Skip to main content
. 2023 Sep 9;1(3):148–160. doi: 10.1016/j.pccm.2023.05.001

Table 2.

Representative research of AI for lung cancer treatment based on CT images.

Application Author Year Dataset/sample size Imaging modality Algorithm Task Performance
Gene mutation and molecular expression prediction Wang et al.60 2019 844 LUADs CT Deep learning EGFR mutation status prediction AUC: 0.81 on independent validation dataset
Mu et al.61 2020 681 NSCLC patients PET/CT Deep learning Quantification of EGFR mutation status AUC: 0.81 on external testing dataset
Tian et al.62 2020 939 consecutive stage IIIB–IV NSCLC patients CT Deep CNN Assessment of PD-L1 expression and ICI responses AUC: 0.76 on testing dataset, C-index: 0.66
Song et al.63 2021 937 patients CT Deep learning model and clinicopathological information ALK fusion status prediction AUC: 0.8481 on validation dataset
Rossi et al.64 2021 109 patients CT Radiomics and SVM model Detection of EGFR mutations AUC: 0.85 on five-fold cross validation
Zhang et al.65 2021 134 patients CT 1672 radiomic features Simultaneous identification of EGFR, KRAS, ERBB2, and TP53 mutations AUCs: 0.78–0.87 on five-fold cross validation
Wang et al.17 2022 18,232 patients CT FAIS Prediction of EGFR genotype and targeted therapy response AUCs: 0.748–0.813 on six testing datasets
Wang et al.66 2022 3816 patients CT Multitask AI system EGFR and PD-L1 status prediction AUCs: 0.928 for EGFR mutated status, 0.905 for PD-L1 expression on testing dataset
Shao et al.67 2022 1096 Patients CT MMDL system Identification of multiple actionable mutations and PD-L1 expression AUCs: 0.862 for 8 mutated genes, 0.856 for 10 molecular statuses on testing dataset
Treatment efficacy assessment Song et al.68 2018 117 stage IV EGFR-mutant NSCLC patients CT CT-based phenotypic characteristics Prediction of PFS with EGFR-TKI therapy C-index: 0.718, 0.720 on two validation datasets
Xu et al.69 2019 179 patients with stage III NSCLC treated with definitive chemoradiation CT Transfer learning of CNN with RNN using single seed-point tumor localization Prediction of OS AUC: 0.74 for 2-year OS on validation dataset
Lou et al.70 2019 944 patients CT Deep learning Predict treatment failure and hence guide the individualization of radiotherapy dose C-index: 0.77 on independent validation dataset
Khorrami et al.71 2020 139 patients CT Compared changes in the radiomic texture (DelRADx) of CT patterns both within and outside tumor Prediction of OS and response to ICIs AUCs: 0.81, 0.85 on two independent validation datasets
Dercle et al.72 2020 Nivolumab, 92; docetaxel, 50; and gefitinib, 46 CT Radiomics Prediction of systemic cancer therapies response AUC: 0.77 for nivolumab, 0.67 for docetaxel, and 0.82 for gefitinib on validation dataset
Mu et al.73 2020 194 patients with stage IIIB–IV NSCLC PET/CT Radiomics Prediction of ICIs benefit AUC: 0.81 on prospective testing dataset
He et al.74 2020 327 patients CT images Deep learning radiomics Prediction of ICIs response AUC: 0.81 on testing dataset
Dissaux et al.75 2020 27, 29, and 8 patients treated with SBRT from three different centers 18F-FDG PET/CT Radiomics Prediction of local recurrence AUC: 0.905 on testing dataset
Deng et al.76 2022 570 patients with stage IV EGFR-mutant NSCLC treated with EGFR-TKIs and 129 patients with stage IV NSCLC treated with ICIs CT EfficientNetV2-based survival benefit prognosis (ESBP) Survival benefit prediction of TKIs and ICIs C-index: 0.690 on the EGFR-TKI external testing dataset

Survival prognosis prediction Aerts et al.77 2014 1019 patients with lung or head-and-neck cancer CT 440 features quantifying tumor image intensity, shape, and texture Prediction of OS C-index: 0.65 on validation dataset
Hosny et al.78 2018 1194 NSCLC patients CT 3D CNN Mortality risk stratification AUCs: 0.72 for 2-year OS from the start of respective treatment for radiotherapy and 0.71 for surgery on external validation dataset
Arshad et al.79 2019 358 stage I–III NSCLC patients FDG-PET/CT Radiomics Prediction of OS C-index: 0.541–0.558 on testing dataset
Jazieh et al.80 2022 133 patients with unresectable stage III NSCLC CT Radiomics risk score Prediction of clinical outcomes C-index: 0.77 for PFS, 0.77 for OS on testing dataset
Huang et al.81 2022 1168 nodules of 965 patients FDG-PET/CT scans CNN Prediction of OS C-index: 0.737 for PET + CT + clinical ensemble model on testing dataset

AI: Artificial intelligence; ALK: Anaplastic lymphoma kinase; AUC: Area under the curve; CNN: Convolutional neural network; CT: Computed tomography; DFS: Disease-free survival; EGFR: Epidermal growth factor receptor; FAIS: Fully automated artificial intelligence system;18F-FDG PET/CT: Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT); ICI: Immune checkpoint inhibitors; LUAD: Lung adenocarcinoma; MMDL: Multi-label multi-task deep learning; NSCLC: Non-small cell lung cancer; OS: Overall survival; PD-L1: Programed death ligand-1; PFS: Progression-free survival; RNN: Recurrent neural networks; SBRT: Stereotactic body radiotherapy; SVM: Support vector machine; TKIs: Tyrosine kinase inhibitors; TMB: Tumor mutational burden.