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Abstract

Epigenetic ‘clocks’ based on DNA methylation have emerged as the most robust and widely 

used aging biomarkers, but conventional methods for applying them are expensive and laborious. 

Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly 

multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied 

multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight 

tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for 

polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional 

methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, 

we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we 

develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 

demographically representative individuals. These methods will enable more efficient epigenetic 

clock measurement in larger-scale human and animal studies.

Aging is difficult to study, in part because it is difficult to quantify1. In recent years, 

researchers attempted to address this problem with aging ‘clocks’, which are machine 

learning-derived biomarkers trained to predict age or age proxies2. Because clock 

predictions are not perfect, individuals are often predicted younger or older than their 

chronological age, and this difference is hypothesized to reflect variation in the biological 

rate of aging3. Both physiological measurements4,5 and biomolecules3,6,7 have been used to 

build aging clocks and they are becoming increasingly common readouts to assess longevity 

interventions. Despite their promise, accurate clocks that are inexpensive and easily applied 

to large studies are lacking.

The most robust and widely used aging clocks are based on DNA cytosine methylation 

and are interchangeably referred to as DNA methylation clocks or epigenetic clocks. These 

clocks include sets of CpGs and corresponding algorithms that use methylation levels 
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to predict age. Epigenetic clocks have been built for humans8–10, mice11–13 and many 

other mammals14–16; they have been shown to reflect interventions that are associated with 

longevity17, accelerated aging18 and even cellular rejuvenation19,20. While considerable 

effort has been devoted to developing more accurate clocks or clocks adjusted according 

to health outcomes10,21, very little work has been done to make epigenetic clocks more 

efficient and affordable.

Ideally, epigenetic clocks could be measured for low cost with a scalable technology. 

However, clocks are predominantly built and assayed using Illumina BeadChip22 

microarrays or reduced representation bisulfite sequencing23 (RRBS), which are laborious 

and cost hundreds of dollars per sample. While these methods are useful for biomarker 

discovery because they measure hundreds of thousands to millions of CpGs, they 

are excessive for the accurate measurement of epigenetic clocks that typically only 

require several hundred loci to be measured. Highly targeted approaches can predict 

chronological age accurately24–26, such as pyrosequencing or digital PCR. However, these 

methods are still not optimally cost-effective or scalable and their reliance on low-CpG 

clocks (for example, 1–15 CpGs) limits the number of aging modules they reflect, 

making them less relevant to diverse intervention studies. Recently, SyBS, a method that 

leverages commercial hybridization enrichment library preparation to capture loci syntenic 

with human methylation BeadChip probes, has been used to construct a dog-specific 

epigenetic clock27. This method was robust and capable of high-accuracy age predictions 

from hundreds of loci, but it requires substantial parallel sample processing, expensive 

commercial enrichment baits and low-plex hybridization reactions28, limiting its scalability 

and cost-effectiveness. A more ideal approach for economical epigenetic clocks would 

measure hundreds to thousands of the most highly age-correlated loci while minimizing 

parallel processing, labor and total cost per sample.

With this in mind, we developed tagmentation-based indexing for methylation sequencing 

(TIME-seq), an optimized bisulfite sequencing approach to enable low-cost and scalable 

epigenetic age predictions. To demonstrate its utility, we used TIME-seq to build seven 

epigenetic clocks for mice and one clock for humans; we applied these clocks to predict 

age in 2,892 unique samples from nine different tissue and cell types. We benchmarked 

TIME-seq against gold standard methods and validated our clocks in independent cohorts 

and interventions that alter the rate of aging. Our methods decrease the costs of epigenetic 

clock analysis by up to two orders of magnitude, promising to facilitate their use in more 

large-scale experiments.

Results

Designing TIME-seq for efficient epigenetic age predictions

When designing TIME-seq, we sought (1) scalability (that is, similar effort is required 

to prepare thousands or dozens of samples) and (2) economy, focusing on minimizing 

reagents and sequencing costs as well as labor. TIME-seq leverages barcoded and sodium 

bisulfite-resistant Tn5 transposase adaptors to rapidly index sample DNA for a pooled 

library preparation (Fig. 1a), which streamlines sample preparation and minimizes the 

cost of consumables (Supplementary Table 1). After tagmentation and pooling, methylated 
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end repair (5-methyl-deoxycytidine triphosphate (dCTP) replaces dCTP) is performed and 

pools are prepared for in-solution hybridization enrichment using biotinylated RNA baits 

(Extended Data Fig. 1a–e). Unlike bisulfite-compatible single-cell indexing approaches29, 

we designed barcoded TIME-seq adapters to be short (38 nucleotides) for optimal 

enrichment efficiency because longer adapters are more likely to daisy chain with off-target 

DNA30 (Extended Data Fig. 1f–h). Baits were produced in-house from single-stranded 

oligonucleotide libraries (Supplementary Table 2), providing inexpensive enrichments from 

a regenerable source (Supplementary Information). This enrichment strategy allowed us to 

achieve deep coverage from thousands of diverse target loci with minimal sequencing costs. 

After bisulfite conversion of captured DNA and indexed PCR amplification of each pool, 

Illumina short-read sequencing was performed (Extended Data Fig. 2) and sample reads 

were demultiplexed based on pool and Tn5 adapter indexes. From mapped reads, a matrix of 

methylation values for CpGs in each sample was used to train or predict a DNA methylation 

biomarker.

Building a proof-of-concept TIME-seq ribosomal DNA methylation clock

Ribosomal DNA (rDNA) is a highly repetitive locus that shows increased DNA methylation 

with age in mice, allowing for accurate epigenetic clocks to be constructed20,31. Therefore, 

we performed a small-scale pilot of TIME-seq in C57BL/6 mouse blood DNA samples 

using hybridization probes against the described rDNA clock CpGs31 (Extended Data Fig. 

3a). Samples were efficiently demultiplexed from each TIME-seq pool; DNA methylation 

was accurately measured (Extended Data Fig. 3b,c) with a high correlation (R ≥ 0.90) 

between replicate CpG levels and deep coverage at targeted epigenetic clock loci from 

fewer than 600,000 reads (Extended Data Fig. 3d–f). Compared to the RRBS libraries of 

the same samples, TIME-seq libraries had substantially higher overlap with target clock 

CpGs (Extended Data Fig. 3g). Age prediction using an existing RRBS-based rDNA clock, 

however, showed only moderate correlation with age in our pilot (R = 0.53, P = 0.0075; 

Extended Data Fig. 3h), possibly due to the differences in CpG coverage between TIME-seq 

and RRBS at several clock loci (Extended Data Fig. 3i).

To build a more accurate rDNA clock compatible with TIME-seq, enrichment baits tiling 

the entire rRNA promoter and coding regions were designed and used to enrich TIME-seq 

libraries from 191 C57BL/6 mouse blood DNA samples (mice aged 2–35 months) in pools 

of 47–48 (Fig. 1b). Pools were combined and sequenced on an Illumina MiSeq for a per-

sample cost of less than US$5 (see Supplementary Table 3 for the sequencing costs). Most 

demultiplexed reads (Fig. 1c) from each sample mapped to the rDNA repeat meta-locus 

(median per pool 68–79%; Fig. 1d), resulted in high coverage for each sample at rDNA 

CpGs (Fig. 1e) and accurate DNA methylation quantification (Fig. 1f).

To train an epigenetic clock, the 182 samples that passed the quality filters were split 

approximately 80:20 into training and testing sets (Fig. 1g); elastic net regression (α = 

0.05) was applied to the training data. After fine-tuning our model on the training set (R = 

0.98), age predictions using the resulting 232 CpG TIME-seq rDNA clock showed a high 

correlation with age (testing, R = 0.95) and a median absolute error (MedAE) of only 1.95 

months in the testing samples (Fig. 1h). To build a clock that could be applied to both 
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TIME-seq and RRBS, we trained a model from TIME-seq data using only CpGs with high 

coverage in an existing RRBS dataset11. This clock showed a high age correlation (R = 0.89) 

when applied to RRBS data and reflected the longevity benefit of caloric restriction (Fig. 1i).

Highly efficient TIME-seq multi-tissue and tissue-specific mouse aging clocks

In contrast to rDNA clocks, those built with CpGs from across the genome reflected 

diverse changes in aging hallmarks and their associated genes3. Therefore, we designed 

hybridization enrichment probes for 957 distinct CpG islands in gene promoters or other 

gene regulatory elements previously reported to have high age correlation in mouse blood11 

and multi-tissue clocks12,13 (Extended Data Fig. 4a). With these enrichment probes, we 

prepared TIME-seq libraries using 1,137 DNA samples from mouse blood, liver, skin, 

kidney, white adipose tissue (WAT) or muscle, and sequenced libraries for an average 

per-sample cost of U$5.41. From the data, we prepared a high-coverage methylation matrix 

of 6,370 CpGs for clock training (Fig. 2a). Variation between samples was mainly due to 

the tissue of origin (Fig. 2b), as expected from quality methylation sequencing datasets from 

multiple tissues.

Next, we trained and tested the TIME-seq mouse multi-tissue clock (Fig. 2c), which 

accurately predicted age in mouse blood, liver, skin, kidney and WAT (testing, R = 0.92; 

MedAE = 2.02 months). As described in previous studies8,20, when using age-correlated 

CpGs from other tissues, the prediction of age in muscle was less accurate (Extended 

Data Fig. 4b) and this tissue was excluded from multi-tissue clock training. Our 419-CpG 

mouse multi-tissue clock contains both positive and negative age-correlated CpGs (Fig. 2d), 

which are found in genes that are enriched for regulation by polycomb repressive complex 

2 (PRC2) components (for example, EZH2 and SUZ12) and the longevity-associated 

transcription factor REST32 (Fig. 2e). We also trained tissue-specific epigenetic clocks (Fig. 

2f–h and Extended Data Fig. 4c,d) for mouse blood (testing, R = 0.93; MedAE = 1.58 

months), liver (testing, R = 0.94; MedAE = 1.77 months), skin (testing, R = 0.95; MedAE 

= 1.47 months), WAT (testing, R = 0.93; MedAE = 1.98 months) and kidney (testing, R = 

0.95; MedAE = 2.5 months).

It is still largely unknown what factors influence epigenetic clocks and how different aging 

clocks relate to each other2. It has been hypothesized that certain clocks exhibit more 

environmental ‘extrinsic’ influence, whereas other clocks are more intrinsically defined, 

that is, influenced more by genetic variation3. To understand how our clocks related to 

each other, we identified mice that contributed tissues to two or more testing datasets in 

clock development. To control for slight bias in prediction error with age, we calculated 

the age-adjusted prediction residuals for each clock (Methods) and plotted the pairwise data 

for each tissue and clock. There was a highly positive correlation (Fig. 2i; R = 0.95, P = 

0.001) for the TIME-seq skin and TIME-seq liver clocks with each other, but no significant 

correlation for either tissue-specific clock with the TIME-seq multi-tissue clock (Fig. 2j). 

This result suggests there may be some extrinsic factor contributing to synchrony between 

the TIME-seq liver and skin clocks, whereas our multi-tissue clock is not subject to the same 

influence and reflects other aging modules.
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Validating the robustness of TIME-seq in independent large cohorts of aging mice

To validate the robustness of TIME-seq-based age predictions, we prepared TIME-seq 

libraries in two separate experiments using blood DNA from an independent cohort of 

mice (Fig. 3a). A subset of these mice had been tracked longitudinally, assessed using 

the mouse frailty index33 and had blood composition parameters measured. The TIME-seq 

blood clock (R = 0.93; Fig. 3b) and the TIME-seq multi-tissue clock (R = 0.9; Fig. 3c) 

provided accurate predictions that reflected aging longitudinally. For the TIME-seq libraries 

enriched for rDNA (Extended Data Fig. 5a,b), mice from the same colony as the original 

training dataset validated clock rDNA clock accuracy ( JAX mice, R = 0.96). As expected, 

mice from different colonies gave more variable predictions (National Institute of Aging 

(NIA) mice, R = 0.81) because rDNA copy number varies greatly between different mouse 

strains, colonies and even individuals within a colony34, and copy number directly relates to 

aggregated methylation status35.

To understand if our age prediction methods were synchronous in predicting animals older 

or younger, we plotted the pairwise age-adjusted prediction residuals for each mouse from 

each method. While all prediction methods were significantly positively correlated, the 

TIME-seq multi-tissue clock and blood clock age-adjusted prediction residuals were much 

more highly correlated with each other and lowly correlated with rDNA clock residuals 

(Extended Data Fig. 5c), suggesting that rDNA methylation may be capturing a separate 

aging module only partially reflected in the other clock methods. The high correlation 

between blood and multi-tissue clock prediction residuals suggests that similar aging 

modules are reflected by these clocks, in contrast with the multi-tissue clock asynchrony 

with the skin and liver clocks.

Assessing the influence of blood composition and frailty on epigenetic age with TIME-seq

The difference between predicted age from epigenetic clocks and chronological age (∆Age) 

has been shown to correlate with a wide variety of age-associated phenotypes3. To test if 

TIME-seq predictions related to other measures of health or aging, we compared ∆Ages 

from each approach to the mouse frailty index and blood composition measurements, which 

have been shown to influence epigenetic clocks2. To control for the raw age correlation of 

each variable (Extended Data Fig. 5d,e), measurements from each mouse were subtracted 

from the median value of that variable in similar-aged animals–abbreviated as ∆Medage 

(blood) and ∆Medage (FI). ∆Medage (blood) values were not correlated with ∆Ages from the 

deep-sequenced clocks, suggesting that blood cell composition was not driving predictive 

variance (Extended Data Fig. 5d). Because the frailty index is also highly correlated with 

age and indicative of age-related decline, we assessed if ∆Ages were correlated with 

∆Medage (FI) values (that is, whether mice that are frailer for their age were also predicted 

older and vice versa). Comparing ∆Medage (FI) to ∆Ages (Extended Data Fig. 5f), we 

found a low and non-significant correlation. This finding mirrors the previously described 

low correlation between frailty and human epigenetic age predictions from blood DNA (for 

example, the Hannum or Horvath clocks36) and suggests that frailty scores are a relatively 

distinct biomarker of health and functional decline.
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To determine the minimum sequencing read number for accurate TIME-seq clock 

prediction, we simulated a sequencing saturation experiment by extracting reads from each 

sample at a lower threshold, remapping the subset reads and predicting age with the lower 

coverage (Fig. 3d,e). For the TIME-seq blood and multi-tissue clocks, prediction accuracy 

substantially declined with fewer than 500,000 reads per sample.

Benchmarking TIME-seq against conventional methods for epigenetic clock analysis

Next, we benchmarked TIME-seq against the most common technologies for age prediction, 

Illumina methylation BeadChip and RRBS, in 48 independent mouse blood samples (Fig. 

3f). TIME-seq methylation levels from the same CpG and same mouse were highly 

correlated with both BeadChip (R = 0.95; Fig. 3g) and RRBS (R = 0.92; Extended Data 

Fig. 5g). Epigenetic age predictions were highly accurate using either the TIME-seq blood 

or multi-tissue clocks, providing further independent validation (Fig. 3h). In contrast, the 

recently described BeadChip multi-tissue epigenetic clock37–the only mouse microarray-

based clock that is commercially available–uniformly underpredicted the age of the samples, 

possibly owing to a skewed age and sample distribution in the original study37. Finally, the 

RRBS-based mouse blood clock11 predicted samples with more accuracy than the BeadChip 

clock but with more variation than TIME-seq.

To compare the cost of small-scale and large-scale clock analyses, we estimated costs for 

a range of sample sizes (Fig. 3i and Supplementary Table 4). TIME-seq is increasingly 

economical at scale, with an estimated per-sample cost of just US$1.70 for 12,500 samples. 

RRBS is estimated to be more expensive than Illumina BeadChip in small experiments 

but–also leveraging the efficiency of short-read sequencing–it is increasingly cheaper than 

BeadChip in large-scale applications. TIME-seq clocks are approximately 50-fold less 

expensive than RRBS and 100-fold less expensive than Illumina BeadChip-based clocks 

in the largest simulated experiments, suggesting that TIME-seq clocks may be a more 

cost-efficient alternative to more conventional methodologies.

Assessing interventions that slow, accelerate and reverse aging in mice with TIME-seq 
clocks

Our goal for developing TIME-seq was to apply clocks to large-scale intervention 

experiments such as those obtained in longitudinal mouse aging studies, in vitro screens or 

large-scale human clinical trials. To understand if TIME-seq clocks could detect differences 

in aging after interventions, we applied our clocks to controlled treatments associated with 

age deceleration, acceleration or rejuvenation. We also applied TIME-seq to an in vitro time 

course to understand if it could be used for the screening experiments.

Two of the most robust interventions that extend mouse healthspan and lifespan are amino 

acid restriction and caloric restriction38. Conversely, a reduction in healthspan and lifespan 

is seen when mice are fed a high-fat diet (HFD)39. Using our TIME-seq mouse blood clock, 

mice that were 40% CR or methionine-restricted (MetR) from age 24 months to 30 months 

were predicted younger than their controls fed ad libitum (Fig. 4a,b; MetR, P = 0.022; 

40% CR, P = 0.031). Likewise, the TIME-seq liver clock predicted that the livers of mice 

that experienced 30% caloric restriction for 10 months were younger (P = 0.046) than their 
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controls fed ad libitum (Fig. 4c,d). HFD-fed mice were predicted older than mice of the 

same age on a standard diet using the TIME-seq liver clock (Fig. 4e,f; P = 0.026) and the 

TIME-seq multi-tissue clock (Extended Data Fig. 6a; P = 0.0064). These data suggest that 

TIME-seq clocks can detect age deceleration and acceleration from multiple tissues, even 

when interventions are initiated late in life.

Epigenetic reprogramming can rejuvenate aged tissues, driving gene expression and 

epigenetic changes toward a more youthful and regenerative state19,40,41. To understand 

if our clocks reflected rejuvenation, we assayed mouse livers treated for 1 month with an 

adeno-associated virus (AAV) expressing an Oct-4, Sox-2 and Klf-4 (OSK) polycistronic 

gene cassette (Fig. 4g). With the TIME-seq multi-tissue clock, mice with OSK expression 

were predicted significantly younger than control AAV-injected mice (Fig. 4h; P = 0.029). 

TIME-seq liver clock predictions were not significantly different between groups (Extended 

Data Fig. 6b), perhaps reflecting differences between intrinsic and extrinsic aging modules. 

These results suggest that the TIME-seq multi-tissue clock reflects epigenetic rejuvenation 

in vivo.

TIME-seq clocks reflect developmental stage and different rates of epigenetic aging in 
cultured cells

Epigenetic clocks have been shown to ‘tick’ as cells are grown and passaged in 

culture18,42,43, providing a promising way to screen for aging interventions in vitro. To 

test if TIME-seq clocks also work on cultured cells, we grew five independent lines of 

low-passage mouse embryonic fibroblasts (MEFs) or adult mouse ear fibroblasts for 1 

month and collected cells at three different time points (Fig. 4i). Using the TIME-seq 

mouse multi-tissue clock, MEFs were initially predicted a subzero (embryonic) age; their 

epigenetic age steadily increased at a rate of approximately 2 weeks for every day in culture 

(Fig. 4j). Adult fibroblast lines were initially predicted between 17 and 23 months of age; 

their epigenetic ages increased at approximately half the rate as MEFs. The results were 

similar using the TIME-seq mouse skin clock, albeit with cells predicted to age at a slower 

rate (Extended Data 7c). These data indicate that we can use TIME-seq to track aging in 

cultured cells and provide further evidence for a different rate of aging between adult and 

embryonic cells18.

Developing a highly accurate and efficient human TIME-seq clock for human blood

Most human clock studies train their age prediction models on publicly available microarray 

data from dozens of past studies8,10,18 because new, large-scale experiments using 

microarrays are exorbitantly expensive and laborious. To develop a TIME-seq epigenetic 

clock that could be used in new large-scale human studies, we obtained 1,056 human blood 

DNA samples from demographically representative individuals aged 18–103 years (Fig. 

5a). Most of the samples were designated for initial clock training and testing (n = 796), 

whereas a subset was used for independent sample preparation and validation (n = 260). 

Using enrichment probes against age-correlated loci from 11 described clocks44, TIME-seq 

libraries were prepared and sequenced for a per-sample cost of U$6.24. We achieved high 

coverage from 9,379 CpGs across the genome (Fig. 5b), and sample data largely separated 
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by age in the first two principal components (Fig. 5c), validating that age-associated CpGs 

were enriched in the dataset.

With these data, we trained and tested the TIME-seq human blood clock (Fig. 5d), observing 

high age correlation in training (R = 0.98) and testing predictions (R = 0.96) with an MedAE 

of just 3.39 years, comparable to the most widely used human epigenetic clocks8,9. Gene set 

enrichment analysis of the resulting 405 CpG clock (Fig. 5e) revealed an association with 

developmental biological processes (Fig. 5f), including genes with promoter enrichment of 

PRC2-associated proteins and REST similar to our mouse clocks (Fig. 5g).

To validate our clock in a large and independent human experiment, we prepared and 

sequenced TIME-seq libraries from the remaining human blood DNA samples. With the 

TIME-seq human blood clock, we observed similar predictive accuracy in the validation 

dataset (n = 260) compared to the initial testing set (R = 0.96; Fig. 5h). Next, we performed 

Infinium MethylationEPIC BeadChip analysis on 24 random human samples from this 

validation cohort to benchmark TIME-seq-based age predictions against conventional 

microarray human clock predictions. Like the mouse BeadChip analysis, human BeadChip 

methylation was highly correlated with TIME-seq methylation in the same CpG and sample 

(R = 0.93, P < 2.2 × 10−16; Extended Data Fig. 7). DNA methylation age predictions 

using four of the most used BeadChip-based clocks (Horvath1, Hannum, Levine-PhenoAge, 

Horvath2) were all highly correlated with age (Fig. 5i), although at least two of the 

BeadChip-based clocks were uniformly predicted under the chronological ages in these 

samples (PhenoAge and Horvath2). The TIME-seq human blood clock had the lowest 

median error of any of the age prediction methods in this subset of samples (MedAE = 3.7 

years; Fig. 5j). Next, we compared the age-adjusted prediction residuals for each method, 

finding that the TIME-seq human blood clock predictions had the strongest correlation with 

the Horvath2 clock trained only on blood and skin (R = 0.61, P = 0.00135; Fig. 5k). The 

only clock that the TIME-seq human blood clock prediction residuals were not significantly 

correlated with was PhenoAge, a clock that is designed to reflect age-related mortality risk. 

These results suggest that the TIME-seq human blood clock is comparable to previously 

described and widely employed BeadChip-based chronological age epigenetic clocks.

Discussion

Epigenetic clocks are increasingly ubiquitous tools for both clinical and basic aging 

research. Unfortunately, they have been relatively expensive and laborious to measure, 

limiting their application to modest-sized or extremely well-funded experiments. In this 

study, we present TIME-seq, a flexible and scalable targeted sequencing approach that 

decreases the costs of epigenetic age analysis by up to 100-fold in large experiments. 

Using TIME-seq, we built and validated epigenetic clocks to predict age in over 2,800 

unique samples. This scale was enabled by immediate sample barcoding that facilitated low-

cost, pooled library preparation compatible with efficient hybridization-based enrichment 

and bisulfite conversion. Compared to traditional RRBS library preparations or BeadChip 

sample preparation, which can take anywhere from 4–9 days45 and cost upwards of US$30–

50 per sample, reagent cost for TIME-seq libraries is only US$0.65 per sample; without 

any automation, a trained technician can easily prepare upwards of 800 samples in only 
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1.5 days (approximately 12 h of hands-on time). Further, input DNA for TIME-seq (100 

ng) is the same as standard RRBS libraries and 3–5 times less than DNA methylation 

microarray, enabling longitudinal measurement of epigenetic age from low-yield DNA 

extractions, such as a mouse cheek bleed. Compared to highly targeted techniques (for 

example, droplet digital PCR) or commercial hybridization methods (for example, SyBS), 

TIME-seq is more flexible–capable of high enrichment of thousands to tens of thousands of 

CpGs–while minimizing sample preparation time, costs and parallel sample processing. At 

larger scales, we estimate that the cost of measuring TIME-seq clocks is substantially lower. 

Conservatively, we estimate that 12,500 samples could be prepared and sequenced for clock 

prediction on a single NovaSeq S4 flow cell for just US$1.70 per sample.

A central goal of aging research has been to develop biomarkers capable of detecting 

differences in the biological rate of aging1. We show that TIME-seq clocks can be used to 

detect the effect of interventions that accelerate or slow the rate of aging and rejuvenate 

aged tissue. TIME-seq clocks also reflect the age and developmental stage of cultured 

primary cells. Designed for low cost and scale, TIME-seq is uniquely capable of biomarker 

application to large intervention studies, such as screens or longitudinal clinical trials. 

Whether or not TIME-seq clocks can detect age-altering interventions in every tissue, 

or if they will associate with other metrics of functional decline, is not known and will 

require additional experiments. For instance, our analysis of TIME-seq clocks in mouse 

blood showed the lack of robust correlation between epigenetic age and frailty index in 

mice. A low correlation between baseline frailty and epigenetic age has also been described 

for human clocks36, suggesting that DNA methylation biomarkers might be specifically 

designed to predict frailty or a frailty-adjusted age proxy in mice or humans.

In the current study, we rationally designed hybridization probes to enrich loci that were 

known to correlate with chronological age, our target metric. However, when such data are 

not available, more genomic area might be enriched to identify CpGs with high correlation 

relative to the phenotype of interest (for example, mortality, frailty or cancer status). These 

libraries would initially be more expensive to sequence, but the number of baits could be 

reduced once model CpGs were discovered. This separation of more expensive biomarker 

discovery from low-cost measurement is key to the widespread adoption and routine use of 

DNA methylation clocks as well as clocks based on other biomolecules7,46.

There are trade-offs to consider when using TIME-seq. First, being designed for minimal 

cost and maximal efficiency, TIME-seq has the same limitations as other Tn5-based 

library preparations. For example, samples with improperly normalized DNA tend to 

drop out because of either over-tagmentation or under-tagmentation. During this study, we 

developed increasingly automated and reliable approaches for DNA normalization at scale 

(Supplementary Information), which limited sample dropout. Sample normalization could 

also be addressed using on-bead tagmentation47 to control for variation in starting DNA 

content. Likewise, techniques for increasing Tn5-based library efficiency might be used48. 

Second, we only present epigenetic clocks that are trained to predict chronological age and 

do not incorporate additional phenotypic information to adjust age before prediction as has 

been done, for example, DNAme PhenoAge and GrimAge10,21. To train these biological 

age TIME-seq clocks, we would need to obtain a large cohort of DNA with similarly rich 
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phenotypic data, which may be within the scope of a different study. Nonetheless, we see 

that our clocks reflect interventions associated with altered aging phenotypes in mice.

Ultimately, further automation of our TIME-seq sample processing pipeline could enable a 

single researcher to prepare thousands of samples at once, enabling low-cost age predictions 

from extremely large cohorts such as the UK Biobank. Such a study would be a powerful 

resource to identify genetic and lifestyle factors that influence aging at the population scale.

Methods

TIME-seq library preparation

Tn5 was purified and prepared using previously described protocols49. See Supplementary 

Information for more details specific to TIME-seq. For the TIME-seq library preparations, 

samples were organized into relatively even pools; 10 μl of DNA (10 ng μl−1, 100 ng total) 

from each sample was distributed into separate wells of strip tubes (or 96-well plates) for 

tagmentation. Then, 100 ng of unmethylated lambda phage DNA (catalog number D1521, 

Promega Corporation) was tagmented with each pool. Lambda DNA that came through at 

a low percentage of demultiplexed reads served to estimate bisulfite conversion efficiency. 

To tagment samples, 12.5 μl of 2× tagmentation buffer (20 mM Tris-HCl, pH 7.8, 10 mM 

dimethylformamide, 10 mM MgCl2) was added to each sample. Next, 2.5 μl of uniquely 

indexed TIME-seq transposase was added and the reaction was immediately mixed by 

pipetting 20 times. Once transposase was added to each sample in a pool, the samples were 

placed at 55 °C for 15 min. After incubation, 7 μl of STOP buffer (100 mM MES, pH 5, 

4.125 M guanidine thiocyanate, 25% isopropanol, 10 mM EDTA) was added, pools were 

vortexed and pulse-spun in a centrifuge and the reaction was incubated at 55 °C for an 

additional 5 min.

After stopping the reactions, samples from each pool were combined into a single tube, 

typically a 5-ml LoBind tube (catalog number 0030122348, Eppendorf) or 15-ml Falcon 

tube (catalog number 229410, CELLTREAT); 118 μl per sample of DNA binding buffer 

(catalog number D4004–1-L, Zymo Research) was added. Pools were then applied to Clean 

& Concentrator 25 (catalog number D4033, Zymo Research) columns. If the volume of the 

pool exceeded 5 ml, each pool was passed in equal volume through two separate columns. 

After two washes, pools were eluted in 41 μl (typically yielding 39 μl after elution) and 1 μl 

was removed to assess tagmentation fragment size and yield by D5000 ScreenTape (catalog 

number 5067–5588, Agilent Technologies) on an Agilent TapeStation.

For methylated end repair, eluted pools were combined with 5 μl of New England Biolabs 

buffer 2, 5 μl of 5 mM deoxynucleotide triphosphate containing 5-methyl-dCTP (catalog 

number N0356S, New England Biolabs) instead of dCTP, and 2 μl of Klenow Fragment (3′ 
→ 5′ exo-) (catalog number M0212L, New England Biolabs). The reactions were incubated 

at 37 °C for 30 min and then cleaned up with a Clean and Concentrator 25 column. To 

elute pools, 30 μl of heated elution buffer was applied to the column and incubated for 1 

min before being spun. Eluted DNA was then passed through the column a second time and 

concentrated for hybridization to 5 μl with a SpeedVac Concentrator (Eppendorf).
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For each pool, DNA, RNA and hybridization mixtures were prepared in separate strip 

tubes (one per pool). On ice, DNA mixtures were prepared by adding 5 μl of concentrated 

tagmented DNA from each pool, 3.4 μl of 1 μg μl−1 mouse cot-1 (catalog number 18440016, 

Thermo Fisher Scientific) or human cot-1 (catalog number 15279011, Thermo Fisher 

Scientific), and 0.6 μl of 100 μM TIME-seq hybridization blocking primers (Integrated 

DNA Technologies). RNA mixtures were prepared on ice by combining 4.25 μl of nuclease-

free H2O with 1 μl of SUPERase•In RNase Inhibitor (catalog number AM2696, Thermo 

Fisher Scientific), mixing and then adding 0.75 μl (750 ng total) of the biotin-RNA baits. 

The methods for the design and production of RNA baits can be found in Supplementary 

Information and the bait sequences are found in Supplementary Table 5. Hybridization 

mixtures were kept at room temperature and consisted of 25 μl 20× SSPE (catalog number 

AM9767, Thermo Fisher Scientific), 1 μl of 0.5 M EDTA, 10 μl 50× Denhardt’s buffer (1% 

w/v Ficoll 400, 1% w/v polyvinylpyrrolidone, 1% w/v BSA) and 13 μl of 1% SDS. Once the 

mixtures were prepared for each pool, the DNA mixtures were placed in a thermocycler and 

incubated for 5 min at 95 °C. Next, the thermocycler cooled to 65 °C and the hybridization 

mix was added to the thermocycler. After 3 min at 65 °C, the RNA mix was added to the 

thermocycler and incubated for 2 min at 65 °C. Next, the thermocycler lid was opened, 

and, keeping all tubes in the thermocycler well, 13 μl of heated hybridization buffer was 

transferred to the RNA bait mixture, followed by 9 μl of the denatured TIME-seq pooled 

DNA. This step was done quickly to limit temperature change during transfer, typically with 

a multichannel pipette for multiple pools. The combined mixtures were pipetted to mix 3–5 

times and capped and the thermocycler lid was closed. The hybridization reaction was then 

incubated at 65 °C for 4 h.

To capture biotin-RNA:DNA hybrids, 125 μl of streptavidin magnetic beads was washed 

three times in 200 μl of binding buffer (1 M NaCl, 10 mM Tris-HCl, pH 7.5, 1 mM 

EDTA) and resuspended in 200 μl of binding buffer. With the reaction still in the 

thermocycler, the streptavidin beads were added to the reactions and then quickly removed 

to room temperature. The reactions were rotated at 40 r.p.m. for 30 min to allow for biotin-

streptavidin binding and then placed on a magnetic separation rack (20–400, Sigma-Aldrich) 

until the solution was clear. Next, the beads were resuspended in 500 μl of hybridization 

wash buffer 1 (1× SSC, 0.1% SDS) and incubated at room temperature for 15 min. The 

beads were separated again on the magnetic separation rack and quickly resuspended in 500 

μl of preheated 65 °C wash buffer 2 (0.1× SSC, 0.1% SDS), then incubated for 10 min at 65 

°C. This step was repeated for a total of three heated washes. On the final wash, beads were 

magnetically separated, resuspended in 22 μl of 0.1 M NaOH, moved to a new strip tube (to 

avoid droplets on the original tube mixing with the elution buffer) and incubated for 10 min. 

After 10 min, beads were separated and 21 μl of the eluted single-stranded DNA from each 

pool was moved to another new strip tube for the bisulfite conversion reaction.

Bisulfite conversion was done using the EpiTect Fast Bisulfite Conversion Kit (catalog 

number 59824, QIAGEN), which was chosen due to the inclusion of DNA protect buffer 

(limiting DNA strand breakage in the bisulfite reaction) and carrier RNA that helps yield 

from low-concentration reactions. The volume of the eluted DNA was adjusted to 40 μl 

using nuclease-free H2O; 85 μl of bisulfite solution was added, followed by 15 μl of 

the DNA protect buffer, and the solution was mixed thoroughly. Bisulfite conversion and 
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cleanup proceeded according to standard kit instructions. DNA was eluted in 23 μl of kit 

elution buffer. The initial elution was passed through the column a second time.

PCR amplification was done in a 50-μl reaction containing 23 μl of the eluted DNA, 1 

μl of 25 μM P7 indexed primer (see Supplementary Table 5 for the primer sequences), 1 

μl of 25 μM P5 indexed primer and 25 μl New England Biolabs Q5U 2× Master Mix. 

Reactions were amplified with the following program: initial denaturation at 98 °C for 30 

s; 19 cycles of 98 °C for 30 s, 65 °C for 30 s and 72 °C for 1 min; and a final elongation 

at 72 °C for 3 min. After the PCR reactions were finished, they were cleaned using 1.8× 

CleanNGS SPRI Beads (catalog number CNGS005, Bulldog-Bio). Library fragment size 

and yield were assessed using a D1000 (catalog number 5067–5582, Agilent Technologies) 

or High Sensitivity D1000 ScreenTape (5067–5584, Agilent Technologies) on an Agilent 

TapeStation. Pools were combined for sequencing.

Sequencing

TIME-seq library sequencing requires two custom sequencing primers (Supplementary 

Table 5) for read 2 (Tn5 index) and index read 1 (i7 index), which were spiked into standard 

primers for all sequencing runs so that standard or control libraries (for example, phiX) 

could also be read out. A complete list of sequencing platforms used for each experiment is 

found in Supplementary Table 3.

Sequenced read demultiplexing and processing

TIME-seq pools were demultiplexed using sabre (https://github.com/najoshi/sabre) to 

identify the internal Tn5 barcode with no allowed mismatches and separate reads 

into unique FASTQ files for each sample. Cutadapt (v.2.5) was used to trim adapters 

(paired-end option: -G AGATGTGTATAAGAGANAG -a CTNTCTCTTATACACATCT 

-A CTNTCTCTTATACACATCT; single-end option: -A CTNTCTCTTATACACATCT). 

Reads were mapped with bowtie2 (v.2.3.4.3) using Bismark50 (v.0.22.3; options -N 1 

--non_directional) to bisulfite-converted genomes (bismark_genome_prepararation) mm10, 

hg19 or custom rDNA loci (see the bait design methods); reads were subsequently filtered 

using the Bismark function filter_non_conversion (option --threshold 11). Importantly, the 

latter step does not (as the Bismark function name suggests) reflect non-conversion from 

sodium bisulfite treatment, rather it removes a small percentage of reads (0.5–3%) that are 

artificially fully methylated during the methylated end repair of the reads, which has been 

described previously51. Next, the Bismark function bismark_methylation_extractor was used 

to call methylation for each sample with options to avoid overlapping reads (--no-overlap) in 

paired-end sequencing and to ignore the first 10 bp of each read (if single end: --ignore 10 

and --ignore_3prime 10; if paired end: --ignore_r2 10 --ignore_3prime_r2 10 as well), which 

precludes bias from methylated cytosines added in the Tn5 insertion gap during end repair. 

Reads that failed to map as pairs but that mapped individually were processed with the same 

pipeline and joined to the methylation data using bismark2bedGraph. Bisulfite conversion 

efficiency was assessed from unmethylated lambda DNA mapped to the bisulfite-converted 

Enterobacteria phage λ genome (iGenomes, Ilumina) and was generally 99% or higher.
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Epigenetic clock training, testing and analysis in the validation cohorts

R (v.4.0.2) was used for all data analysis, including data organization, clock 

training and testing, and applying clocks to the validation data. For clock training, 

methylation and coverage data were taken from the bismark.cov files (output of 

bismark_methylation_extractor), which contain CpG location and methylation percentage 

(0–100). Because high-coverage rDNA loci have been shown to make better age prediction 

models20, mouse rDNA methylation data were filtered to include only CpGs with high 

coverage (≥200) in more than 90% of samples at each CpG in the coverage matrix. For 

other mouse and human clock CpG enrichment datasets, CpGs were filtered to have at least 

coverage 10 in 90% of the samples.

To build epigenetic clocks from deep-sequenced TIME-seq data, samples were randomly 

selected from discrete age groups (for example, 25–55 weeks old for mice, 30–40 years 

old for humans) in an approximately 80:20 training to testing ratio. From the training 

dataset, penalized regression models were trained to predict age from methylation values 

with the R package glmnet52 with alpha set to 0.05 or 0.1 (elastic net). To further refine the 

model, age predictions from the training data were regressed against age and the coefficients 

from this simple linear model were included to adjust the elastic net model to account for 

small over-prediction or under-prediction in the youngest and oldest samples and produced 

predictions with more normal ∆Age distribution across the lifespan. Elastic net models were 

trained using random training-testing splits; a model with high Pearson correlation and low 

median error in the testing set was selected. This same process was applied to build the 

TIME-seq rDNA clock for application to the RRBS data, filtering for CpGs in TIME-seq 

data that had minimum coverage of 50 reads in the RRBS mouse blood clock dataset11.

Applying clocks to validation and intervention samples

Clocks were applied to the validation and intervention samples by joining bismark.cov files 

with the corresponding clock CpG coefficients. When a clock CpG was not covered, the 

missing value was replaced by the average methylation percentage at that CpG from all 

other samples in the experiment. Samples were excluded if more than 10% of clock CpGs 

were missing, or samples contained fewer than 100,000 reads. To calculate the weighted 

methylation (S) from the elastic net regression coefficients, each clock CpG methylation 

percentage was multiplied by the corresponding clock coefficient, and these values were 

summed as follows:

S =
k = 1

n
mk × coefficientk

where n is the total number of clock CpGs and mk is a number from 0–100 representing 

percentage methylation. To calculate the predicted age, the intercept from the elastic net 

regression is added to S and this value is adjusted with the simple linear regression 

coefficients a and c, as follows:

f predictedage = a × S + intercept + c
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Clocks predict age in units of weeks for the TIME-seq mouse rDNA clock, months for all 

other mouse clocks and years for the TIME-seq human blood clock. See Supplementary 

Table 6 for all clock positions, coefficients and intercepts used in this study.

Comparison between age prediction methods in the same mouse or sample

While age predictions were highly accurate, we still observed slight bias in the prediction for 

the oldest and youngest samples, which could influence the correlation between predictions 

made in the same mouse or sample. To control for this bias and compare predictions, we 

regressed predicted ages against chronological age for the entire set of data (for example, the 

testing dataset from clock training or the entire validation set) using the lm() function in R 

and calculated the residual for each prediction. For brevity, we refer to these values as the 

age-adjusted prediction residuals in our ‘Results’ section.

Animal assessments

All mouse experiments were conducted according to an animal protocol (reference number 

IS00000927) that was reviewed and approved by the Institutional Animal Care and Use 

Committee of the Harvard Medical Area Standing Committee on Animals. Male and female 

C57BL/6N mice were obtained from the NIA and group-housed (three or four mice per 

cage) at the Harvard Medical School in ventilated microisolator cages with a 12:12 h light–

dark cycle at 71 °F (21.7 °C) with 45–50% humidity. Mouse blood samples (150–300 μl) 

were collected in anesthetized mice (3% isoflurane) from the submandibular vein into tubes 

containing approximately 10% by volume of 0.5 M EDTA. Blood was spun at 1,500g for 

10 min and plasma was removed. Blood cell pellets were stored frozen at −80 °C. For 

the validation experiments, a subsample of whole blood was stored on ice and processed 

within 4 h with the Hemavet 950 (Drew Scientific) to give 20 whole blood count parameters. 

Frailty was assessed using the mouse clinical frailty index33, a noninvasive assessment of 31 

health deficits in mice. Two-hundred mouse (C57BL/6N) ocular vein blood samples were 

collected by researchers at the Jackson Laboratory’s Nathan Shock Center according to 

methods described previously53. These samples were used for TIME-seq clock training and 

testing.

Benchmarking TIME-seq against BeadChip and RRBS

For the mouse benchmarking experiments, 48 mouse blood DNA samples (independent 

from the validation set) were prepared with TIME-seq using mouse clock enrichment 

baits; 500 ng of DNA from the same 48 samples was sent to FOXO Technologies 

for analysis on the Infinium Mouse Methylation BeadChip (catalog number 20041559, 

Illumina). Eighteen of these DNA samples with at least 100 ng of DNA remaining were 

prepared and analyzed with RRBS using published library preparation methods12. RRBS 

samples were pooled and sequenced on an Illumina NovaSeq to a median depth of 38 

million read pairs and mapped with Bismark (v.0.22.3); methylation data were extracted 

with bismark_methylation_extractor with the option --no_overlap.

For the analysis of CpG methylation levels, loci common to each sample from each method 

(and more than 20 coverage for the sequencing approaches) were identified; the methylation 

levels from each technology were plotted pairwise as shown in Fig. 4. For the clock analysis, 
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the TIME-seq mouse blood and multi-tissue clocks were applied to the TIME-seq data as 

described above, whereas the RRBS-based mouse blood clock was applied in a similar 

fashion using the reported loci, weights and formula12, replacing any missing values with 

the mean methylation from all other samples. The BeadChip clock was applied to BeadChip 

data as reported elsewhere54.

For the comparison of costs at various scales, consumable costs were estimated (without 

consideration of labor) as follows: (1) TIME-seq costs were estimated as the library 

preparation cost per sample (US$0.65, detailed in Supplementary Table 1) and the cost 

of sequencing reagents sufficient to sequence each sample to at least 750,000 reads, which is 

50% more than the minimum depth we report for accurate age estimation; (2) for BeadChip, 

costs were estimated at US$25 per sample for DNA preparation below 1,000 samples 

and US$20, US$17.5 and US$15 per sample for volumes of 4,992, 9,984 and 12,000 

samples. The costs of consumables for the BeadChip assay were taken from the list price for 

Infinium Mouse Methylation BeadChip on Illumina’s website (catalog numbers 20041558, 

2004159 and 20041560); (3) for RRBS, sample preparation costs were estimated at US$50 

per sample below 1,000 samples and US$30 per sample for volumes of 1,000 and 5,000 

samples, and US$20 per sample for volumes of 10,000 and 12,500 samples. The costs of 

sequencing reagents were estimated to provide median reads per sample of 45 million.

Mouse intervention studies

For the late-life dietary interventions, male and female C57BL/6N mice were obtained from 

the NIA at 19 months of age and housed at the Harvard T.H. Chan School of Public Health. 

Mice were group-housed three or four per cage for the duration of the study in static isolator 

cages at 71 °F (21.7 °C) with 45–50% humidity, on a 12:12 h light–dark (7:00–19:00) 

cycle. After arrival, mice were fed a control diet (Research Diets) until the start of the 

study. Mice were then randomized to one of three groups: ad libitum diet, MetR (0.1% 

methionine) or 40% CR. CR was started in a stepwise fashion decreasing food intake by 

10% per week until it reached 40% CR at week 4. CR intake was based on ad libitum intake. 

Mice were monitored weekly for body weight and food intake. Fasting blood samples (4–6 

h) were taken when mice were killed (after 6 months on the diet) using cardiac puncture. 

Approximately 200 μl of whole blood in 1 μl of 0.5 mM EDTA was collected. The tube was 

spun and the plasma was removed. The remaining blood pellet was frozen at −80 °C until 

further analysis. Custom mouse diets were formulated at Research Diets (catalog numbers 

A17101101 and A19022001).

For our liver calorie restriction studies, male C57BL/6J wild-type (WT) mice bred in-house 

at the Harvard Medical School were housed singly with ad libitum access to water at the 

New Research Building. Male C57BL/6J mice were housed singly in the animal facility of 

the New Research Building at the Harvard Medical School. These mice were first given 

ad libitum access to water before being switched to house chow (LabDiet 5053), either ad 

libitum or 30% CR starting at 3 months old. Food intake was gradually reduced 10% per 

week for CR mice; body weight and food intake were monitored weekly. For both treatment 

groups of mice, food was placed on the floor of the cage each day at 8:00 ± 1 h. Livers were 

collected after approximately 10 months of treatment.
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For our studies of HFD in the liver, male C57BL/6J WT mice were housed three or four 

animals per cage with access to water in the New Research Building animal facility at 

the Harvard Medical School. Approximately 3–4 months before the experiment, mice were 

switched to house chow (LabDiet 5053). Next, a subset of mice were switched to high-fat 

AIN-93G diet (modified by adding hydrogenated coconut oil to provide 60% of calories 

from fat) starting at approximately 4 months of age for the remainder of their lives. Livers 

were collected from mice after 13 months of treatment.

To assess the effect of partial reprogramming in mouse liver, male C57BL/6 WT mice were 

ordered from the Charles River Laboratories. After being acclimated in the housing facility 

for at least 1 week, mice were injected with AAV.PHP.eB viruses via the retro-orbital route 

to express either green fluorescent protein (GFP) or OSK in the liver. A Tet-Off system was 

used to control the expression of GFP and OSK. Specifically, AAV encoding TRE-OSK 

was coinjected with AAV encoding CMV-tTA, and AAV encoding TRE-GFP was coinjected 

with AAV encoding CMV-tTA to express either OSK or GFP. One month after the AAV 

injection, mice were killed and the liver tissues were collected for genomic DNA extraction 

for the TIME-seq experiment.

Cell culture time course

Five independent cell lines of low-passage MEFs derived from C57BL/6 mice were thawed 

and cultured in low-oxygen conditions (3% v/v) in DMEM with 17% FBS (Seradigm) and 

1% penicillin/streptomycin plus 3.8 μl of β-mercaptoethanol per bottle of DMEM (500 ml). 

Likewise, five cell lines of low-passage adult ear fibroblasts were cultured with DMEM plus 

10% FCS, 1% penicillin/streptomycin and 3.6 μl of β-mercaptoethanol per bottle of DMEM 

in the same low-oxygen conditions. After thawed cell lines became confluent in a 150-mm 

cell culture dish, cells were split into a 12-well cell culture dish and an aliquot of more 

than 1 million cells was taken for the initial time point by first washing cells with cold 

PBS and then freezing at −80 °C. Two more samples of each cell line were collected over 

the following 28 days in the same fashion, expanding each culture to a 100-mm dish and 

collecting cell lines simultaneously.

Human whole-blood DNA samples

Human blood DNA samples were selected from the database of the Mass General Brigham 

Biobank, a biorepository of patient samples at Mass General Brigham (parent organization 

of the Massachusetts General Hospital and Brigham and Women’s Hospital). Patients who 

donated samples to this biobank provided written informed consent before their inclusion 

in this study. To select samples, the biobank database was queried for individuals from 

the ‘Healthy Populations’ cohorts for whom DNA samples were available. From this pool 

of individuals, samples were selected for clock development that were demographically 

representative of the US population from ages 18 to 103 years. DNA samples were obtained 

from the biobank and deidentified before distribution for TIME-seq. Sample handling, data 

analysis and study design were approved by the Mass General Brigham Institutional Review 

Board (protocol number 2021P003059). Deidentified DNA samples were split into an initial 

cohort for model training and testing and a validation cohort. Cohorts were normalized 
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separately to a starting concentration of 10 ng μl−1, prepared with TIME-seq, and sequenced 

on an Illumina NovaSeq.

For human BeadChip benchmarking, 300 ng of DNA from a subset of DNA samples was 

sent to TruDiagnostic for analysis on Infinium MethylationEPIC BeadChip. Data were 

returned as raw IDAT files, which were processed into beta values using the SeSAMe 

toolkit (v.1.16.1) in R. Age predictions from BeadChip-based clocks were made using the 

predictAge() command in SeSAMe.

Statistics and reproducibility

For the intervention experiments, no statistical methods were used to predetermine sample 

size, but sample sizes were similar to those used in previously described mouse epigenetic 

clock intervention experiments11–13. The investigators were not blinded to allocation 

during the experiments and outcome assessment. The statistical analysis listed in the 

figure legends, including Pearson correlation analysis, two-sample two-sided Student’s 

t-test, two-sided Wilcoxon test with or without multiple testing correction and Shapiro–

Wilk test of normality, were implemented in R. Clock training and testing datasets were 

selected randomly using the R package dplyr (v.1.0.2) with the function sample_n(). Before 

benchmarking, data quality cutoffs were selected to filter low-quality data before clock 

training and testing analysis. For the mouse rDNA clock dataset, samples with a high 

percentage of flagged fully methylated reads (>3%), indicative of degraded single-stranded 

DNA, were filtered. For the human and mouse multi-tissue and tissue-specific clock training 

and testing datasets, low-coverage samples with fewer than 300,000 reads on target (within 

1 kb of the target loci) were filtered. In the validation and intervention analysis, no 

samples were excluded except those with low-quality data. Low quality was predefined 

as a sample having fewer than 100,000 reads on target or a sample with more than 10% 

of clock CpGs with low coverage, that is, covered by fewer than ten reads. The Pearson 

correlation between DNA methylation values of technical replicates of the mouse blood 

DNA samples was assessed in two separate TIME-seq library preparations (shown in Fig. 1). 

The reproducibility of the TIME-seq epigenetic clocks was characterized by independently 

prepared and well-distributed (age and sex) validation sets of mouse and human DNA.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.

Griffin et al. Page 18

Nat Aging. Author manuscript; available in PMC 2024 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1 |. Biotinylated-RNA bait production and initial hybridization enrichment 
testing.
a, Schematic of steps involved in production of biotinylated-RNA baits from single-stranded 

oligo pools for target enrichment in TIME-Seq libraries. The percent of reads overlapping 

target RRBS mouse rDNA clock CpGs (b) and an IGV browser screenshot of mapped-

read pileups (c) using version 1 rDNA baits for enrichment of a TIME-Seq pool. Reads 

on-target (d) and mouse RRBS blood clock (Petkovich et al., 2017) CpG coverage (e) 

using mouse-blood specific baits in a pilot experiment targeting non-repetitive clock loci. 

Dotted line represents coverage cut-off of 10. Pools in both rDNA and blood clock pilot 

enrichments were sequenced with approximately 1 million paired end (PE) reads each in 

pool of 16 samples. (f) Adaptor design schematic for comparison of TIME-Seq adaptors 

with longer barcoded adaptors. Comparison of on-target reads in short TIME-Seq and long 

cytosine-depleted adaptor designs for both mouse blood clock (g) and (h) rDNA (version 1) 

baits enrichments.
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Extended Data Fig. 2 |. TIME-Seq library and sequencing schematic.
Schematic representation of final library structure (top) and Illumina sequencing (bottom) 

steps required to sequence TIME-Seq libraries. Index read 1 and read 2 primers are custom 

primers.
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Extended Data Fig. 3 |. Small pilot-experiment sample metrics, correlation of rDNA CpG 
methylation, and age predictions using a reported RRBS-based rDNA clock.
a, TIME-Seq pilot experimental design using mouse blood DNA from 4 age groups and 

preparing 2 replicates of each sample with rDNA baits (version 1) as well as RRBS libraries 

to be sequenced as a fraction of an Illumina MiSeq sequencing run. b, Demultiplexed 

reads from TIME-Seq pools. c, Mean CpG methylation from reads mapped to the mouse 

ribosomal DNA meta-locus. Unmethylated lambda phage DNA control is represented as 

a diamond. d, Percent methylation from reads mapped to ribosomal DNA meta-locus in 

replicate 1 and replicate 2 in CpGs with coverage of at least 125 reads. e, Replicate 

correlation from different coverage cutoffs in the rDNA. f, Pileup tracks for samples from 

a TIME-Seq pool (replicate 1) as well as mapped reads from one sample (mouse ID 3, 

aged 24 months). Reads are colored by mismatch: blue for T (unmethylated) and red for 

C (methylated). RRBS rDNA clock coordinates are illustrated on the bottom by black 

rectangles. g, Percent of reads directly overlapping clock CpGs from TIME-Seq libraries 
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(N = 12; mean from 2 replicates) and shallow-sequenced RRBS libraries (N = 10). h, 

RRBS rDNA clock predictions using TIME-Seq data enriched for clock loci (N = 12, both 

replicates) i, Coverage of each clock locus in the original RRBS rDNA clock. CpGs shown 

in red have a mean coverage of less than 50. Boxplot lengths (panels b, c, g, h) represent the 

interquartile range (IQR) with the middle line representing median values and the whiskers 

1.5 times the IQR.

Extended Data Fig. 4 |. Additional data related to mouse multi-tissue and tissue-specific clock 
training and testing.
a, Baits overlapping target loci used for mouse clock CpG enrichment. b, Age predictions 

from the TIME-Seq Mouse Multi-tissue Clock applied to the 157 mouse muscle samples. 

Pearson correlation between predicted and actual age is shown. c, TIME-Seq White Adipose 

Clock train (N = 107) and testing set (N = 27) predictions. d, TIME-Seq Kidney Clock 

train (N = 156) and testing set (N = 38) predictions. For panels c and d, Pearson correlation 

between predicted and actual age is shown for train and test. The median absolute error is 

shown for the testing set.
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Extended Data Fig. 5 |. Additional Data from validation and benchmarking of TIME-Seq.
a-b, TIME-Seq Mouse rDNA Clock predictions with samples colored for (a) validation 

library preparation (prep) and (b) cohort of the mouse. Pearson correlation is shown for each 

panel. c, Correlation between age-adjusted prediction residuals in the validation sets from 

the different prediction approaches. d, Correlation and significance matrix between ∆Age 

from each approach and ∆Medage(blood), that is, the difference in median value from similar 

aged mice for each blood measurement. The color and size of each circle represent the 

correlation and p-value significance, respectively. WBC = white blood cell count, NE (%) = 

percent of neutrophils, LY (%) = percent of lymphocytes, MO (%) = percent of monocytes, 

EO (%) = percent of eosinophils, BA (%) = percent of basophils, RBC = red blood cell 

count, Hb = hemoglobin, HCT = hematocrit, MCV = mean corpuscular volume, MCH 

= mean corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, 

RDW = red blood cell distribution width, PLT = platelets, MPV = mean platelet volume. 

e, Frailty indexes for each of the assayed mice along with Pearson correlation with age. f, 
Comparison of ∆Age and ∆Medage(FI) for mice in the validation cohort. Pearson correlation 

is shown without adjusting for multiple comparisons. g, Comparison between TIME-Seq 

CpG methylation and RRBS methylation in the same sample and CpG. Pearson correlation 

between CpG methylation levels is shown.
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Extended Data Fig. 6 |. Additional Data for TIME-Seq clocks applied to intervention mice and 
an in vitro time course.
a, Comparison TIME-Seq Multi-Tissue Clock predictions of high-fat diet mouse liver (N = 

12) with standard diet controls (N = 5). b, Comparison of TIME-Seq Liver Clock predictions 

in OSK-expressing, (+) OSK (N = 5), and control, (−) OSK (N = 9), mice. For panels a-b, 

statistical comparison between groups was performed using a two-sided Student’s t-test after 

assessing normality with Shapiro-Wilk’s test. c, Predictions of cell culture samples using the 

TIME-Seq Mouse Skin Clock. The slope from the linear models fit to data points from each 

cell line is shown.
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Extended Data Fig. 7 |. Comparison of methylation levels from TIME-Seq and BeadChip on the 
same samples.
Pearson correlation between BeadChip and TIME-Seq DNAme values for each sample and 

CpG (R = 0.93, p < 2.2e − 16).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. TIME-seq enables highly efficient epigenetic age predictions.
a, Schematic of the TIME-seq library preparation for highly multiplexed targeted 

methylation sequencing to build and measure DNA methylation-based biomarkers. b, Proof-

of-concept rDNA clock experiment schematic; 191 mouse blood DNA samples (histogram) 

were prepared with TIME-seq enriched for rDNA and sequenced for clock training and 

testing. c, Reads were demultiplexed from each rDNA clock pool. d, Percentage of 

demultiplexed reads from each sample that mapped to the rDNA meta-locus. e, Mean 

coverage at the rDNA meta-locus CpGs in rDNA-enriched TIME-seq libraries. f, Mean CpG 

methylation from each sample in the four pools. In c,d,f, n = 48 for pools 1–3 and n = 47 

for pool 4. The boxplot lengths represent the interquartile range (IQR) with the middle line 

representing median values and the whiskers 1.5 times the IQR. g, Histogram of training 

(n = 145; red) and testing (n = 37; blue) samples used to develop the TIME-seq mouse 

rDNA clock. h, TIME-seq mouse rDNA clock age predictions for the training (red) and 
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testing (blue) datasets. Pearson correlation and MedAE on the test are shown in the top left 

corner. i, Predictions from a TIME-seq rDNA clock developed using only CpGs with at 

least 50 reads coverage in the RRBS data used to develop the original mouse rDNA clock. 

Calorie-restricted (CR) mice are represented as red triangles.
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Fig. 2 |. Low-cost TIME-seq multi-tissue and tissue-specific clocks applied to 1,137 mouse tissue 
samples.
a, Circular genome plot illustrating the position and mean coverage of the 6,370 high-

coverage CpGs from the TIME-seq libraries in 1,137 mouse tissue samples. b, Principal 

component analysis (PCA) for the TIME-seq data colored according to their tissue of origin: 

liver (green), blood (red), skin (blue), muscle (turquoise), kidney (yellow) and WAT (pink). 

c, TIME-seq mouse multi-tissue clock training (left) and testing (right) predictions plotted 

against chronological age. d, Linear models fitted to DNA methylation levels at clock 

CpGs changing with age in the data used to train the TIME-seq mouse multi-tissue clock. 

Clock CpGs were split according to their clock coefficient sign, which is represented in 

the transparency of each line. e, Enrichment of protein binding (based on ENCODE data) 

at genes associated with the TIME-seq mouse multi-tissue clock. f–h, Tissue-specific TIME-

seq clock training (left) and testing (right) datasets for the TIME-seq mouse blood clock (f), 
liver clock (g) and skin clock (h). For all clocks, the Pearson correlation between predicted 

and actual age is shown. MedAE is shown for the testing set predictions. i, Age-adjusted 

residuals for liver and skin clock predictions from the same mice predicted in the testing 

sets. The shading around the regression line represents the 95% confidence interval (CI). j, 
Age-adjusted residuals for either skin (blue) or liver (green) clock predictions plotted against 

the predictions from the multi-tissue clock in the same sample.
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Fig. 3 |. TIME-seq is a robust and scalable alternative to conventional clock approaches.
a, Experimental schematic for validation of the TIME-seq age prediction methods in an 

independent cohort of mice with longitudinal time points, paired frailty index and blood 

composition data. b,c, TIME-seq age predictions in two independent validation library 

preparations using the TIME-seq mouse blood clock (n = 75) (b) and the TIME-seq 

mouse multi-tissue clock (n = 74) (c). The lines connect the same mouse at two different 

ages. Pearson correlations are shown in the top left corner. d,e, Sequencing saturation 

simulation to estimate clock accuracy from different read numbers in the validation 

samples for the TIME-seq mouse blood (d) and multi-tissue (e) clocks. The shading 

around the locally estimated scatterplot smoothing regression line represents the 95% CI. 

f, Schematic of the benchmarking experiment to compare TIME-seq to Illumina BeadChip 

and RRBS. g, Comparison of CpG methylation percentage in TIME-seq and BeadChip. 

Each dot represents the same CpG from the same sample measured by each technology. 

h, Comparison of ∆Ages for each method and the associated clocks. The boxplot lengths 

represent the IQR, with the middle line representing the median values and the whiskers 

1.5 times the IQR. i, Comparison of cost per sample (top) and total cost (bottom) for the 

TIME-seq clocks (black), BeadChip (red) and RRBS (blue) across a range of sample scales. 

The half-filled circles denote points that are overlapping between TIME-seq clocks. m, 

million; k, thousand.
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Fig. 4 |. TIME-seq clocks reflect interventions that slow, accelerate and reverse aging and can be 
used for in vitro studies.
a, Schematic of dietary restriction treatments started in late life. Groups of mice were treated 

with a 40% CR diet, MetR diet and ad libitum diet for 6 months starting at 24 months of age. 

b, Comparison of ∆Ages from TIME-seq blood clock predictions from blood samples from 

MetR (n = 19), CR (n = 8) and ad libitum (n = 13) fed groups of mice. Group comparison 

was performed with a pairwise two-sided Wilcoxon test with false discovery rate (FDR) 

correction for multiple comparisons. c, Schematic of the experiment to assess the effect 

of a CR diet on mouse liver epigenetic age. Mice were treated with 30% CR or control 

ad libitum diets starting at 4 months of age for 10 months; then livers were collected. d, 

Comparison of ∆Age from mice fed ad libitum (n = 4) and CR (n = 5) mice using the 

TIME-seq mouse liver clock. e, Schematic of HFD treatment and liver collection. Mice were 

treated for 13 months starting at 4 months. f, Comparison of predicted ages for standard (n = 

5) and HFD mice (n = 12) using the TIME-seq liver clock. f, Statistical comparison between 

groups was performed using a two-sided Student’s t-test after assessing normality with a 

Shapiro–Wilk test. g, Schematic of AAV treatments with OSK-expressing or control (GFP) 

cassettes. Livers were collected 1 month after AAV injection from two sets of mice (first set: 

control, n = 4 treatment, n = 2 aged 15–17 months; second set: control, n = 9; treatment, 

n = 5 aged 24 months). h, Comparison of ∆Ages in the livers of mice with (OSK+) or 

without (OSK−) OSK expression for 1 month. Statistical comparison was performed with a 

two-sided Wilcoxon test. i, Schematic of the experiment to assess MEFs and mouse adult ear 

fibroblasts in a cell culture time course lasting 1 month, with collection every 2 weeks. j, 
TIME-seq multi-tissue clock predictions from cell culture samples collected across the time 

course. The slope represents the change in predicted age per day in culture based on linear 

models fitted to data from each cell type.
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Fig. 5 |. Highly accurate epigenetic age predictions in 1,056 human blood samples using TIME-
seq.
a, Schematic of the experimental design to train, test and validate TIME-seq in 1,056 human 

blood DNA samples. Wh+H indicates White (Hispanic) ethnicity as denoted in the biobank 

metadata. b, Coverage of 9,379 CpGs from across the human genome. The colored dots 

represent CpGs described in the Illumina BeadChip clocks, whereas the smaller gray dots 

are the other enriched CpGs. c, PCA of the methylation matrix for the training and testing 

samples, colored according to age from youngest (blue) to oldest (red). d, Predicted ages 

from the TIME-seq human blood epigenetic clock. Pearson correlation between predicted 

and actual age is shown for the training (right; R = 0.98, P < 2.2 × 10−16) and testing (left; R 
= 0.96, P < 2.2 × 10−16) datasets. The MedAE is shown for the testing dataset. e, Annotation 

of the 405 clock CpGs with the coefficient on the y axis. The x axis (not shown) is the 

genomic space in the same style as b from left (chromosome 1) to right (chromosome 22). 

CpGs and gene names are colored with the same color key as in b. Feature annotation is 

Griffin et al. Page 34

Nat Aging. Author manuscript; available in PMC 2024 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coded according to shape as follows: 5′ UTR (open circle), exon (filled diamond), intergenic 

(open triangle), intron (filled triangle), noncoding (inverted filled triangle), promoter (filled 

square) and transcription termination site (inverted open triangle). f,g, Gene Ontology (GO) 

analysis for the enrichment of biological processes (f) or transcription factor binding sites 

(g) in genes associated with clock CpGs. h, TIME-seq human blood clock predictions 

in 260 independently prepared human blood DNA samples. Pearson correlation between 

predicted and actual age is shown (R = 0.96, P < 2.2 × 10−16). i, Predicted ages from each 

BeadChip-based clock in a subset of the validation set sample (n = 24). Pearson correlation 

between predicted and chronological age is shown, as well as MedAE in the subset. For 

Horvath1, Horvath2 and Hannum, P < 2.2 × 10−16. For PhenoAge, P = 4.7 × 10−15. j, 
∆Age values (difference in predicted and chronological age in units of years) for each age 

prediction method. k, Comparison of Pearson correlations between age-adjusted prediction 

residuals for each TIME-seq-based prediction and BeadChip-based clocks.
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