Table 1.
Application | Authors | Year | Dataset/sample size | Imaging modality | Algorithm | Task | Performance |
---|---|---|---|---|---|---|---|
Nodule detection | Gu et al. 30 | 2018 | 1186 nodules in the LUNA16 database | CT | 3D deep CNN combined with a multi-scale prediction strategy | Automatic lung nodule detection | Sensitivity: 0.9293 on testing dataset |
Xu et al. 31 | 2019 | 1590 nodules | CT | Multiple neural network models | Automatic lung nodule detection | Sensitivity: 0.9695 and 0.9117 for ThinSet and ThickSet on testing dataset | |
Malignancy evaluation | Ardila et al. 16 | 2019 | 6716 patients from NLST and 1139 cases for validation | CT | End-to-end three-dimensional deep learning | Malignancy prediction and risk bucket score of lung nodules | AUC: 0.944 on held-out NLST testing set |
Xu et al.32 | 2019 | 548 nodules from LIDC-IDRI dataset | CT | MSCS neural networks – DeepLN | Malignancy evaluation of lung nodules | AUC: 0.94 on testing dataset | |
Massion et al.33 | 2020 | 14,761 benign nodules and 932 malignant nodules | CT | LCP-CNN | Risk stratification of lung nodules | AUC: 0.921 on internal validation dataset | |
Baldwin et al.34 | 2020 | 1397 nodules (5–15 mm) | CT | LCP-CNN | Malignancy evaluation of lung nodules | AUC: 0.896 on external validation dataset | |
Venkadesh et al.35 | 2021 | 16,077 nodules from NLST | CT | Deep learning | Malignancy risk estimation of lung nodules | AUC: 0.93 on external validation dataset | |
Shi et al.36 | 2021 | 3038 nodules | CT | Semi-supervised Deep Transfer Learning | Benign–malignant lung nodule diagnosis | AUC: 0.795 on independent testing dataset | |
Park et al.37 | 2021 | 359 patients | CT and FDG PET/CT | Deep learning classification models based on ResNet-18 | Malignant lung nodule diagnosis | AUC: 0.837 on five-fold cross-validation | |
Shao et al.38 | 2022 | 12,360 participants | CT | Deep learning | Detection and risk stratification of lung nodules | AUC: 0.8516 on testing dataset | |
Subtype classification | Wu et al.39 | 2016 | 350 patients | CT | Radiomics | Histologic subtypes (LUAD vs. LUSC) prediction | The highest AUC: 0.72 on validation dataset |
Zhao et al.40 | 2018 | 651 nodules | CT | Dense Sharp Network | Tumor invasiveness prediction | ACC: 0.641 on testing dataset | |
Hyun et al.41 | 2019 | 396 patients | 18F-FDG PET/CT | 4 clinical features (age, sex, tumor size, and smoking status) and 40 radiomic features | Histologic subtypes (LUAD vs. LUSC) prediction | AUC: 0.859 on testing dataset | |
Han et al.42 | 2021 | 867 LUAD and 552 LUSC patients | PET/CT | 10 feature selection techniques, 10 machine learning models, and the VGG16 deep learning algorithm | Histologic subtypes (LUAD vs. LUSC) prediction | The highest AUC: 0.903 on testing dataset | |
Ren et al.43 | 2021 | 315 NSCLC patients | PET/CT | Clinico-biological features and FDG-PET/CT radiomic-based nomogram via machine learning | Histologic subtypes (LUAD vs. LUSC) prediction | AUC: 0.901 on validation dataset | |
Wang et al.44 | 2021 | 1222 patients with LUAD | CT | Deep learning and radiomics | Adenocarcinoma subtype classification | AUC: 0.739–0.940 on internal validation dataset | |
Choi et al.45 | 2021 | 817 patients with clinical stage I LUAD | CT | Deep learning | Prediction of visceral pleural invasion | AUC: 0.75 on temporal validation dataset | |
Zhong et al.46 | 2022 | 3096 patients | CT | Deep learning | N2 metastasis prediction and prognosis stratification | AUC: 0.81 on prospective testing dataset |
AI: Artificial intelligence; ACC: Accuracy; AUC: Area under the curve; CNN: Convolutional neural network; 18F-FDG PET/CT: Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT); FROC: Free-response receiver operating characteristic; IPNs: Indeterminate pulmonary nodules; LCP-CNN: Lung Cancer Prediction-Convolutional Neural Network; LIDC: Lung Image Database Consortium; IDRI: Image Database Resource Initiative; LUAD: Lung adenocarcinoma; LUNA16: Lung Nodule Analysis 16; LUSC: Lung squamous cell carcinoma; MSCS: Multi-scale cost-sensitive; NLST: National Lung Screening Trial; NSCLC: Non-small cell lung cancer.