Skip to main content
. 2023 Sep 9;1(3):148–160. doi: 10.1016/j.pccm.2023.05.001

Table 1.

Representative research of AI for lung cancer diagnosis based on CT images.

Application Authors Year Dataset/sample size Imaging modality Algorithm Task Performance
Nodule detection Gu et al. 30 2018 1186 nodules in the LUNA16 database CT 3D deep CNN combined with a multi-scale prediction strategy Automatic lung nodule detection Sensitivity: 0.9293 on testing dataset
Xu et al. 31 2019 1590 nodules CT Multiple neural network models Automatic lung nodule detection Sensitivity: 0.9695 and 0.9117 for ThinSet and ThickSet on testing dataset
Malignancy evaluation Ardila et al. 16 2019 6716 patients from NLST and 1139 cases for validation CT End-to-end three-dimensional deep learning Malignancy prediction and risk bucket score of lung nodules AUC: 0.944 on held-out NLST testing set
Xu et al.32 2019 548 nodules from LIDC-IDRI dataset CT MSCS neural networks – DeepLN Malignancy evaluation of lung nodules AUC: 0.94 on testing dataset
Massion et al.33 2020 14,761 benign nodules and 932 malignant nodules CT LCP-CNN Risk stratification of lung nodules AUC: 0.921 on internal validation dataset
Baldwin et al.34 2020 1397 nodules (5–15 mm) CT LCP-CNN Malignancy evaluation of lung nodules AUC: 0.896 on external validation dataset
Venkadesh et al.35 2021 16,077 nodules from NLST CT Deep learning Malignancy risk estimation of lung nodules AUC: 0.93 on external validation dataset
Shi et al.36 2021 3038 nodules CT Semi-supervised Deep Transfer Learning Benign–malignant lung nodule diagnosis AUC: 0.795 on independent testing dataset
Park et al.37 2021 359 patients CT and FDG PET/CT Deep learning classification models based on ResNet-18 Malignant lung nodule diagnosis AUC: 0.837 on five-fold cross-validation
Shao et al.38 2022 12,360 participants CT Deep learning Detection and risk stratification of lung nodules AUC: 0.8516 on testing dataset
Subtype classification Wu et al.39 2016 350 patients CT Radiomics Histologic subtypes (LUAD vs. LUSC) prediction The highest AUC: 0.72 on validation dataset
Zhao et al.40 2018 651 nodules CT Dense Sharp Network Tumor invasiveness prediction ACC: 0.641 on testing dataset
Hyun et al.41 2019 396 patients 18F-FDG PET/CT 4 clinical features (age, sex, tumor size, and smoking status) and 40 radiomic features Histologic subtypes (LUAD vs. LUSC) prediction AUC: 0.859 on testing dataset
Han et al.42 2021 867 LUAD and 552 LUSC patients PET/CT 10 feature selection techniques, 10 machine learning models, and the VGG16 deep learning algorithm Histologic subtypes (LUAD vs. LUSC) prediction The highest AUC: 0.903 on testing dataset
Ren et al.43 2021 315 NSCLC patients PET/CT Clinico-biological features and FDG-PET/CT radiomic-based nomogram via machine learning Histologic subtypes (LUAD vs. LUSC) prediction AUC: 0.901 on validation dataset
Wang et al.44 2021 1222 patients with LUAD CT Deep learning and radiomics Adenocarcinoma subtype classification AUC: 0.739–0.940 on internal validation dataset
Choi et al.45 2021 817 patients with clinical stage I LUAD CT Deep learning Prediction of visceral pleural invasion AUC: 0.75 on temporal validation dataset
Zhong et al.46 2022 3096 patients CT Deep learning N2 metastasis prediction and prognosis stratification AUC: 0.81 on prospective testing dataset

AI: Artificial intelligence; ACC: Accuracy; AUC: Area under the curve; CNN: Convolutional neural network; 18F-FDG PET/CT: Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT); FROC: Free-response receiver operating characteristic; IPNs: Indeterminate pulmonary nodules; LCP-CNN: Lung Cancer Prediction-Convolutional Neural Network; LIDC: Lung Image Database Consortium; IDRI: Image Database Resource Initiative; LUAD: Lung adenocarcinoma; LUNA16: Lung Nodule Analysis 16; LUSC: Lung squamous cell carcinoma; MSCS: Multi-scale cost-sensitive; NLST: National Lung Screening Trial; NSCLC: Non-small cell lung cancer.