitable mathematical stimulus–response function (as above). Many of 

these programs use the “Michaelis–Menten” equation for enzyme kinetics. (The “Michaelis–

Menten” equation is the same as the “Naka–Rushton” equation except that the former sets 

“n” to 1.) The program used, in addition to fitting a curve to the data, should provide 

estimates of the maximum amplitude (Vmax) and the semi-saturation constant (K). The plot 

of b-wave amplitude versus flash strength should be visually examined for goodness of 

fit. If a second limb is present, the computer fit to the data should be adjusted either by 

omitting the points on the second limb and refitting the data, or by using a heuristic method 

that fits both limbs and eliminates the second [42]. As mentioned above, significant retinal 

heterogeneity will reduce “n,” and an equation that allows all the three parameters to vary 

may be necessary to obtain a good fit to the data.

Reporting

Use of the ISCEV extended stimulus–response protocol for the DA ERG b-wave should 

be acknowledged, and any departures from the ISCEV standard ERG methods or extended 

protocol should be stated. Any technical or compliance difficulties such as excessive eye 

movements or eye closure should be noted.

Parameters Vmax and log K should be reported, as well as normal ranges for fully dilated 

eyes. It is recognized that for some applications, a qualitative description of the stimulus–

response series may be sufficient to corroborate or suggest a diagnosis. Eyes with smaller 

pupils will have an increasingly dimmer retinal illuminance (measured in Trolands), which 

will affect the value of log K. For this reason, pupil size should always be measured. 

Compensation for light attenuation from small pupils is possible using Table 1, and any 

correction to log K should be stated.
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Appendix: Justification for the protocol details

A literature review was performed using the Medline search engine, for human studies 

that used the words ERG and intensity–response or Naka–Rushton or Michaelis–Menten 

or luminance–response. Studies dealing with the photopic hill, photopic negative responses 

(PhNRs), wavelets and multifocal ERGs were excluded. Table 2 shows the results of this 

search.

Of the 57 studies evaluated (Table 2), 60% used a flash intensity range of 3.5 to 4.5 log 

units (range 2.5–7.5). Forty-seven percent used a flash step size of either 0.2 or 0.25 log, but 

there was a spread of data, as shown in Fig. 6. The larger step sizes could easily misidentify 

a second limb unless weaker flashes were used. Most studies used the “Naka–Rushton” 

function to analyze the data.
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Fig. 1. 
Human DA ERG waveforms recorded to flashes of increasing strength (intensity). After: 

Johnson (1991) in Heckenlively and Arden [2]
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Fig. 2. 
An example of flash stimulus–response amplitude data for DA ERG b-waves recorded from 

a healthy subject to flashes of increasing strength (intensity, I)
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Fig. 3. 
DA ERG b-wave stimulus–response functions in the affected and clinically normal eyes of a 

patient with venous stasis retinopathy (VSR), compared to an age-similar healthy subject
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Fig. 4. 
An example of flash stimulus–response amplitude data for DA ERG b-waves averaged from 

85 healthy subjects to flashes of increasing strength (intensity). Circles are averages, error 

bars the 95% confidence limits, and the line a mathematical model that includes the second 

limb, seen in all normal subjects tested above flash strengths of approximately 0.1 cd·s/m2
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Fig. 5. 
Example of ERG b-wave stimulus–response data, fit by single Naka–Rushton equations to 

all of the data (dashed line) and to just the first limb (solid line). Figure reprinted with 

permission of Springer Nature (Documenta Ophthalmologica 85 [2] pp. 135–150). The 

care and fitting of Naka–Rushton functions to electroretinographic intensity–response data 

(Severns ML, Johnson, MA, Copyright 1993) [42]
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Fig. 6. 
Flash strength step sizes (increments) used for collection of ERG “intensity–response” data
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