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Abstract Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious
adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recently
been suggested that some high-risk patients with AF detected on implantable devices may benefit from anticoagulation, long-
term management remains challenging in lower-risk patients and in those with AF detected on monitors or wearable devices
as the development of clinically meaningful arrhythmia burden in this group remains unknown. Identification and prediction
of clinically relevant AF is therefore of unprecedented importance to the cardiologic community. Family history and under-
lying genetic markers are important risk factors for AF. Recent studies suggest a good predictive ability of polygenic risk
scores, with a possible additive value to clinical AF prediction scores. Artificial intelligence, enabled by the exponentially in-
creasing computing power and digital data sets, has gained traction in the past decade and is of increasing interest in AF
prediction using a single or multiple lead sinus rhythm electrocardiogram. Integrating these novel approaches could help
predict AF substrate severity, thereby potentially improving the effectiveness of AF screening and personalizing the manage-
ment of patients presenting with conditions such as embolic stroke of undetermined source or subclinical AF. This review
presents current evidence surrounding deep learning and polygenic risk scores in the prediction of incident AF and provides
a futuristic outlook on possible ways of implementing these modalities into clinical practice, while considering current limita-
tions and required areas of improvement.
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Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia

® A comprehensive overview of innovations in genetics and artificial - ) ) e
and increases risk for stroke, death, heart failure, hospitalization, and cog-

intelligence, exploring their potential use for predicting new-onset

atrial fibrillation (AF) to enhance AF screening and personalize pa- nitive decline.' Oral anticoagulation and early rhythm control strategies
tient management. have been shown to reduce adverse cardiovascular outcomes.”” Atrial
® The review emphasizes the need for further research to establish fibrillation screening may provide an opportunity to implement measures
the feasibility, cost-effectiveness, and impact on clinical outcomes aimed at primary prevention of AF-related morbidity and mortality
of these emerging tools. through early initiation of appropriate therapy, risk factor modification,

and closer follow-up of higher-risk patients.'®""




Innovative approaches to atrial fibrillation prediction

Atrial fibrillation screening as recommended by most scientific guide-
lines is mainly 0|:>por‘cunistic.12'13 However, this approach could easily
overlook patients with paroxysmal or short-term persistent AF.'*>
Recent evidence favouring systematic AF screening in targeted popula-
tions has the potential to influence future guidelines and has been dis-
cussed in a recent consensus statement from the European Heart
Rhythm Association.'®"® While modern screening tools such as im-
plantable loop recorders (ILR) or wearables have become increasingly
reliable and widely available, clinical implications and appropriate man-
agement of asymptomatic and screen-detected AF are still incompletely
defined."” 3

An essential question in AF screening is not only how to screen but
which population to screen. Improving the ability to identify individuals
at high risk of developing clinically significant AF (i.e. AF leading to ad-
verse outcomes) may help define populations that may benefit from
screening and specialized downstream management. Recent techno-
logical advances in artificial intelligence (Al) and genetics offer the op-
portunity to develop new tools for a more individualized approach.

In this review, we provide an overview of the concepts of AF screening
and available AF prediction scores, with a focus on emerging approaches.
We discuss current developments in genetics and Al, including their po-
tential value in refining clinical risk scores and elucidating the population
of patients most likely to benefit from advanced AF screening.

Atrial fibrillation definitions
relevant to screening

Multiple AF classification schemes have been used based on its temporal
pattern, associated symptoms, and detection method." Figure 1 and
Table 1 summarize the latest classification relevant to AF screening pub-
lished in recent guidelines.'**

Traditionally, ‘clinical AF’ is diagnosed by a conventional 12-lead elec-
trocardiogram (ECG) or rhythm strip showing AF for >30 s."? Patients

with symptomatic clinical AF will be referred to as ‘clinically apparent
AF'. It is estimated that 10—40% of patients with clinical AF are asymp-
tomatic, defining ‘silent AF’2> Silent AF was shown to be associated
with increased morbidity and mortality compared with clinically appar-
ent AF, possibly due to delayed arrhythmia diagnosis and management,
thus providing the impetus for AF screening.n'25

Growing utilization of continuous cardiac monitoring devices has led
to a rise in the occurrence of asymptomatic device-detected AF with-
out documentation on 12-lead ECG, which is referred to as subclinical
AF (SCAF).24 Monitoring strategies range from wearables to cardiac im-
plantable electronic devices (CIEDs). Atrial tachyarrhythmia detected
by CIEDs with an atrial lead are termed atrial high-rate episodes
(AHREs), which may be short in duration and are not restricted to
AF.">** Multiple studies have demonstrated that continuous monitor-
ing using CIEDs increases SCAF detection in patients at high risk of AF
or stroke.?"***" Recent randomized clinical trials (RCTs) showed that
in high-risk patients with AHREs longer than 6 min (detected mainly on
pacemakers), oral anticoagulation (OAC) lowers the risk of stroke but
increases the risk of major bleeding, thus highlighting the need for a per-
sonalized approach to balance the risks and benefits of OAC initi-
ation."??7233 However, OAC did not show improved outcomes
in ILR-screened SCAF in a similar high-risk population.?’

Atrial fibrillation risk factors
and clinical risk score

Risk factors for atrial fibrillation

development

Current AF prediction tools rely almost exclusively on clinical risk factors.
The mostimportant clinical risk factor for AF is age, with 12% of individuals
over age 80 affected.”® Other traditional risk factors include male sex,
hypertension, hyperthyroidism, heart failure, and valvular and structural

AF

|

Subclinical AF

e.g. AHRE or
wearables-detected

|

Clinical AF

Clinically
apparent AF
(e.g. palpitations,
exercise intolerance,
hemodynamic
instability, etc.)

Silent AF

Figure 1 Atrial fibrillation classification adapted from recent guidelines.>** Symptoms attributable to AF range from non-specific palpitations to
haemodynamic instability.'* Clinically apparent AF and silent AF are two presenting forms of clinical AF documented on a 12-lead ECG or >30 s rhythm
strip. Subclinical AF is identified by continuous monitoring devices in asymptomatic individuals with no history of clinical AF. AF, atrial fibrillation; AHRE,

atrial high-rate episodes; ECG, electrocardiogram.
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Table 1 Atrial fibrillation classification, definitions, and clinical implication adapted from recent guidelines

12,24

Definition
Clinical AF AF diagnosed on a conventional 12-lead ECG tracing or rhythm
strip showing AF for >30s. It could be symptomatic or not
Clinically Subset of clinical AF in patients with symptoms attributable to
apparent AF AF
Silent AF Subset of clinical AF in patients with no symptoms attributable
to AF
SCAF AF identified by continuous monitoring devices in asymptomatic

individuals with no history of clinical AF

AHRE Subset of SCAF defined as arrhythmia episodes with atrial
rate > 170-190 b.p.m. detected by CIEDs with an atrial lead

Clinical implication

Established guideline-directed anticoagulation benefit irrespective of
symptom status'?

Symptoms attributable to AF range from non-specific palpitations to
haemodynamic insta»bilit)/12

Associated with increased morbidity and mortality compared with clinically
apparent AF*®

Management remains controversial, requiring a personalized,
patient-centred approach that weighs the risks and benefits of OAC
intiation'?2¢28

Needs to be inspected to rule out an artefactual signal

AF, atrial fibrillation; AHRE, atrial high-rate episodes; CIED, cardiac implantable electronic device; ECG, electrocardiogram; OAC, oral anticoagulation; SCAF, subclinical atrial fibrillation.

heart disease; others such as obstructive sleep apnoea, chronic obstruct-
ive pulmonary disease, and diabetes are more contested.'33*3>

Several lifestyle factors have also been associated with AF. Alcohol
carries undoubtedly the greatest risk."*** Body mass index (BMI) has
a linear relationship with AF incidence.*® Weight gain is correlated
with an increase in AF incidence, independently of the actual BMI.*’
Exercise shows a U-shaped association with AF.>® Smoking is debated
as a risk factor with inconsistent findings in observational studies."

Classical atrial fibrillation prediction

scores

Currently available AF prediction scores all include combinations of
clinical and lifestyle risk factors but differ mainly in the selection and
weighting of these factors. Over 10 traditional AF prediction scores
have been published (Table 2).3%*

HATCH and CHADS,/CHA,DS,-VASc scores were initially intended
to predict progression of AF and stroke risk, respectively, but were later
applied to the prediction of incident AF as well.*'"** While these scores
were not intended for this purpose and were not specifically optimized
for AF prediction,so it is nevertheless interesting that their predictive abil-
ity is comparable to dedicated AF prediction scores.*"** The C,HEST
score was proposed as a simple score for predicting incident AF and in-
cludes the following risk factors: coronary artery disease, chronic ob-
structive pulmonary disease, hypertension, elderly (>75 years), systolic
heart failure, and hyperthyroidism. While prediction in the derivation co-
hort was good, the ability of differentiation in external validation cohorts
was modest [area under the receiving operating characteristic curve
(AUC) 0.65] and lower than other scores in direct comparisons [namely,
CHARGE-AF and Electronic Health Records model for AF prediction
(EHR-AF)] (Table 2).**%74831 CHARGE-AF, specifically created to predict
AF, is the most commonly cited score to predict new-onset AF.* Beyond
classical risk factors, it includes race (higher risk for Caucasians), as well as
more contested factors (diabetes, smoking, height, and history of myocar-
dial infarction).**** CHARGE-AF has been shown to be superior to
CHA,DS,VASasc in predicting AF.>>~>¢ The EHR-AF included the largest
set of risk factors (19).** This model performed significantly better in a
direct comparison with CHARGE-AF and CHA,DS,-VASc scores.”
Most recently, HARMS,-AF was proposed.®* In contrast to other scores,
HARMS,-AF includes alcohol consumption as a lifestyle factor. It has a
comparable predictive value as CHARGE-AF>* Comparison between
scores is difficult though because the choice of predictive time windows
was quite heterogeneous (Table 2).

Dedicated AF prediction scores perform somewhat better than
scores that were derived to predict AF-related complications or AF
progression. Some of the best-performing scores in head-to-head
comparisons were CHARGE-AF, EHR-AF, and HARMS,-AF scores.
C-statistics for these prediction models range approximately between
0.7 and 0.8. While this is generally considered to be fairly good for a
predictive score, there might be added value in integrating additional in-
formation outside of the classical risk factors.

Traditional AF prediction scores mainly reflect the concept that
more comorbidities lead to more AF. However, they may miss some
of the underlying individual predisposition and therefore be less suited
for some populations, e.g. patients with few or not in risk scores repre-
sented comorbidities. Furthermore, these scores remain with limited
discriminative ability despite inclusion of multiple demographic and clin-
ical risk markers, which might be part of the reason why they are rarely
used in clinical practice. Importantly, none of the scores included family
history. Novel approaches have been developed to predict AF beyond
clinical risk scores, notably Al and genetics, which will be discussed in
the following sections.

Atrial fibrillation prediction using
artificial intelligence

Overview of artificial intelligence

The concept of machine learning (ML), a subset of Al (see Supplementary
material online, Figure $1), has been around for decades. Instead of expli-
citly outlining the steps to resolve a task, a ML algorithm derives the so-
lution based on data: this is referred to as the training or learning process
(see Supplementary material online, Figure $2).>” Artificial neural net-
works have gained popularity through their ability to surpass other ML
techniques in solving complex problems. They are composed of inter-
connected artificial ‘neurones’ that represent mathematical equations
sequenced into different components: an input layer, several hidden
layers, and an output layer.’® When they contain numerous hidden
layers, they are referred to as deep neural networks (DNNs), also
known as deep learning (DL) algorithms. Convolutional neural networks
(CNN), inspired by the architecture of the visual cortex, are one of the
most employed algorithms in the field of DL.> Supervised learning is a
type of ML in which algorithms are trained on labelled data sets.
Inaccurate or inconsistent labelling can lead to poor model performance,


http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euae201#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euae201#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euae201#supplementary-data
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ECGs or discharge
diagnosis.
ECG data did not
improve model.
Addition of BNP
increased
predictive ability*

CHARGE AF*¢

AF definition: study

with AF

DM not associated

HARMS,-AF3*

EHR*®

predicted high
stroke risk

ARIC*®
level for risk
diagnoses,
death
certificates

(P=0.1)

AF definition:
follow-up

factors
ECGs,
discharge

FHS*’
improved AUC to

significantly)
0.79 in the internal
validation data set

C,HEST*
AF on univariate
discharge diagnosis

analysis
AF definition: hospital

cohort
DM correlated with

HATCH*?

AF definition:
discharge
diagnosis or
confirmed twice
as outpatient
diagnosis

Fauchier et al.: score
tested in stroke
patients for
prediction of AF

CHADS,Vasc*'*?

CHADS3"42
tested in stroke
prediction of AF
patients with
arrhythmic
symptoms

patients for
Zuo: score tested in

Fauchier et al.: score

AF, atrial fibrillation; AUC, area under the receiver-operator curve; BMI, body-mass index; BP, blood pressure; BNP, Brain Natriuretic Peptide; CAD, coronary artery disease; CKD, chronic kidney disease; DM, diabetes mellitus; HTN, hypertension;

IQR, interquartile range; LA, left atrium; LVH, left ventricular hypertrophy; MI, myocardial infarction; OSA, obstructive sleep apnoea; PAD, peripheral artery disease; TIA, transient ischemic attack.

Number in parenthesis indicates adjudicated score value for specific risk factors.

Table 2 Continued

Score

underscoring the importance of expert involvement in the labelling pro-
cess and the continuous refinement of the labelled data sets.

The performance of a model is usually measured using a process
called ‘holdout strategy’. This involves splitting the whole data set into
three separate parts—a training set, an internal validation set, and a
test set. The training set helps learn the data, the validation set is used
to optimize and select the best-performing settings (hyperparameters),
and the test set allows the opportunity to gauge how the adjusted mod-
el performs (see Supplementary material online, Figure $3).°° Usually,
the ‘C-statistic’ or AUC is used to gauge the performance of classifiers.
However, if the data sets are unbalanced, which is often the case for de-
tecting incident AF (only a minority of patients develop the outcome),
then the area under the precision recall curve (AUPRC) should be
used instead.®’

Deep learning to predict atrial fibrillation

using electrocardiograms

Recent studies reported on the development of incident AF prediction
models using patients without previous history of AF and with ECG dur-
ing normal sinus rhythm (NSR-ECG). The pathophysiological plausibility
of such prediction can be based on the assumption of an underlying ECG
signature of significant atrial myopathy (AM) representing a vulnerable
substrate for AF.®*™®> Attia et al.*® were the first to train a CNN on
NSR-ECG of 144 642 adults to predict new-onset AF and achieved an
AUC value of 0.87 on an independent test set (Table 3). However, this
model is limited to predicting ‘imminent AF’ within 31 days of the ana-
lysed ECG. While this limited timeframe could be useful to stratify the
risk of a short-term documentation of AF in patients presenting with pal-
pitations, the opportunity to prevent stroke is limited. Moreover, AF
diagnosis required documentation on a 12-lead ECG at Mayo Clinic.
Notably, patients with AF diagnosis in the electronic health records
(EHRs) but without ECG documentation were excluded, which could
have introduced a selection bias. Raghunath et al.®” trained a CNN on
NSR-ECG from more than 382 604 adults to predict incident AF within
1 year. Atrial fibrillation diagnosis relied on a 12-lead ECG documenta-
tion and on diagnoses in the EHR at Geisinger. This model demonstrated
good discrimination on the holdout set with an AUC of 0.85 using
NSR-ECG, age, and sex as inputs. The model also showed superior per-
formance compared to CHARGE-AF on a subset of the holdout set
(AUC 0.84 vs. 0.79). However, the prediction window in this model
remains relatively short, potentially limiting timely primary prevention in-
terventions. Further, the models developed by Attia et al. and Raghunath
et al. lacked rigorous external validation to test generalizability. Lastly,
incident AF was modelled as a binary classification task at a specific
follow-up time which can be associated with a classification error given
the paroxysmal nature of AF and irregular follow-up times.

More recently, Khurshid et al.®” trained a CNN on 45 770 patients to
predict 5-year AF-free survival using NSR-ECG. Unlike previous studies,
they used a discrete-time survival model using DNN, accounting for
censoring (death or loss to follow-up).2® The innovative inclusion of
CNN-predicted probability and CHARGE-AF as covariates in a Cox
proportional hazards model improved incident AF discrimination
with a 5-year AUC of 0.838 and 0.777 on two internal data sets, re-
spectively, and a 2-year AUC of 0.746 on the UK Biobank external
data set. This study suggests that ECG-AI provides predictive value
above and beyond standard clinical factors. Furthermore, the authors
used saliency maps, an Al model interpretation technique to highlight
features such as the ECG P wave and its surrounding regions which
had contributed the most on the model’s AF risk estimates.

A common limitation in the three aforementioned studies lies in
training DL models on single-institution ECGs for clinical purposes
which may not extrapolate well to AF screening in the general popula-
tion. For instance, in the study by Khurshid et al., the training set’'s AF
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incidence rate was 12.8 per 1000 person-years vs. 4.2 in the UK
Biobank, which probably contributes to the limited generalizability.69

In a recent study, Hygrell et al”*”>®" trained a CNN model using
data from the STROKESTOP Il and SAFER AF screening studies.
Electrocardiograms from 80% of participants in both SAFER and
STROKESTOP |l were utilized for model training. The remaining
20% were allocated to the test set, along with all the ECGs from
STROKESTOP |, another AF screening study randomizing 75—76-year-
olds in Sweden.”® The model performed better in the age-diverse
SAFER data set (AUC 0.80) compared to the age-homogeneous cohorts
in STROKESTOP | (AUC 0.62) and STOKESTOP Il (AUC 0.62). The
authors hypothesized that the higher accuracy in SAFER can be attributed
to the identification of age-related patterns on the ECG by the CNN, since
thereisa strongassociation between age and AF, and ECGs were shown to
effectively estimate a person’s age.82 The low prevalence of AF in the train-
ing set (2.6%) could have also negatively affected model performance. Two
other studies notably used single-lead ECGs combined with clinical data for
predicting near-term or paroxysmal AF and achieved good classification
performance.n'73 However, those models were not validated on external
data sets. Additionally, some authors presented the AUC as the perform-
ance metric, which may overestimate the model’s predictive power since
only a minority of patients developed incident AF. For instance, while Yuan
et al.”" achieved an AUC of 0.93 in predicting paroxysmal AF using 12-lead
ECGs; the reported positive predictive value (PPV) is only 5%. Future stud-
ies should present PPV, negative predictive values, and the AUPRC to pro-
vide a more comprehensive evaluation of the model's classification
performance.

In 2022, Noseworthy et al.”” published the first prospective non-
randomized interventional trial evaluating the performance of a previously
developed model in the prediction of paroxysmal AF based on NSR-ECG
(Table 4). This study showed a benefit in increased detection of AF on
continuous monitoring using Al-based risk stratification [odds ratio
(OR) =4.98, P=0.0002]. Although AF was defined as an episode >30s,
ODs remained statistically significant for episodes >6 min (P=0.0015)
but not for episodes >24 h (P =0.091), possibly due to limited power.

I.68

Deep learning to predict atrial fibrillation

using electronic health record data

Electronic health record data is a promising substrate for big data ana-
lytic approaches such as DL. In 2019, Hill et al.”” trained and validated a
neural network which predicts the incidence of AF in primary care pa-
tients within 1-year follow-up. The model was trained on a cohort of
adults aged >30 years in the UK. The final model included baseline vari-
ables, such as patient demographics and comorbidities, and considered
time-varying information to capture the evolution of AF risk factors.
The model was externally validated in a subsequent study demonstrat-
ing an AUC of 0.87.”% In 2022, Hill et al.”® published a multicentre RCT
assessing whether the deployment of their model could identify pa-
tients at high risk for AF who may benefit from downstream screening
(Table 4). The study population included adult primary care patients in
the UK. The screening intervention consisted of a 12-lead ECG fol-
lowed by a 2-week one-lead ECG monitoring twice daily. Of the 906
high-risk patients in the intervention arm, 255 patients (28.1%) ac-
cepted the screening invitation and only 148 patients (16.3%) com-
pleted the intervention per protocol. The observed OR of the primary
outcome (any atrial arrhythmia > 30 s in high-risk patients) was not
statistically significant but was significant in the per protocol analysis
(OR =3.07, P=0.001). This trial was the first to evaluate the perform-
ance of a DL-based AF risk prediction tool using solely clinical variables
collected in a primary care setting. However, the evaluation of the mod-
el was limited by the poor response in the intervention group.
Moreover, the generalizability of the study findings to varied practices
in diverse healthcare systems and using different EHR modalities is
uncertain.

Table 4 Prospective trials assessing DL models predicting incident AF

Result

Outcome

Follow-up

Comparator

Intervention

Population and setting

Design

Author, year,

country

OR =1.15 (0.77-1.73)

20 months  Diagnosis of AF, atrial flutter,

Routine care

UK general practices at high risk for 12-lead ECG and 2-week

Prospective randomized

Hill et al.

0.486

p=

or fast atrial tachycardia

(n=974)

one-lead ECG monitoring

twice daily (n = 906)

AF based on DL model
Mayo Clinic patients with >1 ECG. High risk for AF based on DL  Low risk for AF

multicentre controlled trial

(UK)
Prospective non-randomized

(2022)”°

498 (2.11-11.75)

OR=
0.0002

P

Diagnosis of AF > 30s on

Mean of

Noseworthy

continuous ambulatory

22.3 days

model (n=633) based on DL

CHA,DS,-VASc > 2 (men) or

>3 (women)

single-centre interventional

trial (USA)

et al. (2022)%®

monitoring for up to 30

model (n = 370)

days

AF, atrial fibrillation; DL, deep learning; ECG, electrocardiogram; OR, odds ratio.
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Polygenic scores in atrial fibrillation

Atrial fibrillation and genetics

Genetic predisposition is a major risk factor for AF. A first-degree
relative of a patient with AF has a greater than four-fold relative risk
of experiencing AF compared to an individual with a negative family
history.®? It has been estimated that genetic factors account for more
than 20% of the risk for developing AF.2* Therefore, genetic risk scores
may play an important role in predicting incident AF.

Association of rare genetic variants with

atrial fibrillation

In familial AF, inheritance can follow a Mendelian pattern and rare variants
(e.g. present in <0.01% of the population) can explain some of the her-
itability. The first AF-associated mutation was found in the ion channel
gene KCNQT, which is also responsible for long QT syndrome type
185 Several other rare variants in ion channel genes (eg. KCNH2,
SCN5A, and KCNA5) and in genes involved in atrial function, such as myo-
cyte contraction (sarcomeric proteins MYL4 and TTN), hormonal regula-
tion (NPPA), transcription factors (TBXS5), and gap junctions (GJAT and
GJA5), have been discovered.®® Importantly, significant overlap between
AF and genetic cardiomyopathies (CM) exists.2”*° Indeed, in patients
with early-onset AF (<45 or <65 years of age), the prevalence of patho-
genic or likely pathogenic variants in CM or arrhythmia genes was
10-24%.7"7% Affected genes included TTN, RBM20, MYH7, MYH6,
LMNA, and KCNQ1. Gene-positive patients were found to have a 50%
increased mortality hazard, independent of left ventricular ejection frac-
tion.”* Based on these data, the recent AF guidelines of the American
Heart Association state that it may be reasonable to perform genetic test-
ing for rare pathogenic variants in patients with an onset of AF before age
45 without obvious AF risk factors.** Notably, although rare genetic
variants may importantly increase risk for AF, the rarity of these variants
renders them accountable for a smaller portion of genetic susceptibility
to AF at a population level compared to common polygenic factors.”*

Basic concepts of polygenic risk scores

While early studies looked at familial clustering and used linkage ana-
lyses to identify rare variants, AF most commonly occurs in its sporadic

SNPs combined
DNA SNPs A

———-Di
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L 4 o‘
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< #

. *
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*ty
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form and the largest proportion of heritability in the general population
is explained by common variants (e.g. present in >1% of the popula-
tion).”*?> Common variants in isolation have small effect sizes, but if
many of them accumulate in one individual, they may increase AF sus-
ceptibility. On this concept rely polygenic risk scores (PRSs) (Figure 2).

Genome-wide association studies (GWASs) have led to the
discovery of >150 different loci associated with AF, and this number
is increasing over time with larger GWAS.?**” Using high-throughput
genotyping arrays, millions of SNPs can be analysed quickly. The results
can be visualized on so-called Manhattan plots; SNPs above the signifi-
cance threshold are considered associated with AF (Figure 2).

One of the first AF susceptibility loci detected by GWAS and replicated
in multiple studies and across ancestries is located at chromosome
4q25.95 9698100 pITX 2, the likely causal gene at this locus, codes for a tran-
scription factor that is key in determining the differentiation of the left at-
rium and the development of the pulmonary myocardial sleeves.'®"92
Many other candidate genes have been identified, e.g. ZFHX3 (16q22),
KCNN3 (1q21), and IL6R (1q21).761%%193-1% \while GWASs do not pro-
vide any evidence of a causal relationship, they lead to the identification of
promising candidate genes associated with AF. At present, the function of
most loci remains to be elucidated, and investigations to unravel patho-
logical pathways are underway.

A genetic risk score includes a variable number of SNPs, as little as a
handful up to millions, selected based on GWAS results. A PRS can then
be calculated by summing up the number of risk alleles present in an in-
dividual and adjusting to the relative effect size of the association of each
allele with the trait. The individual effect sizes for each SNP are usually
very small, but if many are present, they can lead to a high PRS and con-
sequently to a high relative disease risk (Figure 3). Commonly, ORs are
indicated to describe risk of the top of the distribution curve vs. the
rest of the population (e.g. PRS in the top 5% vs. the rest), or, alternative-
ly, highest vs. lowest percentile.'®”1%®

A PRS should be tested in an external population to help mitigate
biases and overinflation related to the selected cohort and avoid a pos-
sible correlation between genetic and environmental risk.'? Initially,
GWASs were performed in cohorts from often only one geographic
location, which can lead to confounding due to heterogeneous genetic
architecture between populations.’®® To develop widely applicable
scores, the general tendency has shifted to derive and test PRSs in eth-
nically diverse populations.”®"'"

Manhattan plot for genome-wide association studies (GWAS)

Strength of associations across the genome

Considered significant

association Significantly associated SNPs with tested trait

15 4 [ |
10 4 ®
Significance --------=-=--——mmg=—c—f------------
54

— T T T T T T T T T T T TTTT
7 8 910 111213 15 17 19 21
Chromosome position

Figure 2 Polygenic risk and GWASs. Left panel depicts the theoretical basis underlying polygenic risk. DNA contains a vast number of SNPs. The
accumulation of several of these common DNA variants makes up an individual’s polygenic risk. If a certain threshold is surpassed, the disease is more
likely to develop. Right panel shows a graphical depiction of a Manhattan plot for a GWAS. The dots represent all the analysed SNPs at their specific
chromosome position (X axis). SNPs above the level of significance (indicated by a dashed line on the Y axis) are significantly associated with the disease
under investigation, e.g. AF. SNPs are commonly referred to with their reference SNP (rs) number.
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GWAS

No AF

AF

9 ome

Risk variants SNP

W = weight

Frequency

Polygenis risk score

High risk R

Chromo some

PRS = TWxx SNP;

Prevalence

PRS percentile

Figure 3 Polygenic risk score derivation from genome wide association studies (GVWASs). Development of a polygenic risk score (PRS) is done by first
analysing DNA of a patient cohort with the trait (i.e. AF) and a control cohort. The GWAS indicates all the single nucleotide polymorphisms (SNP) or
common variants which are significantly associated with AF. The relative genome-wide effect size of the association of each SNP (i.e. weight) can be de-
termined. By summing up all the significant SNPs, each multiplied by their respective weight, a PRS is obtained. A PRS is normally distributed in the popu-
lation; the right end indicates a high polygenic risk and can be compared to the rest of the population.

Current data on polygenic scores in atrial

fibrillation

First attempts to create PRSs to predict incident AF were undertaken just
a decade ago and included only the top variant at each disease susceptibil-
ity locus, hence consisting of merely a handful of genetic loci (Table 5)."""
While it had been shown that PRSs could be superior to family history in
predicting disease risk in multiple common diseases, an early theoretical
model by Do et al.""? failed to show this benefit for AF. In 2014, Lubitz
et al.'" investigated a PRS comprising 12 SNPs observing a five-fold
risk increase for the development of AF in individuals with the highest
compared to those with the lowest number of risk alleles.

More recently, a shift towards genome-wide PRSs comprised of mil-
lions of SNIPs has taken place. This method uses less stringent criteria on
genome-wide significance levels and on linkage disequilibrium and has
been suggested to lead to better performance than early PRSs.'**
Khera et al.'® conducted a seminal study in 2018 in which a PRS includ-
ing more than 6 million SNPs was derived. The group successfully de-
monstrated that a high PRS was significantly associated with prevalent
AF: in the top 1% of the tested population, risk was 4.63-fold increased,
compared to the bottom 99%. The AUC for this score was 0.77, which is
comparable to the best clinical AF prediction scores.'® Recent data also
suggest that the implication of polygenic risk is particularly important in
lone AF: one study found that 26.3-33.3% of lone AF patients vs. only
10% of controls had a high PRS.'*

An important observation underscoring the importance of genetics
in the development of AF and the additive value of a PRS to a purely
clinical AF prediction score was made by Weng et al’? To assess

the differential contribution of clinical and genetic risk in AF, the authors
used the CHARGE-AF score and a PRS comprised of 986 SNPs. Both
risk scores were strongly associated with AF incidence and earlier on-
set. At age 55, the lifetime risk for AF was ~22% with a low PRS and
~48% with a high PRS, and a lower clinical risk score was associated
with delayed AF onset within each PRS stratum,'?

A limitation of current GWAS and PRS is that most were performed in
single-ancestry cohorts. The added value of cross-ancestry cohorts was
demonstrated in a recent study by Miyazawa et al.”® Thirty-five new
AF-associated loci were identified across a GWAS including Japanese,
Finnish, and European ancestry cohorts. Indeed, a PRS based on the multi-
ancestry cohort (AUC 0.738) performed better than single-ancestry co-
horts and confirmed previous observations of an association between
higher PRS and earlier AF onset. These findings will likely prompt addition-
al multi-ancestry genetic studies to overcome current limitations.

Integrating genetic risk and
artificial intelligence in atrial
fibrillation prediction models

Atrial fibrillation screening has the potential to identify patients at risk for
adverse clinical outcomes and can allow initiating pre-emptive treatment
or risk factor modification.® However, AF screening is encumbered by
the arrhythmia’s often asymptomatic and paroxysmal nature. To avoid
overdiagnosis and subsequently overtreatment while minimizing the
non-detection of patients at risk, it has become paramount to identify
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Figure 4 Future DL methods combining multimodal data sources to predict AF substrate severity. AF, atrial fibrillation; EHR, electronic health
records; ESUS, embolic stroke from undetermined source; SCAF, subclinical atrial fibrillation.

the ideal population to screen. For a screening strategy to achieve a
meaningful benefit, it must not only detect the disease but also lead to
a reduction in disease-associated risk by subsequent clinically useful
interventions.'?’

Much effort has been directed towards developing clinical risk scores
for AF prediction. To date, no model has been widely implemented into
routine clinical practice. This may be due to moderate predictive ability,
a lack of evidence of clinical benefit, and/or lack of generalized stream-
line implementation of such scores in electronic medical records.

The importance of genetics in the development of AF has been well es-
tablished making PRS attractive tools to complement current models. It
has indeed been shown that genetics and clinical factors are independent
contributors to AF development and therefore would be expected to
have additive value for AF risk estimation.'?® With cost and time of genetic
analyses having come down drastically, it seems increasingly feasible to set
up the infrastructure to use PRSs in clinical practice, not only for AF pre-
diction but as part of multiple actionable disease prediction.128 A finding of
major clinical interest was reported by Miyazawa et al,’® demonstrating
that a multi-ancestry PRS for AF showed a significant relationship with
hard clinical AF-related outcomes. These outcomes included cardiovas-
cular death, stroke, and cardioembolic stroke, with hazard ratios of
1.06, 1.04, and 1.35, respectively, in patients who were not diagnosed
with AF but had a high genetic predisposition.”® Although these results
are encouraging for potential future applicability of PRSs, an added value
over a simple clinical risk score has yet to be proven.'?

Combining Al and genetic scores, Wang et al.”® have recently shown
in a genetic correlation analysis that incident AF risk prediction using DL
has a higher correlation with established AF susceptibility loci com-
pared to a model solely based on clinical variables. Those recent studies
suggest that DL model prediction of incident AF risk using NSR-ECG
could be a biomarker of a clinically significant underlying AM or inher-
ited predisposition to AF. Hence, ECG-Al models are a promising tool
to identify patients at high risk of incident AF.

Given the potential additive predictive value of clinical risk factors, ECG
data, and genetics, it would be ideal to develop a multimodal AF prediction
model. Recent advances in Al carry the potential to integrate this hetero-
geneous data using large language models (LLMs) and output an AF sub-
strate severity biomarker, capable of predicting clinically significant AF at
risk for adverse events (Figure 4)."*° In addition to better population tar-
geting in AF screening, such a multimodal approach might also prove use-
fulin SCAF management. Subclinical AF has become an issue of increasing

importance due to the exponentially growing number of continuous
monitoring devices. While recent trials and guidelines addressed OAC in-
dication in patients with CIEDs presenting with AHREs, the management
of AF detected by consumer-based wearables is yet to be defined.**
Another area of much controversy is embolic stroke of undetermined
source (ESUS) management where OAC was not shown to be associated
with positive outcomes compared to aspirin."**'*" Recent trials also
showed no benefit when targeting enriched ESUS patients with suggestive
risk factors for cardiac embolism."*"*® The identification of a clinically sig-
nificant AF substrate could help better stratify patients presenting with
ESUS or SCAF and possibly personalize management and OAC indication
in these complex conditions.'**

Another potential area of application would be the prediction of recur-
rent AF after catheter ablation. A few results from smaller studies support
the hypothesis that genetic factors can predict ablation failure.'>>'3¢
However, the largest PRS study for AF recurrence so far, conducted by
Shoemaker et al,"” did not find any significant association. Recent
work on Al suggested that ECG-based algorithms could predict AF recur-
rence after ablation.”>"3® A prospective randomized trial to guide selec-
tion of patients for AF ablation is currently underway (Al-PAFA).'*’
However, AF recurrence after ablation is a multifaceted issue that is de-
pendent, in part, on procedural circumstances and patient characteristics
such that the role of genetic factors remains uncertain.

Several limitations and challenges are associated with the use of digital
health solutions in cardiology and involve multiple stakeholders including
patients, healthcare professionals, and product developers.'* Those chal-
lenges need to be addressed to enable using such novel approaches in AF
screening. Lack of algorithm explainability is one of the main barriers to
integrating DL in healthcare."*'™"** Although recent studies suggest that
DL model prediction of incident AF risk using NSR-ECG may identify
underlying AM or inherited predisposition to AF, replication of those ex-
ploratory findings and additional research in Al algorithm explainability will
be necessary in order to facilitate clinical implementation by increasing
clinician and patient trust in the model. Furthermore, transparency of
DL algorithms is particularly important since DL has the potential to re-
inforce inherent biases in training data features such as race and sex.'* To
address this issue, performance should be reported by subgroup at a min-
imum, and the training process should take these potential confounders
into account. Furthermore, to enhance the quality of Al models in cardi-
ology, five minimal quality criteria were recently proposed to guide the
development of new models: complete reporting, clearly defined
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Table 6 Future research needs towards clinical implementation of
Al and PRS in AF screening and management (AF, atrial fibrillation;
GWAS, genome wide association study; OAC, oral anticoagulation;
PRS, polygenic risk score; RCT, randomized controlled trial)

Challenges

Development Develop and adopt a standardized and gated technology

development framework'*®

146)

(e.g. technology readiness
levels
Enhance explainability to enable causal inference
Identify and mitigate bias
Develop multi-ancestry GWAS/PRS
Standardize reporting for PRS risk categories
(percentiles)
Deployment  Establish level of evidence required prior to deployment
(e.g. RCT vs. observational prospective data)
Identify a target population
Establish clinical relevance of AF detected via such
methods (e.g. risk of stroke vs. clinical AF)
Establish downstream management pathways (e.g. more
intensive AF screening vs. OAC)
Evaluate cost-effectiveness
Establish infrastructure for more accessible genetic
testing

AF, atrial fibrillation; GWAS, genome wide association study; OAC, oral anticoagulation;
PRS, polygenic risk score; RCT, randomized controlled trial.

intended use, rigorous validation, sufficient sample size, and transparency
of code and software." Additionally, while LLMs offer the opportunity
to integrate multimodal data, their large-scale deployment requires
addressing central issues in the implementation of Al into healthcare, spe-
cifically data sharing and privacy, algorithm standardization, and generaliz-
ability across healthcare systems.™"'#?

A further limiting factor of currently available GWAS and PRS is that
most have been derived and tested in ethnically homogeneous popula-
tions. As reported above, research is shifting towards multi-ancestry stud-
ies.”® Another important limitation is the ascertainment of AF in available
PRS studies: AF diagnosis was mainly based on either hospital diagnoses,
single ECG, or short-term ECG monitoring. Assessment of PRS perform-
ance in patients with uninterrupted rhythm monitoring is yet to be con-
ducted. Another limitation of GWASs is that they do not identify genes.
The discovered loci may be found in proximity to candidate genes, which
might be related to AF. However, no clear pathological pathway has been
identified so far from GWAS studies, and causal relationship remains
hypothetical for now. Several studies evaluating the effect of candidate
genes are underway. Future work should tackle questions on implemen-
tation in clinical care pathways (Table 6). These novel approaches in AF
screening and prediction will need to be tested prospectively to establish
their feasibility and demonstrate cost-effectiveness, safety, and improved
hard clinical endpoints including mortality, hospitalization, and stroke.
Ultimately, AF prediction is of limited value if the detected AF is clinically
insignificant.

Finally, cost implications need to be considered when assessing the
utility of new tools for predicting incident AF. Electrocardiograms are rela-
tively inexpensive and widely available, making them a cost-attractive initial
screening tool. In contrast, genetic analysis involves higher costs due to the
need for specialized equipment and expert interpretation. Nevertheless, in
recent years, genetic sequencing costs have decreased drastically such that
cost-effectiveness analyses have demonstrated the potential benefit of

genetic screening for certain conditions.™"*® Importantly, the potential
additional costs associated with ECG-Al or genetic testing would need to
be offset by savings in downstream management and/or reduction of ad-
verse outcomes to qualify as cost-effective (e.g. obviate the need for regular
ECG/Holter screening, and ILR implantation).

Conclusion

Prediction of AF is a topic of important contemporary interest. New
technologies allow for easy detection of arrhythmia with uncertain clin-
ical benefits. Polygenic risk scores may be an important component in
refining any current prediction score. Artificial intelligence would be ex-
pected to enable the integration of different modalities, including gen-
etics, to better characterize AF substrate severity and draw a more
reliable picture of the risk of developing clinically relevant AF. Such no-
vel prediction models have the potential to enhance population target-
ing in systematic AF screening and further individualize AF management,
with the ultimate objective of preventing related adverse events. This
promising multimodal approach deserves further development and
testing in future clinical trials to evaluate clinical outcomes, potential
additional benefits, and the cost-effectiveness of these novel tools.

Supplementary material

Supplementary material is available at Europace online.
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