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Abstract Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious 
adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recently 
been suggested that some high-risk patients with AF detected on implantable devices may benefit from anticoagulation, long- 
term management remains challenging in lower-risk patients and in those with AF detected on monitors or wearable devices 
as the development of clinically meaningful arrhythmia burden in this group remains unknown. Identification and prediction 
of clinically relevant AF is therefore of unprecedented importance to the cardiologic community. Family history and under
lying genetic markers are important risk factors for AF. Recent studies suggest a good predictive ability of polygenic risk 
scores, with a possible additive value to clinical AF prediction scores. Artificial intelligence, enabled by the exponentially in
creasing computing power and digital data sets, has gained traction in the past decade and is of increasing interest in AF 
prediction using a single or multiple lead sinus rhythm electrocardiogram. Integrating these novel approaches could help 
predict AF substrate severity, thereby potentially improving the effectiveness of AF screening and personalizing the manage
ment of patients presenting with conditions such as embolic stroke of undetermined source or subclinical AF. This review 
presents current evidence surrounding deep learning and polygenic risk scores in the prediction of incident AF and provides 
a futuristic outlook on possible ways of implementing these modalities into clinical practice, while considering current limita
tions and required areas of improvement.
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What’s new?

• A comprehensive overview of innovations in genetics and artificial 
intelligence, exploring their potential use for predicting new-onset 
atrial fibrillation (AF) to enhance AF screening and personalize pa
tient management.

• The review emphasizes the need for further research to establish 
the feasibility, cost-effectiveness, and impact on clinical outcomes 
of these emerging tools.

Introduction
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia 
and increases risk for stroke, death, heart failure, hospitalization, and cog
nitive decline.1–6 Oral anticoagulation and early rhythm control strategies 
have been shown to reduce adverse cardiovascular outcomes.7–9 Atrial 
fibrillation screening may provide an opportunity to implement measures 
aimed at primary prevention of AF-related morbidity and mortality 
through early initiation of appropriate therapy, risk factor modification, 
and closer follow-up of higher-risk patients.10,11
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Atrial fibrillation screening as recommended by most scientific guide
lines is mainly opportunistic.12,13 However, this approach could easily 
overlook patients with paroxysmal or short-term persistent AF.14,15

Recent evidence favouring systematic AF screening in targeted popula
tions has the potential to influence future guidelines and has been dis
cussed in a recent consensus statement from the European Heart 
Rhythm Association.16–18 While modern screening tools such as im
plantable loop recorders (ILR) or wearables have become increasingly 
reliable and widely available, clinical implications and appropriate man
agement of asymptomatic and screen-detected AF are still incompletely 
defined.19–23

An essential question in AF screening is not only how to screen but 
which population to screen. Improving the ability to identify individuals 
at high risk of developing clinically significant AF (i.e. AF leading to ad
verse outcomes) may help define populations that may benefit from 
screening and specialized downstream management. Recent techno
logical advances in artificial intelligence (AI) and genetics offer the op
portunity to develop new tools for a more individualized approach.

In this review, we provide an overview of the concepts of AF screening 
and available AF prediction scores, with a focus on emerging approaches. 
We discuss current developments in genetics and AI, including their po
tential value in refining clinical risk scores and elucidating the population 
of patients most likely to benefit from advanced AF screening.

Atrial fibrillation definitions 
relevant to screening
Multiple AF classification schemes have been used based on its temporal 
pattern, associated symptoms, and detection method.12 Figure 1 and 
Table 1 summarize the latest classification relevant to AF screening pub
lished in recent guidelines.12,24

Traditionally, ‘clinical AF’ is diagnosed by a conventional 12-lead elec
trocardiogram (ECG) or rhythm strip showing AF for ≥30 s.12 Patients 

with symptomatic clinical AF will be referred to as ‘clinically apparent 
AF’. It is estimated that 10–40% of patients with clinical AF are asymp
tomatic, defining ‘silent AF’.25 Silent AF was shown to be associated 
with increased morbidity and mortality compared with clinically appar
ent AF, possibly due to delayed arrhythmia diagnosis and management, 
thus providing the impetus for AF screening.12,25

Growing utilization of continuous cardiac monitoring devices has led 
to a rise in the occurrence of asymptomatic device-detected AF with
out documentation on 12-lead ECG, which is referred to as subclinical 
AF (SCAF).24 Monitoring strategies range from wearables to cardiac im
plantable electronic devices (CIEDs). Atrial tachyarrhythmia detected 
by CIEDs with an atrial lead are termed atrial high-rate episodes 
(AHREs), which may be short in duration and are not restricted to 
AF.12,24 Multiple studies have demonstrated that continuous monitor
ing using CIEDs increases SCAF detection in patients at high risk of AF 
or stroke.21,29–31 Recent randomized clinical trials (RCTs) showed that 
in high-risk patients with AHREs longer than 6 min (detected mainly on 
pacemakers), oral anticoagulation (OAC) lowers the risk of stroke but 
increases the risk of major bleeding, thus highlighting the need for a per
sonalized approach to balance the risks and benefits of OAC initi
ation.21,26,27,32,33 However, OAC did not show improved outcomes 
in ILR-screened SCAF in a similar high-risk population.21

Atrial fibrillation risk factors  
and clinical risk score
Risk factors for atrial fibrillation 
development
Current AF prediction tools rely almost exclusively on clinical risk factors. 
The most important clinical risk factor for AF is age, with 12% of individuals 
over age 80 affected.13 Other traditional risk factors include male sex, 
hypertension, hyperthyroidism, heart failure, and valvular and structural 

Clinically
apparent AF

(e.g. palpitations,
exercise intolerance,

hemodynamic
instability, etc.)

Silent AF

AF

Clinical AFSubclinical AF

e.g. AHRE or
wearables-detected

Figure 1 Atrial fibrillation classification adapted from recent guidelines.12,24 Symptoms attributable to AF range from non-specific palpitations to 
haemodynamic instability.12 Clinically apparent AF and silent AF are two presenting forms of clinical AF documented on a 12-lead ECG or ≥30 s rhythm 
strip. Subclinical AF is identified by continuous monitoring devices in asymptomatic individuals with no history of clinical AF. AF, atrial fibrillation; AHRE, 
atrial high-rate episodes; ECG, electrocardiogram.
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heart disease; others such as obstructive sleep apnoea, chronic obstruct
ive pulmonary disease, and diabetes are more contested.13,34,35

Several lifestyle factors have also been associated with AF. Alcohol 
carries undoubtedly the greatest risk.13,34 Body mass index (BMI) has 
a linear relationship with AF incidence.36 Weight gain is correlated 
with an increase in AF incidence, independently of the actual BMI.37

Exercise shows a U-shaped association with AF.38 Smoking is debated 
as a risk factor with inconsistent findings in observational studies.13

Classical atrial fibrillation prediction 
scores
Currently available AF prediction scores all include combinations of 
clinical and lifestyle risk factors but differ mainly in the selection and 
weighting of these factors. Over 10 traditional AF prediction scores 
have been published (Table 2).39,40

HATCH and CHADS2/CHA2DS2-VASc scores were initially intended 
to predict progression of AF and stroke risk, respectively, but were later 
applied to the prediction of incident AF as well.41,43 While these scores 
were not intended for this purpose and were not specifically optimized 
for AF prediction,50 it is nevertheless interesting that their predictive abil
ity is comparable to dedicated AF prediction scores.41,42 The C2HEST 
score was proposed as a simple score for predicting incident AF and in
cludes the following risk factors: coronary artery disease, chronic ob
structive pulmonary disease, hypertension, elderly (≥75 years), systolic 
heart failure, and hyperthyroidism. While prediction in the derivation co
hort was good, the ability of differentiation in external validation cohorts 
was modest [area under the receiving operating characteristic curve 
(AUC) 0.65] and lower than other scores in direct comparisons [namely, 
CHARGE-AF and Electronic Health Records model for AF prediction 
(EHR-AF)] (Table 2).44,47,48,51 CHARGE-AF, specifically created to predict 
AF, is the most commonly cited score to predict new-onset AF.46 Beyond 
classical risk factors, it includes race (higher risk for Caucasians), as well as 
more contested factors (diabetes, smoking, height, and history of myocar
dial infarction).46,52 CHARGE-AF has been shown to be superior to 
CHA2DS2VASasc in predicting AF.53–56 The EHR-AF included the largest 
set of risk factors (19).45 This model performed significantly better in a 
direct comparison with CHARGE-AF and CHA2DS2-VASc scores.45

Most recently, HARMS2-AF was proposed.34 In contrast to other scores, 
HARMS2-AF includes alcohol consumption as a lifestyle factor. It has a 
comparable predictive value as CHARGE-AF.34 Comparison between 
scores is difficult though because the choice of predictive time windows 
was quite heterogeneous (Table 2).

Dedicated AF prediction scores perform somewhat better than 
scores that were derived to predict AF-related complications or AF 
progression. Some of the best-performing scores in head-to-head 
comparisons were CHARGE-AF, EHR-AF, and HARMS2-AF scores. 
C-statistics for these prediction models range approximately between 
0.7 and 0.8. While this is generally considered to be fairly good for a 
predictive score, there might be added value in integrating additional in
formation outside of the classical risk factors.

Traditional AF prediction scores mainly reflect the concept that 
more comorbidities lead to more AF. However, they may miss some 
of the underlying individual predisposition and therefore be less suited 
for some populations, e.g. patients with few or not in risk scores repre
sented comorbidities. Furthermore, these scores remain with limited 
discriminative ability despite inclusion of multiple demographic and clin
ical risk markers, which might be part of the reason why they are rarely 
used in clinical practice. Importantly, none of the scores included family 
history. Novel approaches have been developed to predict AF beyond 
clinical risk scores, notably AI and genetics, which will be discussed in 
the following sections.

Atrial fibrillation prediction using 
artificial intelligence
Overview of artificial intelligence
The concept of machine learning (ML), a subset of AI (see Supplementary 
material online, Figure S1), has been around for decades. Instead of expli
citly outlining the steps to resolve a task, a ML algorithm derives the so
lution based on data: this is referred to as the training or learning process 
(see Supplementary material online, Figure S2).57 Artificial neural net
works have gained popularity through their ability to surpass other ML 
techniques in solving complex problems. They are composed of inter
connected artificial ‘neurones’ that represent mathematical equations 
sequenced into different components: an input layer, several hidden 
layers, and an output layer.58 When they contain numerous hidden 
layers, they are referred to as deep neural networks (DNNs), also 
known as deep learning (DL) algorithms. Convolutional neural networks 
(CNN), inspired by the architecture of the visual cortex, are one of the 
most employed algorithms in the field of DL.59 Supervised learning is a 
type of ML in which algorithms are trained on labelled data sets. 
Inaccurate or inconsistent labelling can lead to poor model performance, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Atrial fibrillation classification, definitions, and clinical implication adapted from recent guidelines12,24

Definition Clinical implication

Clinical AF AF diagnosed on a conventional 12-lead ECG tracing or rhythm 

strip showing AF for ≥30 s. It could be symptomatic or not

Established guideline-directed anticoagulation benefit irrespective of 

symptom status12

Clinically 

apparent AF

Subset of clinical AF in patients with symptoms attributable to 

AF

Symptoms attributable to AF range from non-specific palpitations to 

haemodynamic instability12

Silent AF Subset of clinical AF in patients with no symptoms attributable 

to AF

Associated with increased morbidity and mortality compared with clinically 

apparent AF25

SCAF AF identified by continuous monitoring devices in asymptomatic 

individuals with no history of clinical AF

Management remains controversial, requiring a personalized, 

patient-centred approach that weighs the risks and benefits of OAC 

intiation19,26–28

AHRE Subset of SCAF defined as arrhythmia episodes with atrial 

rate ≥ 170–190 b.p.m. detected by CIEDs with an atrial lead

Needs to be inspected to rule out an artefactual signal

AF, atrial fibrillation; AHRE, atrial high-rate episodes; CIED, cardiac implantable electronic device; ECG, electrocardiogram; OAC, oral anticoagulation; SCAF, subclinical atrial fibrillation.
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underscoring the importance of expert involvement in the labelling pro
cess and the continuous refinement of the labelled data sets.

The performance of a model is usually measured using a process 
called ‘holdout strategy’. This involves splitting the whole data set into 
three separate parts—a training set, an internal validation set, and a 
test set. The training set helps learn the data, the validation set is used 
to optimize and select the best-performing settings (hyperparameters), 
and the test set allows the opportunity to gauge how the adjusted mod
el performs (see Supplementary material online, Figure S3).60 Usually, 
the ‘C-statistic’ or AUC is used to gauge the performance of classifiers. 
However, if the data sets are unbalanced, which is often the case for de
tecting incident AF (only a minority of patients develop the outcome), 
then the area under the precision recall curve (AUPRC) should be 
used instead.61

Deep learning to predict atrial fibrillation 
using electrocardiograms
Recent studies reported on the development of incident AF prediction 
models using patients without previous history of AF and with ECG dur
ing normal sinus rhythm (NSR-ECG). The pathophysiological plausibility 
of such prediction can be based on the assumption of an underlying ECG 
signature of significant atrial myopathy (AM) representing a vulnerable 
substrate for AF.62–65 Attia et al.66 were the first to train a CNN on 
NSR-ECG of 144 642 adults to predict new-onset AF and achieved an 
AUC value of 0.87 on an independent test set (Table 3). However, this 
model is limited to predicting ‘imminent AF’ within 31 days of the ana
lysed ECG. While this limited timeframe could be useful to stratify the 
risk of a short-term documentation of AF in patients presenting with pal
pitations, the opportunity to prevent stroke is limited. Moreover, AF 
diagnosis required documentation on a 12-lead ECG at Mayo Clinic. 
Notably, patients with AF diagnosis in the electronic health records 
(EHRs) but without ECG documentation were excluded, which could 
have introduced a selection bias. Raghunath et al.67 trained a CNN on 
NSR-ECG from more than 382 604 adults to predict incident AF within 
1 year. Atrial fibrillation diagnosis relied on a 12-lead ECG documenta
tion and on diagnoses in the EHR at Geisinger. This model demonstrated 
good discrimination on the holdout set with an AUC of 0.85 using 
NSR-ECG, age, and sex as inputs. The model also showed superior per
formance compared to CHARGE-AF on a subset of the holdout set 
(AUC 0.84 vs. 0.79). However, the prediction window in this model 
remains relatively short, potentially limiting timely primary prevention in
terventions. Further, the models developed by Attia et al. and Raghunath 
et al. lacked rigorous external validation to test generalizability. Lastly, 
incident AF was modelled as a binary classification task at a specific 
follow-up time which can be associated with a classification error given 
the paroxysmal nature of AF and irregular follow-up times.

More recently, Khurshid et al.69 trained a CNN on 45 770 patients to 
predict 5-year AF-free survival using NSR-ECG. Unlike previous studies, 
they used a discrete-time survival model using DNN, accounting for 
censoring (death or loss to follow-up).80 The innovative inclusion of 
CNN-predicted probability and CHARGE-AF as covariates in a Cox 
proportional hazards model improved incident AF discrimination 
with a 5-year AUC of 0.838 and 0.777 on two internal data sets, re
spectively, and a 2-year AUC of 0.746 on the UK Biobank external 
data set. This study suggests that ECG-AI provides predictive value 
above and beyond standard clinical factors. Furthermore, the authors 
used saliency maps, an AI model interpretation technique to highlight 
features such as the ECG P wave and its surrounding regions which 
had contributed the most on the model’s AF risk estimates.

A common limitation in the three aforementioned studies lies in 
training DL models on single-institution ECGs for clinical purposes 
which may not extrapolate well to AF screening in the general popula
tion. For instance, in the study by Khurshid et al., the training set’s AF 
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incidence rate was 12.8 per 1000 person-years vs. 4.2 in the UK 
Biobank, which probably contributes to the limited generalizability.69

In a recent study, Hygrell et al.74,75,81 trained a CNN model using 
data from the STROKESTOP II and SAFER AF screening studies. 
Electrocardiograms from 80% of participants in both SAFER and 
STROKESTOP II were utilized for model training. The remaining 
20% were allocated to the test set, along with all the ECGs from 
STROKESTOP I, another AF screening study randomizing 75–76-year- 
olds in Sweden.76 The model performed better in the age-diverse 
SAFER data set (AUC 0.80) compared to the age-homogeneous cohorts 
in STROKESTOP I (AUC 0.62) and STOKESTOP II (AUC 0.62). The 
authors hypothesized that the higher accuracy in SAFER can be attributed 
to the identification of age-related patterns on the ECG by the CNN, since 
there is a strong association between age and AF, and ECGs were shown to 
effectively estimate a person’s age.82 The low prevalence of AF in the train
ing set (2.6%) could have also negatively affected model performance. Two 
other studies notably used single-lead ECGs combined with clinical data for 
predicting near-term or paroxysmal AF and achieved good classification 
performance.72,73 However, those models were not validated on external 
data sets. Additionally, some authors presented the AUC as the perform
ance metric, which may overestimate the model’s predictive power since 
only a minority of patients developed incident AF. For instance, while Yuan 
et al.71 achieved an AUC of 0.93 in predicting paroxysmal AF using 12-lead 
ECGs; the reported positive predictive value (PPV) is only 5%. Future stud
ies should present PPV, negative predictive values, and the AUPRC to pro
vide a more comprehensive evaluation of the model’s classification 
performance.

In 2022, Noseworthy et al.68 published the first prospective non- 
randomized interventional trial evaluating the performance of a previously 
developed model in the prediction of paroxysmal AF based on NSR-ECG 
(Table 4). This study showed a benefit in increased detection of AF on 
continuous monitoring using AI-based risk stratification [odds ratio 
(OR) = 4.98, P = 0.0002]. Although AF was defined as an episode ≥30 s, 
ODs remained statistically significant for episodes ≥6 min (P = 0.0015) 
but not for episodes ≥24 h (P = 0.091), possibly due to limited power.

Deep learning to predict atrial fibrillation 
using electronic health record data
Electronic health record data is a promising substrate for big data ana
lytic approaches such as DL. In 2019, Hill et al.77 trained and validated a 
neural network which predicts the incidence of AF in primary care pa
tients within 1-year follow-up. The model was trained on a cohort of 
adults aged ≥30 years in the UK. The final model included baseline vari
ables, such as patient demographics and comorbidities, and considered 
time-varying information to capture the evolution of AF risk factors. 
The model was externally validated in a subsequent study demonstrat
ing an AUC of 0.87.78 In 2022, Hill et al.79 published a multicentre RCT 
assessing whether the deployment of their model could identify pa
tients at high risk for AF who may benefit from downstream screening 
(Table 4). The study population included adult primary care patients in 
the UK. The screening intervention consisted of a 12-lead ECG fol
lowed by a 2-week one-lead ECG monitoring twice daily. Of the 906 
high-risk patients in the intervention arm, 255 patients (28.1%) ac
cepted the screening invitation and only 148 patients (16.3%) com
pleted the intervention per protocol. The observed OR of the primary 
outcome (any atrial arrhythmia ≥ 30 s in high-risk patients) was not 
statistically significant but was significant in the per protocol analysis 
(OR = 3.07, P = 0.001). This trial was the first to evaluate the perform
ance of a DL-based AF risk prediction tool using solely clinical variables 
collected in a primary care setting. However, the evaluation of the mod
el was limited by the poor response in the intervention group. 
Moreover, the generalizability of the study findings to varied practices 
in diverse healthcare systems and using different EHR modalities is 
uncertain.
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Polygenic scores in atrial fibrillation
Atrial fibrillation and genetics
Genetic predisposition is a major risk factor for AF. A first-degree 
relative of a patient with AF has a greater than four-fold relative risk 
of experiencing AF compared to an individual with a negative family 
history.83 It has been estimated that genetic factors account for more 
than 20% of the risk for developing AF.84 Therefore, genetic risk scores 
may play an important role in predicting incident AF.

Association of rare genetic variants with 
atrial fibrillation
In familial AF, inheritance can follow a Mendelian pattern and rare variants 
(e.g. present in <0.01% of the population) can explain some of the her
itability. The first AF-associated mutation was found in the ion channel 
gene KCNQ1, which is also responsible for long QT syndrome type 
1.85 Several other rare variants in ion channel genes (e.g. KCNH2, 
SCN5A, and KCNA5) and in genes involved in atrial function, such as myo
cyte contraction (sarcomeric proteins MYL4 and TTN), hormonal regula
tion (NPPA), transcription factors (TBX5), and gap junctions (GJA1 and 
GJA5), have been discovered.86 Importantly, significant overlap between 
AF and genetic cardiomyopathies (CM) exists.87–90 Indeed, in patients 
with early-onset AF (<45 or ≤65 years of age), the prevalence of patho
genic or likely pathogenic variants in CM or arrhythmia genes was 
10–24%.91,92 Affected genes included TTN, RBM20, MYH7, MYH6, 
LMNA, and KCNQ1. Gene-positive patients were found to have a 50% 
increased mortality hazard, independent of left ventricular ejection frac
tion.93 Based on these data, the recent AF guidelines of the American 
Heart Association state that it may be reasonable to perform genetic test
ing for rare pathogenic variants in patients with an onset of AF before age 
45 without obvious AF risk factors.24 Notably, although rare genetic 
variants may importantly increase risk for AF, the rarity of these variants 
renders them accountable for a smaller portion of genetic susceptibility 
to AF at a population level compared to common polygenic factors.94

Basic concepts of polygenic risk scores
While early studies looked at familial clustering and used linkage ana
lyses to identify rare variants, AF most commonly occurs in its sporadic 

form and the largest proportion of heritability in the general population 
is explained by common variants (e.g. present in >1% of the popula
tion).94,95 Common variants in isolation have small effect sizes, but if 
many of them accumulate in one individual, they may increase AF sus
ceptibility. On this concept rely polygenic risk scores (PRSs) (Figure 2).

Genome-wide association studies (GWASs) have led to the 
discovery of >150 different loci associated with AF, and this number 
is increasing over time with larger GWAS.96,97 Using high-throughput 
genotyping arrays, millions of SNPs can be analysed quickly. The results 
can be visualized on so-called Manhattan plots; SNPs above the signifi
cance threshold are considered associated with AF (Figure 2).

One of the first AF susceptibility loci detected by GWAS and replicated 
in multiple studies and across ancestries is located at chromosome 
4q25.95,96,98–100 PITX2, the likely causal gene at this locus, codes for a tran
scription factor that is key in determining the differentiation of the left at
rium and the development of the pulmonary myocardial sleeves.101,102

Many other candidate genes have been identified, e.g. ZFHX3 (16q22), 
KCNN3 (1q21), and IL6R (1q21).96,100,103–106 While GWASs do not pro
vide any evidence of a causal relationship, they lead to the identification of 
promising candidate genes associated with AF. At present, the function of 
most loci remains to be elucidated, and investigations to unravel patho
logical pathways are underway.

A genetic risk score includes a variable number of SNPs, as little as a 
handful up to millions, selected based on GWAS results. A PRS can then 
be calculated by summing up the number of risk alleles present in an in
dividual and adjusting to the relative effect size of the association of each 
allele with the trait. The individual effect sizes for each SNP are usually 
very small, but if many are present, they can lead to a high PRS and con
sequently to a high relative disease risk (Figure 3). Commonly, ORs are 
indicated to describe risk of the top of the distribution curve vs. the 
rest of the population (e.g. PRS in the top 5% vs. the rest), or, alternative
ly, highest vs. lowest percentile.107,108

A PRS should be tested in an external population to help mitigate 
biases and overinflation related to the selected cohort and avoid a pos
sible correlation between genetic and environmental risk.109 Initially, 
GWASs were performed in cohorts from often only one geographic 
location, which can lead to confounding due to heterogeneous genetic 
architecture between populations.109 To develop widely applicable 
scores, the general tendency has shifted to derive and test PRSs in eth
nically diverse populations.96,110

DNA SNPs
SNPs combined

Manhattan plot for genome-wide association studies (GWAS)

Strength of associations across the genome

Chromosome position
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o

g
10

(P
)

Considered significant
association

Disease
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Low ri
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15

10

5

0

1

Significance
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rs123
rs456 rs789

Significantly associated SNPs with tested trait

Figure 2 Polygenic risk and GWASs. Left panel depicts the theoretical basis underlying polygenic risk. DNA contains a vast number of SNPs. The 
accumulation of several of these common DNA variants makes up an individual’s polygenic risk. If a certain threshold is surpassed, the disease is more 
likely to develop. Right panel shows a graphical depiction of a Manhattan plot for a GWAS. The dots represent all the analysed SNPs at their specific 
chromosome position (X axis). SNPs above the level of significance (indicated by a dashed line on the Y axis) are significantly associated with the disease 
under investigation, e.g. AF. SNPs are commonly referred to with their reference SNP (rs) number.
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Current data on polygenic scores in atrial 
fibrillation
First attempts to create PRSs to predict incident AF were undertaken just 
a decade ago and included only the top variant at each disease susceptibil
ity locus, hence consisting of merely a handful of genetic loci (Table 5).111

While it had been shown that PRSs could be superior to family history in 
predicting disease risk in multiple common diseases, an early theoretical 
model by Do et al.112 failed to show this benefit for AF. In 2014, Lubitz 
et al.113 investigated a PRS comprising 12 SNPs observing a five-fold 
risk increase for the development of AF in individuals with the highest 
compared to those with the lowest number of risk alleles.

More recently, a shift towards genome-wide PRSs comprised of mil
lions of SNPs has taken place. This method uses less stringent criteria on 
genome-wide significance levels and on linkage disequilibrium and has 
been suggested to lead to better performance than early PRSs.124

Khera et al.108 conducted a seminal study in 2018 in which a PRS includ
ing more than 6 million SNPs was derived. The group successfully de
monstrated that a high PRS was significantly associated with prevalent 
AF: in the top 1% of the tested population, risk was 4.63-fold increased, 
compared to the bottom 99%. The AUC for this score was 0.77, which is 
comparable to the best clinical AF prediction scores.108 Recent data also 
suggest that the implication of polygenic risk is particularly important in 
lone AF: one study found that 26.3–33.3% of lone AF patients vs. only 
10% of controls had a high PRS.125

An important observation underscoring the importance of genetics 
in the development of AF and the additive value of a PRS to a purely 
clinical AF prediction score was made by Weng et al.126 To assess 

the differential contribution of clinical and genetic risk in AF, the authors 
used the CHARGE-AF score and a PRS comprised of 986 SNPs. Both 
risk scores were strongly associated with AF incidence and earlier on
set. At age 55, the lifetime risk for AF was ∼22% with a low PRS and 
∼48% with a high PRS, and a lower clinical risk score was associated 
with delayed AF onset within each PRS stratum.126

A limitation of current GWAS and PRS is that most were performed in 
single-ancestry cohorts. The added value of cross-ancestry cohorts was 
demonstrated in a recent study by Miyazawa et al.96 Thirty-five new 
AF-associated loci were identified across a GWAS including Japanese, 
Finnish, and European ancestry cohorts. Indeed, a PRS based on the multi- 
ancestry cohort (AUC 0.738) performed better than single-ancestry co
horts and confirmed previous observations of an association between 
higher PRS and earlier AF onset. These findings will likely prompt addition
al multi-ancestry genetic studies to overcome current limitations.

Integrating genetic risk and 
artificial intelligence in atrial 
fibrillation prediction models
Atrial fibrillation screening has the potential to identify patients at risk for 
adverse clinical outcomes and can allow initiating pre-emptive treatment 
or risk factor modification.23 However, AF screening is encumbered by 
the arrhythmia’s often asymptomatic and paroxysmal nature. To avoid 
overdiagnosis and subsequently overtreatment while minimizing the 
non-detection of patients at risk, it has become paramount to identify 
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Figure 3 Polygenic risk score derivation from genome wide association studies (GWASs). Development of a polygenic risk score (PRS) is done by first 
analysing DNA of a patient cohort with the trait (i.e. AF) and a control cohort. The GWAS indicates all the single nucleotide polymorphisms (SNP) or 
common variants which are significantly associated with AF. The relative genome-wide effect size of the association of each SNP (i.e. weight) can be de
termined. By summing up all the significant SNPs, each multiplied by their respective weight, a PRS is obtained. A PRS is normally distributed in the popu
lation; the right end indicates a high polygenic risk and can be compared to the rest of the population.
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the ideal population to screen. For a screening strategy to achieve a 
meaningful benefit, it must not only detect the disease but also lead to 
a reduction in disease-associated risk by subsequent clinically useful 
interventions.127

Much effort has been directed towards developing clinical risk scores 
for AF prediction. To date, no model has been widely implemented into 
routine clinical practice. This may be due to moderate predictive ability, 
a lack of evidence of clinical benefit, and/or lack of generalized stream
line implementation of such scores in electronic medical records.

The importance of genetics in the development of AF has been well es
tablished making PRS attractive tools to complement current models. It 
has indeed been shown that genetics and clinical factors are independent 
contributors to AF development and therefore would be expected to 
have additive value for AF risk estimation.126 With cost and time of genetic 
analyses having come down drastically, it seems increasingly feasible to set 
up the infrastructure to use PRSs in clinical practice, not only for AF pre
diction but as part of multiple actionable disease prediction.128 A finding of 
major clinical interest was reported by Miyazawa et al.,96 demonstrating 
that a multi-ancestry PRS for AF showed a significant relationship with 
hard clinical AF–related outcomes. These outcomes included cardiovas
cular death, stroke, and cardioembolic stroke, with hazard ratios of 
1.06, 1.04, and 1.35, respectively, in patients who were not diagnosed 
with AF but had a high genetic predisposition.96 Although these results 
are encouraging for potential future applicability of PRSs, an added value 
over a simple clinical risk score has yet to be proven.126

Combining AI and genetic scores, Wang et al.70 have recently shown 
in a genetic correlation analysis that incident AF risk prediction using DL 
has a higher correlation with established AF susceptibility loci com
pared to a model solely based on clinical variables. Those recent studies 
suggest that DL model prediction of incident AF risk using NSR-ECG 
could be a biomarker of a clinically significant underlying AM or inher
ited predisposition to AF. Hence, ECG-AI models are a promising tool 
to identify patients at high risk of incident AF.

Given the potential additive predictive value of clinical risk factors, ECG 
data, and genetics, it would be ideal to develop a multimodal AF prediction 
model. Recent advances in AI carry the potential to integrate this hetero
geneous data using large language models (LLMs) and output an AF sub
strate severity biomarker, capable of predicting clinically significant AF at 
risk for adverse events (Figure 4).129 In addition to better population tar
geting in AF screening, such a multimodal approach might also prove use
ful in SCAF management. Subclinical AF has become an issue of increasing 

importance due to the exponentially growing number of continuous 
monitoring devices. While recent trials and guidelines addressed OAC in
dication in patients with CIEDs presenting with AHREs, the management 
of AF detected by consumer-based wearables is yet to be defined.24

Another area of much controversy is embolic stroke of undetermined 
source (ESUS) management where OAC was not shown to be associated 
with positive outcomes compared to aspirin.130,131 Recent trials also 
showed no benefit when targeting enriched ESUS patients with suggestive 
risk factors for cardiac embolism.132,133 The identification of a clinically sig
nificant AF substrate could help better stratify patients presenting with 
ESUS or SCAF and possibly personalize management and OAC indication 
in these complex conditions.134

Another potential area of application would be the prediction of recur
rent AF after catheter ablation. A few results from smaller studies support 
the hypothesis that genetic factors can predict ablation failure.135,136

However, the largest PRS study for AF recurrence so far, conducted by 
Shoemaker et al.,137 did not find any significant association. Recent 
work on AI suggested that ECG-based algorithms could predict AF recur
rence after ablation.135,138 A prospective randomized trial to guide selec
tion of patients for AF ablation is currently underway (AI-PAFA).139

However, AF recurrence after ablation is a multifaceted issue that is de
pendent, in part, on procedural circumstances and patient characteristics 
such that the role of genetic factors remains uncertain.

Several limitations and challenges are associated with the use of digital 
health solutions in cardiology and involve multiple stakeholders including 
patients, healthcare professionals, and product developers.140 Those chal
lenges need to be addressed to enable using such novel approaches in AF 
screening. Lack of algorithm explainability is one of the main barriers to 
integrating DL in healthcare.141–143 Although recent studies suggest that 
DL model prediction of incident AF risk using NSR-ECG may identify 
underlying AM or inherited predisposition to AF, replication of those ex
ploratory findings and additional research in AI algorithm explainability will 
be necessary in order to facilitate clinical implementation by increasing 
clinician and patient trust in the model. Furthermore, transparency of 
DL algorithms is particularly important since DL has the potential to re
inforce inherent biases in training data features such as race and sex.144 To 
address this issue, performance should be reported by subgroup at a min
imum, and the training process should take these potential confounders 
into account. Furthermore, to enhance the quality of AI models in cardi
ology, five minimal quality criteria were recently proposed to guide the 
development of new models: complete reporting, clearly defined 

ECG Imaging
Training

Multimodal data sources Deep learning model AF substrate severity
biomarker

Targeted systematic
AF screening

SCAF management

ENSUS management

Output Clinical use

Genetics EHR

Figure 4 Future DL methods combining multimodal data sources to predict AF substrate severity. AF, atrial fibrillation; EHR, electronic health 
records; ESUS, embolic stroke from undetermined source; SCAF, subclinical atrial fibrillation.
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intended use, rigorous validation, sufficient sample size, and transparency 
of code and software.145 Additionally, while LLMs offer the opportunity 
to integrate multimodal data, their large-scale deployment requires 
addressing central issues in the implementation of AI into healthcare, spe
cifically data sharing and privacy, algorithm standardization, and generaliz
ability across healthcare systems.141,142

A further limiting factor of currently available GWAS and PRS is that 
most have been derived and tested in ethnically homogeneous popula
tions. As reported above, research is shifting towards multi-ancestry stud
ies.96 Another important limitation is the ascertainment of AF in available 
PRS studies: AF diagnosis was mainly based on either hospital diagnoses, 
single ECG, or short-term ECG monitoring. Assessment of PRS perform
ance in patients with uninterrupted rhythm monitoring is yet to be con
ducted. Another limitation of GWASs is that they do not identify genes. 
The discovered loci may be found in proximity to candidate genes, which 
might be related to AF. However, no clear pathological pathway has been 
identified so far from GWAS studies, and causal relationship remains 
hypothetical for now. Several studies evaluating the effect of candidate 
genes are underway. Future work should tackle questions on implemen
tation in clinical care pathways (Table 6). These novel approaches in AF 
screening and prediction will need to be tested prospectively to establish 
their feasibility and demonstrate cost-effectiveness, safety, and improved 
hard clinical endpoints including mortality, hospitalization, and stroke. 
Ultimately, AF prediction is of limited value if the detected AF is clinically 
insignificant.

Finally, cost implications need to be considered when assessing the 
utility of new tools for predicting incident AF. Electrocardiograms are rela
tively inexpensive and widely available, making them a cost-attractive initial 
screening tool. In contrast, genetic analysis involves higher costs due to the 
need for specialized equipment and expert interpretation. Nevertheless, in 
recent years, genetic sequencing costs have decreased drastically such that 
cost-effectiveness analyses have demonstrated the potential benefit of 

genetic screening for certain conditions.147,148 Importantly, the potential 
additional costs associated with ECG-AI or genetic testing would need to 
be offset by savings in downstream management and/or reduction of ad
verse outcomes to qualify as cost-effective (e.g. obviate the need for regular 
ECG/Holter screening, and ILR implantation).

Conclusion
Prediction of AF is a topic of important contemporary interest. New 
technologies allow for easy detection of arrhythmia with uncertain clin
ical benefits. Polygenic risk scores may be an important component in 
refining any current prediction score. Artificial intelligence would be ex
pected to enable the integration of different modalities, including gen
etics, to better characterize AF substrate severity and draw a more 
reliable picture of the risk of developing clinically relevant AF. Such no
vel prediction models have the potential to enhance population target
ing in systematic AF screening and further individualize AF management, 
with the ultimate objective of preventing related adverse events. This 
promising multimodal approach deserves further development and 
testing in future clinical trials to evaluate clinical outcomes, potential 
additional benefits, and the cost-effectiveness of these novel tools.
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