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Abstract

The accuracy of methods for assembling transcripts from short-read RNA sequencing data is 

limited by the lack of long-range information. Here we introduce Ladder-seq, an approach 

that separates transcripts according to their lengths before sequencing and uses the additional 

information to improve the quantification and assembly of transcripts. Using simulated data, 

we show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of 

complex genes with substantially higher accuracy than conventional kallisto. For reference-based 

assembly, a tailored scheme based on the StringTie2 algorithm reconstructs a single transcript with 

30.8% higher precision than its conventional counterpart and is more than 30% more sensitive for 

complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly 

assembles 78% more transcripts than conventional Trinity while improving precision by 78%. 

In experimental data, Ladder-seq reveals 40% more genes harboring isoform switches compared 

to conventional RNA sequencing and unveils widespread changes in isoform usage upon m6A 

depletion by Mettl14 knockout.

Short-read RNA sequencing (RNA-seq) is the most widely used assay for transcriptome 

profiling, and many computational methods have been developed to identify and quantify 

transcripts from the produced sequence read data. Transcript quantification methods assign 

reads to known species-specific transcripts to obtain a quantitative measurement for their 

relative expression, and the assembly of transcript sequences can reveal novel types of RNA 

molecules. In contrast to the reference-based assembly that builds full-length transcripts 

from reads ordered by a prior alignment to a reference genome, the de novo assembly 

approach reconstructs transcripts based on the sequence overlap of reads alone and can be 

applied to species for which no or just a highly fragmented reference genome is available.

Despite many methodological advances, the accuracy of transcript-level inference methods 

developed over the last decade is severely limited by the lack of long-range information 

contained in each individual short read. They perform particularly poorly in the detection 

and quantification of lowly expressed transcripts and transcripts from complex genes1–3that 

share large parts of their sequences due to alternative splicing. Multi-sample approaches, 

such as the recently introduced PsiCLASS4, try to address these limitations by assembling 

transcripts simultaneously across multiple RNA-seq samples. On the other hand, third-

generation technologies, such as those marketed by Pacific Biosciences or Oxford Nanopore 
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Technologies (ONT), are able to read full-length transcripts but at a lower throughput, a 

higher error rate and a higher cost per base5.

Here we propose Ladder-seq, a new variant of the RNA-seq protocol that effectively breaks 

gene complexity by separating mRNAs according to their lengths into a small number of 

bands before their fragmentation. This experimental deconvolution can guide an algorithm 

to assemble or assign reads to transcripts only of a correct length. We extend and tailor 

state-of-the-art RNA-seq analysis methods for quantification, reference-based assembly and 

de novo assembly to use the extra layer of information introduced in Ladder-seq to detect 

and quantify transcripts at an unprecedented level of accuracy and reveal transcripts that are 

invisible to conventional RNA-seq approaches.

More accurate transcript-level estimates from Ladder-seq will facilitate downstream 

differential analysis, which we exploited in a study of epitranscriptomic regulation of 

splicing in mouse neural progenitor cells (NPCs). m6A is the most abundant internal 

modification of mRNA in eukaryotic cells6 and is involved in multiple aspects of mRNA 

biology. Here we reveal a critical role of m6A methylation in NPCs as a regulator of 

alternative splicing, which is highly prevalent in the nervous system7–9 and has been 

associated with neurological disorders such as autism.

Results

Generation of Ladder-seq libraries of mouse NPCs.

We generated Ladder-seq datasets from Mettl14 wild-type (WT) and knockout (KO) mouse 

NPCs (Methods). Mettl14 encodes for a methyltransferase necessary for m6A methylation of 

mRNA. Four independent replicates were prepared per genotype.

Compared to conventional RNA-seq, in Ladder-seq, mRNAs are separated by their 

lengths into a small number of bands before their fragmentation (Fig. 1a). To achieve 

mRNA separation by transcript length, we performed denaturing gel electrophoresis. 

After electrophoresis, each sample was cut into seven bands guided by a single-stranded 

RNA ladder running on the same gel. This effectively reduced gene complexity in our 

dataset (Extended Data Fig. 1) by partitioning transcripts expressed per gene into different 

subgroups. We denote the size of each subgroup as its effective complexity. mRNAs were 

effectively separated into seven distinct length ranges with a certain degree of overlap 

between consecutive bands (Fig. 1b and Supplementary Table 1). mRNA from each band 

of each sample was extracted from the agarose gel, and equal volumes per band were used 

for cDNA library construction. Each band from each sample was given a unique barcode to 

track the originating band (per sample) of each read.

Correlation analyses of transcript expressions show high technical reproducibility of 

our Ladder-seq protocol (r = 0.96–0.98; Supplementary Fig. 1). Furthermore, transcript 

expression levels were well-correlated between each of the four WT Ladder-seq samples 

and three conventional RNA-seq reference datasets (without length separation) from WT 

NPCs (r = 0.81–0.82; Supplementary Fig. 2 and Supplementary Table 2), despite using 

different experimental batches. Pearson correlation coefficients of our Ladder-seq samples 
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were similar to those of five public RNA-seq samples of mouse NPCs10,11 (Supplementary 

Tables 2 and 3), which holds also when correlation was stratified by transcript length ranges 

that follow the location of cuts used in our experiments (Supplementary Fig. 3). Transcripts 

with low correlation did not differ significantly in length from highly correlated tanscripts 

(Supplementary Fig. 4). The total number of detected annotated transcripts is highly similar 

between Ladder-seq and conventional RNA-seq (Supplementary Figs. 5 and 6), and the 

detection rate increased with transcript length, as previously reported12 (Supplementary 

Figs. 7 and 8).

The separation of mRNAs by length from NPCs on an agarose denaturing gel introduces 

separation errors that result in the spread of molecules of the same transcript species 

across different bands. Even though transcript length is the main determinant for mRNA 

migration13, residual secondary structure formation plays a role in determining the migration 

pattern of transcripts (migration errors). This might vary between molecules and can even 

occur under denaturing conditions. We apply a histogram-based method to estimate a 

discrete density function according to which reads obtained from transcripts of a given 

length distribute across bands (Methods). We rely on reads that map uniquely to annotated 

transcripts with high confidence. The ‘in silico gel’ in Fig. 1c (and Extended Data Fig. 2) 

confirms the migration of transcripts according to their annotated length.

Transcript quantification—kallisto-ls.

Reads that map to a unique genomic position often cannot be assigned unambiguously to 

one of a gene’s transcripts, because alternatively spliced isoforms might overlap in genomic 

coordinates. Transcript quantification methods, therefore, use a statistical model of RNA-seq 

to probabilistically assign reads to transcripts. We have extended this statistical model to our 

new protocol, Ladder-seq, and implemented an expectation maximization (EM) algorithm 

that infers transcript abundances that can best explain the observed reads and their (inexact) 

separation into bands. The read’s band contains transcripts of a specific length range and, 

thus, provides valuable information when trying to probabilistically resolve its assignment 

ambiguity between transcripts of different lengths (Fig. 2a). Based on estimated migration 

patterns of transcripts, we adjust the probability of obtaining a read in a given band from 

a specific transcript by the probability of seeing a transcript of the same length in the 

corresponding band (Methods).

We extend the EM implementation in one of the most widely used software tools, kallisto14, 

to quantify transcripts based on pseudo-alignments of Ladder-seq reads. To assess the 

advantages of our Ladder-seq-tailored EM implementation, kallisto-ls, over conventional 

kallisto, we compared their performance on simulated Ladder-seq samples and matching 

RNA-seq samples, respectively (Extended Data Fig. 3). As in the original benchmark in 

ref. 14, we simulated 30 million and 75 million 2 × 75-bp paired-end reads. From each 

simulated RNA-seq sample, we derive a matching Ladder-seq sample by introducing an in 

silico length separation. We assign each read randomly to one of a fixed number of bands 

(here, seven), where the random assignment follows a distribution that reflects migration 

patterns estimated from our mouse NPC data.
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We measure quantification accuracy by mean absolute relative difference (MARD) and 

Pearson correlation (Methods), the same metrics used in a benchmark of transcript 

quantification methods1. kallisto-ls makes use of the additional length information contained 

in the Ladder-seq data to quantify transcripts more accurately than conventional kallisto 

(Fig. 2b and Extended Data Fig. 4). In fact, kallisto-ls is able to quantify transcripts of genes 

expressing ten isoforms as accurately (in terms of MARD) as conventional kallisto is able to 

quantify merely two expressed isoforms.

To evaluate the effect that a more precise length separation has on the accuracy of Ladder-

seq, we mimic an idealized version of the Ladder-seq protocol, which perfectly separates 

transcripts by length without any migration errors. To this end, the same set of reads is 

partitioned into the same number of bands deterministically according to the length of the 

originating transcript. Figure 2b (and Extended Data Fig. 4) shows that a more accurate 

length separation can improve quantification accuracy even further, yielding a reduction in 

MARD of more than 31% for genes expressing four transcripts.

Reference-based transcript assembly—StringTie-ls.

Current methods for reference-based assembly represent reads connecting neighboring 

exons by a graph structure, such as the splicing graph15, and infer transcripts as paths 

through this graph. However, the space of possible candidate transcripts that can be obtained 

by combining locally connected exons in paths through the graph can grow exponentially, 

and smoothing the local coverage along transcripts cannot unambiguously point to a single 

best subset of transcripts16.

Here, we propose a computational framework (Fig. 3a) that enables conventional RNA-seq 

assembly methods to exploit the extra layer of information provided by Ladder-seq to reduce 

the ambiguity of combining distant splicing events into transcript isoforms. In this scheme, a 

separate splicing graph is built from reads in each band, and transcript length constraints aid 

in breaking (too-long) erroneous fusions and in eliminating (too-short) transcript fragments. 

Length constraints are derived from distributions of transcript lengths across bands, which 

are estimated using a histogram-based method (Methods). We use kallisto-ls to assign reads 

to assembled transcripts according to our statistical model of Ladder-seq.

We chose StringTie2 (ref. 17) as the presumably most accurate RNA-seq assembly 

method17,18 to illustrate the benefit of our Ladder-seq-tailored assembly approach 

(StringTie-ls) over its conventional RNA-seq counterpart. We simulated additional Ladder-

seq samples that mimic an improved length separation step by gradually reducing the degree 

of migration errors (Methods).

Figure 3b (and Extended Data Fig. 5) shows that StringTie-ls is able to correctly reconstruct 

a much larger fraction of expressed transcripts than conventional StringTie2, and, as 

expected, this improvement in sensitivity increases with gene complexity. For genes 

expressing four transcripts, StringTie-ls detects 16% more transcripts than conventional 

StringTie2, and this improvement increases to 31.1% and 35.2% for complex genes 

expressing seven and ten transcripts, respectively. The sensitivity gap between these two 

technologies widens with a more accurate length separation of transcripts, reaching an 
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improvement of 25.2% for genes expressing four transcripts and 49.2% and 58.7% for 

genes of complexity 7 and 10, respectively, in the most optimistic scenario. At the same 

time, StringTie-ls assembles transcripts with higher precision across all complexity classes. 

StringTie-ls benefits considerably from the additional length information that allows it to 

detect too-short transcript fragments. For genes expressing single transcripts, for example, 

StringTie-ls recognizes 699 of 824 false-positive assemblies from conventional StringTie2 as 

being too short and eliminates them, improving precision by 30.8%.

In addition, we compared transcripts assembled from our Ladder-seq NPC samples to 

transcripts identified from long reads generated by ONT. We performed ONT long-read 

native RNA (ONT-RNA) and direct cDNA (ONT-cDNA) sequencing of WT and Mettl14 
KO mouse NPCs. Expression levels were well-correlated between ONT and Ladder-seq 

samples (Supplementary Fig. 9 and Supplementary Tables 11 and 12) and consistent with 

previously reported correlations between ONT and RNA-seq data12,19.

Third-generation sequencing technologies, such as those from ONT and Pacific Biosciences, 

can produce reads longer than 10,000 bp, which, in principle, can capture full-length 

transcripts. The lower sequencing depth and the higher error rate, however, result in an 

incomplete transcriptome reconstruction that will also include false transcripts. Nevertheless, 

a transcript assembled from short reads is likely to be truly expressed if it can be 

independently identified in the long-read data. Conventional StringTie2 missed many long-

read transcripts successfully recovered by StringTie-ls, in both conditions and compared to 

both native RNA and cDNA libraries (Supplementary Tables 13 and 14). The large number 

of transcripts assembled only from short reads that matched an annotated transcript can be 

attributed to the incompleteness of the long-read transcriptomes.

De novo transcript assembly—Trinity-ls.

To study the transcriptome of species for which no or just a highly fragmented reference 

genome is available, or in samples with a substantially altered genomic sequence, transcripts 

need to be assembled de novo. Omitting the read mapping step that arranges reads in 

order leaves the sequence overlap of reads as the only source of information to be used by 

methods for this most challenging transcript-level inference task. Most methods, including 

one of the most widely used methods, Trinity20, stitch together k-mers, subsequences of k 
nucleotides, to transcript sequences by traversing paths in so-called de Bruijn graphs. No 

part of these data connects subpaths at longer distances, which can cause erroneous fusions 

of isoforms or paralogs, especially in complex genes with a large number of alternative 

splicing events21.

Here, we follow a similar strategy as in the reference-based assembly (Fig. 3a) to access the 

additional layer of information provided by Ladder-seq to guide the de novo assembly of 

full-length transcripts by Trinity. We use Trinity to compute length-constrained paths in de 

Bruijn graphs representing k-mer connectivity rather than paths in splicing graphs. Again, 

we quantify assembled transcripts by probabilistically assigning reads using our statistical 

model of Ladder-seq, taking into account estimated migration errors.
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Figure 4 (and Extended Data Fig. 6) shows an enormous performance gain of Trinity-ls 

over conventional Trinity on our simulated data, in terms of both sensitivity and precision. 

In total, Trinity-ls correctly recovers an additional 4,072 (78%) transcripts compared to 

Trinity while, at the same time, increasing precision equally by 78%. A more accurate 

separation of transcripts by length further boosts the performance of Trinity-ls, approaching 

an additional 163% of correctly discovered transcripts and a 3.9-fold increase in precision 

when transcripts are perfectly separated by their lengths.

Ladder-seq improves differential analysis of transcriptomes.

We evaluated the effect of a more accurate reconstruction of transcriptomes on differential 

analysis between two biological conditions. We used Ladder-seq to profile the transcriptome 

of WT and Mettl14 KO mouse NPCs. To assess transcript usage under these conditions, we 

first assembled transcripts using StringTie-ls on each sample to identify novel transcripts 

that are expressed consistently across replicates of the same genotype. We quantified 

annotated (Ensembl release 95) and newly reconstructed transcripts using kallisto-ls 

and compared their expression between conditions to detect their differential usage. 

For comparison with conventional RNA-seq, we ran the same computational pipeline 

replacing the Ladder-seq-tailored methods, kallisto-ls and StringTie-ls, by their conventional 

counterparts, which ignore the separation of reads into bands (Extended Data Fig. 7a).

Ladder-seq identified 40% more genes harboring switching isoforms in Mettl14 KO 

compared to conventional RNA-seq (Extended Data Fig. 7b and Supplementary Table 

19). Taking gene complexity—that is, the number of expressed transcripts per gene—as 

a measure of difficulty in assembling transcripts, genes identified as switching exclusively 

by Ladder-seq appear to be particularly difficult to reconstruct by the conventional pipeline 

without the additional length separation (Fig. 5a). In contrast, Ladder-seq breaks down gene 

complexity, effectively reducing the number of transcripts that need to be reconstructed in 

an individual band. This effective complexity is considerably lower in all three categories of 

genes identified as switching (Fig. 5a), including genes identified as switching only by the 

conventional pipeline.

Ladder-seq uncovers otherwise buried transcripts that are not identified by conventional 

RNA-seq. This is exemplified by the isoform switch in gene Pi4k2a, which is only 

identified by our method (Fig. 5b,c). StringTie-ls uncovered a shorter transcript that 

is absent from the Ensembl release 95, but it does appear in the later release 98 

version (ENSMUST00000235932) and is also present in the ONT long-read data 

(TCONS_00005143 in Supplementary Tables 20 and 21), confirming that what Ladder-seq 

assembled is indeed accurate. In addition, we confirmed this isoform switch with reverse 

transcription quantitative polymerase chain reaction (RT–qPCR) (Fig. 5d). Additional 

illustrative examples of isoform switches uncovered only by Ladder-seq are shown in 

Extended Data Fig. 7c–f.

Ladder-seq makes use of estimated probability distributions, which describe how mRNA 

molecules migrated through the denaturing gel. We used Jensen–Shannon divergence (JSD) 

to compare these estimated migration patterns of transcripts to distributions of reads across 

bands assigned to them by conventional kallisto or by kallisto-ls. JSD values for kallisto-ls 
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were consistently low for all identified switching genes, which is to be expected given that 

kallisto-ls makes explicit use of these distributions to guide the assignment of reads. On the 

other hand, JSD values for conventional kallisto were highest for those genes identified as 

switching only by conventional RNA-seq (Fig. 5e). These large JSD values are likely an 

indication of erroneous assignments of reads by conventional kallisto, because JSD values 

also increase with the difficulty of the quantification task (Fig. 5f). More generally, we 

observed that the more conventional kallisto differs from kallisto-ls, the more its assigned 

read band distribution deviates from the estimated distribution, resulting in larger JSD values 

(Extended Data Fig. 7g).

Finally, we used ONT long reads of WT and KO NPCs to validate novel transcripts involved 

in isoform switches. Of all 499 novel switching isoforms detected exclusively by Ladder-

seq, 206 (41.3%) were identified from ONT-cDNA or ONT-RNA long-read data by FLAIR 

or assembled by StringTie2 or were contained in a recently published ONT long-read mouse 

NPC transcriptome22. Only 18 of 97 (18.6%) novel switching isoforms reported only by 

conventional RNA-seq were confirmed by long-read sequencing.

Mettl14 KO leads to isoform switches in m6A methylated genes.

We next set out to delineate the characteristics of isoform switches and their relationship 

to m6A methylation. To assess whether m6A is associated with isoform switches in 

Mettl14 KO, we identified m6A-tagged genes in a public m6A RNA IP and sequencing 

dataset from mouse NPCs23. We found that switching genes are significantly enriched 

for m6A methylated genes (P = 2.36 × 10−19) (Fig. 6a). These genes are enriched for 

Gene Ontology (GO) terms related to transcriptional regulation, neurogenesis and synaptic 

signaling (Extended Data Fig. 8a).

To investigate the involvement of m6A methylation in isoform switching, we explored a 

potential spatial proximity between m6A and alternative splicing. We assessed whether 

exonic segments24,25 bounding differentially spliced regions are enriched for m6A 

methylation (Methods). We found a significant enrichment of m6A within these segments 

(P = 8.6 × 10−39) (Fig. 6b). This enrichment persists when normalizing for segment length 

(P = 1.09 × 10−5), which accounts for a possible bias toward longer exons26,27. Illustrative 

examples of m6A methylation within a differentially spliced exonic segment are shown for 

neurogenesis-related genes Fbxl5 (ref. 28) and Ptprz1 (ref. 29) (Fig. 6c and Extended Data 

Fig. 8b).

We then studied the consequences of isoform switches on functional protein domains. We 

found 295 genes with loss of functional domains in the upregulated isoform in the KO. GO 

analysis of these genes shows enrichment for terms related to neuronal function, such as 

glutamatergic synaptic transmission, synapse organization and GABA secretion (Extended 

Data Fig. 8c and example in Fig. 6d).

Although other types of splicing events were balanced between WT and Mettl14 KO, 

upregulated isoforms in KO had significantly more intron retention losses than gains (Fig. 6e 

and Extended Data Fig. 8d). Again, these genes were enriched for m6A methylated genes (P 
= 1.6 × 10−6). GO analysis revealed enrichment for terms unrelated to neuronal functions but 
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rather associated with pluripotency, such as DNA repair and gamete generation (Extended 

Data Fig. 8e). We found enrichment for nonsense-mediated decay (NMD) insensitive 

isoforms as well as for shorter 3′ untranslated region (UTR) (Fig. 6f), both hallmarks of 

decreased regulation of gene expression30,31. Finally, we validated a selection of identified 

isoform switches by RT–qPCR (Fig. 5d and Supplementary Table 22).

Long-read sequencing confirms many Ladder-seq transcripts.

We next compared the Ladder-seq-inferred WT transcriptome of mouse NPCs (Extended 

Data Fig. 7a) with transcripts identified by FLAIR32 from our ONT-cDNA and ONT-RNA 

long reads. We found that 63.3% of ONT-cDNA transcripts were contained in at least one 

WT Ladder-seq transcriptome with relative expression of at least 0.1 transcripts per million 

(TPM). Of those, a larger fraction of transcripts was independently assembled by StringTie2 

from the ONT-cDNA data or contained in a recently published ONT long-read mouse NPC 

transcriptome (Dong et al.22), compared to those reported only by ONT-cDNA (Extended 

Data Fig. 9a). The substantially lower validation rate suggests that a larger fraction of 

transcripts missing in the Ladder-seq transcriptomes were falsely inferred by FLAIR from 

ONT-cDNA reads and, similarly, from our ONT-RNA data (Supplementary Fig. 10a). As 

expected12, Ladder-seq detected more annotated genes and transcripts than could be mapped 

from the ONT libraries (Supplementary Figs. 11 and 12). Nevertheless, 71.1% of transcripts 

reconstructed by Ladder-seq with relative abundance of at least 1 TPM were identified by 

FLAIR or assembled by StringTie2 in the ONT-cDNA dataset or were contained in Dong 

et al. (Extended Data Fig. 10). This overlapping set of transcripts showed higher expression 

levels than the remaining set of transcripts (Extended Data Fig. 9b), suggesting the limited 

sequencing depth of the ONT dataset as one possible explanation for their absence in the 

long-read transcriptome12. This was consistently observed in the ONT-RNA data (Extended 

Data Fig. 10 and Supplementary Fig. 10b). A more likely explanation for the low abundance 

of transcripts reported only by FLAIR (Supplementary Fig. 13) is a higher rate of incorrectly 

inferred sequences among them, as suggested by their low validation rate and low fraction 

of annotated transcripts (2.7% of FLAIR-only transcripts (TPM ≥1) compared to 69% 

of Ladder-seq-only transcripts (TPM ≥1)). Of transcripts upregulated in WT or KO as 

part of an isoform switch in our Ladder-seq analysis, 57.8% were identified by FLAIR 

or assembled by StringTie2 in our WT and KO ONT-cDNA datasets. Again, overlapping 

switching transcripts were higher expressed than uniquely identified ones (Extended Data 

Fig. 9b and Supplementary Fig. 10b).

For five of the six isoform switches validated by RT–qPCR (Fig. 5d), the two participating 

isoforms were identified by at least one of the two methods (StringTie2 or FLAIR) in the 

ONT-cDNA dataset (Supplementary Table 20). The single switch for which both methods 

independently detected both isoforms was formed by the two highest expressed transcripts. 

In contrast, the only isoform missed by both methods was the lowest expressed among all 

12 transcripts. Overall, the two methods disagreed on the presence of six of 12 validated 

switching isoforms, which underlines the non-trivial nature of the computational task of 

inferring high-confidence transcripts from long reads. As expected, the lower sequencing 

depth in the ONT-RNA dataset resulted in a smaller number of confirmed isoforms 

(Supplementary Table 21).
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Discussion

In this work, we introduced Ladder-seq, a combined experimental–computational approach 

that substantially improves the accuracy with which the set of expressed transcripts can 

be inferred from short RNA-seq reads. The experimental separation of transcripts by their 

lengths provides an additional layer of information that can be used by computational 

analysis methods to detect and quantify transcripts that cannot be distinguished based on 

short-read data alone. We showed that a more accurate reconstruction of the transcriptome 

benefits its subsequent comparison and, in our experiments, revealed isoform switches of 

differentially methylated transcript isoforms that are invisible to conventional RNA-seq 

approaches.

Our computational framework for reference-based and de novo assembly of transcripts 

from Ladder-seq reads employs the previously developed methods StringTie2 and Trinity 

without any internal modifications. We, therefore, provide a Snakemake-based33 workflow 

template that allows users to implement the same framework based on other methods that 

have originally been developed for the analysis of conventional RNA-seq data. This will 

make many computational methods that have been developed over the last decade instantly 

available for the analysis of Ladder-seq datasets. On the other hand, we expect algorithms 

that are tailored to the specifics of Ladder-seq to even further improve the accuracy of 

reconstructed transcriptomes.

On the experimental side, the Ladder-seq protocol involves a denaturing gel electrophoresis 

to achieve length separation of mRNAs. In our proof-of-principle experiment, we separated 

transcripts into seven bands. In principle, a larger number of cuts could further reduce the 

effective complexity transcriptome-wide (Supplementary Fig. 14) or of a subset of genes of 

interest and, thus, simplify the computational task of inferring their expressed transcripts. 

On the other hand, fewer cuts might be sufficient to achieve a similar improvement over 

conventional RNA-seq for species with a less complex transcriptome. In our repository, we, 

therefore, provide R code that can guide the selection of the number and approximate 

location of cuts. We used a gel-based approach to separate transcripts because of its 

relative simplicity and low cost. However, the separation of mRNAs by their lengths 

could be achieved using other technologies, including solid-phase reversible immobilization 

beads34, capillary electrophoresis35 and ion-pair reversed-phase high-performance liquid 

chromatography36. These methods will vary in degrees of accuracy in separating mRNAs, 

costs and level of involvement for the experimentalist. As we showed with our simulated 

data experiments, a higher accuracy in the separation step will yield a greater advantage in 

transcriptome reconstruction.

High accuracy of Ladder-seq transcriptomes of mouse NPCs was confirmed by comparison 

with transcripts inferred from ONT long reads. Although the overlap between the two 

technologies was large, many transcripts were uniquely inferred from long reads. Their 

substantially lower validation rate, however, suggests the presence of a larger fraction of 

false transcripts. Alternatively, the low expression of transcripts uniquely identified by 

Ladder-seq indicates the limited sequencing depth of ONT as a possible reason for their 

absence in the long-read dataset.
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Both differences between long-read sequencing and Ladder-seq are expected. Even though 

long-read technology greatly simplifies many analytical challenges that occur in short-read 

assembly, experimental challenges and higher error rate of long reads motivated the 

development of different computational strategies to extract high-confidence, full-length 

transcripts. Different approaches and filtering criteria can yield substantially different 

results22, as observed in our own experiments using StringTie2 and FLAIR. In addition, 

long-read sequencers have much lower throughput and, thus, detect a much smaller 

fraction of genes and transcripts as contained in short-read libraries. The lower sequencing 

depth renders the statistical comparison of transcript abundances between conditions as 

performed in our study infeasible. Current studies, therefore, combine long reads with 

high-throughput short-read (Ilumina) sequencing37 and limit the differential analysis to 

fold-change calculations38. Ladder-seq improves this limitation by combining the high 

throughput of short-read RNA-seq with the ability to reveal transcript isoforms that are 

invisible to conventional RNA-seq. However, if a large number of overlapping transcripts 

expressed by a complex gene have similar lengths, Ladder-seq will not offer any benefit over 

conventional RNA-seq in resolving such intrinsically difficult expression patterns from short 

reads.

In our Ladder-seq experiment on mouse NPCs, we explored the consequences of the 

deletion of m6A writer protein Mettl14 on isoform usage. Ladder-seq identified a large 

number of genes with isoform switches. We showed that differentially spliced exonic 

segments of a transcript tend to lie close to a methylation site. This result suggests a 

direct involvement of m6A in alternative splicing in NPCs, possibly through interaction of 

m6A readers with the splicing machinery, as it has been reported for other cell types and 

organisms39–42. Which nuclear m6A reader is active in NPCs remains to be determined. 

An intriguing finding of our study is the enrichment for intron retention losses in Mettl14 
KO NPCs in non-neuronal genes related to DNA repair and gamete generation. Intron 

retentions are known to act as regulators of gene expression during normal development43, 

and previous work reported progressive intron retention gains in genes related to cell cycle, 

pluripotency and DNA repair during the process of differentiation from mouse embryonic 

stem cells to neurons44. Expression of these genes is under tighter control as differentiation 

progresses. Intron retention losses in Mettl14 KO NPCs suggest that they are in a lesser state 

of differentiation compared to WT NPCs, which fits with our previous finding of delayed 

differentiation of radial glial cells in Mettl14 KO mice45. To our knowledge, this is the 

first in-depth analysis of m6A-mediated alternative splicing in NPCs, and it highlights the 

diversity of m6A function within a single cell type. It further extends the role of m6A in 

NPCs from mediating mRNA degradation45 to regulating isoform usage, which is known to 

be especially important in the brain.

Ladder-seq—the concerted advancement of the RNA-seq protocol and its computational 

methods—will allow research facilities to study the composition and dynamics of the 

transcriptome at an unprecedented level of accuracy based on a technology that has been 

established for over a decade.
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Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41587-021-01136-7.

Methods

Estimating mRNA migration.

The accurate assembly and quantification of transcripts from Ladder-seq reads requires 

the computational estimation of transcript migration errors across bands. To estimate the 

migration pattern of a transcript of length ℓ through the agarose gel across k bands, we 

introduce probability mass function f x  over discrete random variable x ∈ k : = 1, …, k , 

which indicates the band to which transcripts of length ℓ migrate. If we observe reads 

sampled from transcripts of length ℓ in bands X1, …, Xn ∈ k , then we simply count how 

often reads are obtained in a given band and take the relative frequency as density estimate:

f̂(i) = j = 1
n 1 Xj = i

n ,

where 1 is the indicator function that takes value 1 if its argument evaluates to true 

and 0 otherwise. To obtain reads for which we can infer the originating transcript with 

high confidence, we select reads that uniquely map to a single annotated transcript. More 

precisely, we run the kallisto pseudo-alignment step and select all reads that are compatible 

with only a single transcript according to the NH tag.

In addition, we account for potentially incomplete transcript annotations that might cause 

reads sampled from unannotated transcripts (of different length) to negatively affect our 

migration estimate of a transcript (length) that it was wrongly assigned to. To this end, we 

assemble transcripts using StringTie2 from reads pooled across bands and aligned using 

STAR. We augment the transcript annotation with novel transcripts before running the 

kallisto pseudo-alignment to obtain a more conservative selection of uniquely mapping 

reads. We do not consider reads mapping (uniquely) to newly assembled transcripts.

We further restrict observations to reads that uniquely map to protein-coding transcripts 

(Ensembl release 95), which are typically annotated more accurately, and which we were 

able to confirm to be expressed through the StringTie2 assembly on the intron chain level. 

We required a minimum of 50 reads to uniquely map to a transcript of length, at most, 

8,000 bp to be considered in our estimation. The resulting set of reads, along with their band 

of origin (identified by a barcode), constitute observations X1, …, Xn for the length of the 

transcript that they uniquely align to.

If no (high-quality) transcript catalog is available based on which uniquely mapping reads 

can be identified—for example, in de novo assembly or, if the species is poorly studied—

mapping reads to synthetic RNA spike-in controls of varying lengths49 can be used to 
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similarly estimate transcript migration error. Alternatively, a supplementary sample of a 

well-annotated organism—for example, mRNA from a human cell line—can be run in 

parallel on the same gel and allocated a small fraction of sequencing output.

Because transcripts of similar length show similar migration patterns through the gel13, we 

combine reads uniquely mapping to transcripts of a certain length range to more reliably 

estimate f(x) based on a larger number of reads. Starting from the shortest transcripts, we 

greedily define transcript length ranges as the shortest possible length intervals longer than 

100 bp that contain at least 50 different transcript species to which at least a total of 700,000 

reads map uniquely. For each of these length ranges, we estimate one probability mass 

function f(x) as described above. The resulting length ranges are listed in Supplementary 

Table 23.

Simulation.

We extend the widely used RNA-seq simulator RSEM50 by an additional in silico length 

separation step, which includes the introduction of migration errors to simulate data with 

characteristics similar to that generated by our novel Ladder-seq protocol. Because the 

effectiveness of the experimental deconvolution of reads into different bands by Ladder-seq 

depends on the differences in lengths of expressed, overlapping transcripts, we simulated 

reads from a transcriptome using abundances and error profiles learned from a real dataset. 

Following the approach in ref. 14, we simulated 30 million and 75 million 2 × 75-bp 

paired-end reads from transcripts whose abundances were estimated by RSEM from sample 

NA12716_7 of the Genetic European Variation in Health and Disease (GEUVADIS)51. 

Given the RNA-seq reads produced by the simulator, we generate a matching Ladder-seq 

sample by assigning each read randomly to one of a fixed number of bands to introduce 

in silico length separation. This random assignment follows the probability mass function 

estimated from our NPC Ladder-seq sample KO 1, given the length of the transcript that 

originates the read (provided by the simulator). We use seven bands to reflect the specifics of 

our NPC Ladder-seq samples. See Extended Data Fig. 3 for an overview of the benchmark 

strategy.

To show how a more accurate experimental separation of transcripts by length can benefit 

transcript-level inference from Ladder-seq, we additionally simulated three Ladder-seq 

experiments that introduce gradually decreasing levels of migration errors. For every 

transcript length range for which we have estimated probability mass function f(x) from 

our NPC Ladder-seq sample, we halve the relative frequency of reads in every band as we 

move further away from its mode and normalize all values to sum up to 1. More precisely, 

for bands numbered consecutively from 1 to k, let m denote the band that contains the mode 

of f̂(x) estimated for a given length range. Then,

f1(i) = f̂(i)/2 i − m

j = 1
k f̂(j)/2 i − m

(1)
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Similarly, f2(x) and f3(x) are obtained by replacing f̂ in (1) by f1(x) and f2(x), respectively. 

By randomly assigning simulated reads according to probability mass functions fi(x),
i = 1, 2, 3, instead of f̂(x), we obtain three additional Ladder-seq datasets with reduced 

levels of migration errors.

Finally, we simulated a most-optimistic Ladder-seq experiment that is able to perfectly 

separate transcripts by length, without introducing any migration error. This leads to a 

degenerate probability mass function for each length range implied by the seven in silico 

cuts in which the read band is a constant random variable that takes only a single value, the 

correct band corresponding to that length range.

Evaluation.

We used the same metrics as in a benchmark of transcript quantification methods1 to 

measure the accuracy of kallisto and kallisto-ls estimates of transcript expression. MARD 

denotes the arithmetic mean of absolute relative differences, calculated as i − j /(i + j) for 

estimated and ground truth counts i and j, respectively. We excluded transcripts with zero 

estimates by both methods—that is, if i + j = 0. Pearson correlation was calculated between 

log 2 transformed TPM values, after adding 0.1 TPM.

Consistent with previous studies17,52, the accuracy of reference-based and de novo 

assemblies is evaluated using sensitivity defined as TP/(TP+FN) and precision defined 

as TP/(TP+FP), where true positives (TPs) denote correctly assembled transcripts; false 

negatives (FNs) denote true transcripts missing in the assembly; and false positives (FPs) 

denote wrongly assembled transcripts. We considered a transcript truly expressed if reads 

sampled by RSEM in the 30-million-reads dataset fully cover the transcript and if it was 

estimated by RSEM to be expressed in GEUVADIS sample NA12716_7 with at least 

0.1 TPM. An identical ground truth transcriptome facilitates comparison of sensitivity 

and precision values between different sequencing depths and between reference-based 

and de novo assemblies. As in refs. 53,54, we used GffCompare55 to compare transcripts 

assembled by StringTie2 or StringTie-ls to truly expressed transcripts. GffCompare defines 

an assembled transcript as correct if it shares the same sequence of introns with a true 

transcript. In the de novo assembly benchmark, correct assemblies by Trinity and Trinity-ls 

needed to be identified through an alignment of their sequences, which we computed using 

BLAT56. Applying commonly used criteria57,58, we require the sequences to align with 95% 

identity and, at most, 1% insertion and deletion rate and apply transcript coverage cutoffs of 

80%, 85%, 90% and 95%.

Transcript quantification by kallisto-ls.

After estimating migration patterns in a Ladder-seq sample using the histogram-based 

method described above, kallisto-ls uses an EM algorithm similar to that of kallisto to 

infer maximum likelihood estimates of transcript abundances in our statistical model of 

Ladder-seq. kallisto is based on the following likelihood function14 of RNA-seq:
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L α ∝ ∏
e ∈ E

∑
t ∈ e

αt
lt

ce

(2)

It counts the number of fragments ce that cannot be distinguished by the set of transcripts 

e that they are compatible with and are, thus, considered equivalent. lt denotes the effective 

length59 of transcript t, and parameters αt denote the probability of obtaining a fragment 

from a transcript t.

In Ladder-seq, we observe fragments that originate from transcripts in different bands. The 

probability of obtaining a fragment from a transcript t in band b, then, is αtβtb, where βtb

denotes the fraction of transcript t in band b, which we precompute in f̂(b) for each range 

of transcript lengths as described above. If we split equivalence class counts ce between k
different bands, that is

ce =
b = 1

k
ceb,

then the likelihood function for Ladder-seq becomes:

L α ∝ ∏
e ∈ E

∏
b = 1

k
∑

t ∈ e
αtβtb

lt

ceb

(3)

The observed data likelihood remains a concave function under this adjustment (see next 

section), provided we precompute the extent of migration errors. We can, thus, extend the 

EM algorithm implemented in kallisto to find the values of α that maximize likelihood 

(3). The EM algorithm alternates between fractionally assigning fragments to transcripts 

in different bands based on current parameter estimates and recalculating parameters from 

these fragment assignments. Consistent with the original kallisto implementation, the EM 

algorithm terminates if αtN has changed by less than 1% compared to the previous iteration 

for every transcript t with αtN > 0.01, where N is the total number of fragments.

Proof of concavity of Ladder-seq likelihood.—The log-likelihood function of 

Ladder-seq is:

ln L α = ∑
e ∈ E

∑
b = 1

k
cebln ∑

t ∈ e
αtβtb

lt
.

(4)

For arbitrary but fixed e ∈ E and b ∈ k , we define
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f α = cebln ∑
t ∈ e

αtβtb
lt

.

(5)

Analogous to ref. 60, we prove in the following that f(α) is concave, from which it follows 

that ln (L(α)) is concave too. Let H(α) represent the Hessian matrix of function f(α):

Hjk(α) =
∂2cebln t ∈ e

αtβtb
lt

∂αj ∂αk

(6)

= − ceb
βjbβkb
ljlk

1

∑t ∈ e
αtβtb

lt

2

(7)

Then, we can rewrite H(α) = − z(α)xTx, where

z α = ceb

∑t ∈ e
atβtb

lt

2 and

(8)

x = β1b
l1

, β2b
l2

, β3b
l3

, …, β e b
l e

.

(9)

Because z(α) > 0, we have for all y = y1, y2, …, ye :

yH(α)yT = y −z(α)xTx yT

(10)

= − z(α) yxT xyT

(11)

= − z(α) yxT 2

(12)
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≤ 0

(13)

Thus, H(α) is negative semi-definite, and f(α) is concave.

Reference-based transcript assembly by StringTie-ls.

Reads from all bands are aligned to the reference genome sequence using a short-read 

aligner, such as STAR47. For every band, and every union of two consecutive bands, we 

assemble transcripts using StringTie2 with default options. We additionally pool reads from 

neighboring bands to recover potentially low-expressed transcripts that migrated close to the 

boundary between two bands.

StringTie-ls estimates migration patterns in a Ladder-seq sample using the histogram-based 

approach described above. It uses these estimates to identify too-short transcript fragments 

and too-long transcript fusions. More precisely, for a transcript t of length ℓ assembled in 

the j-th band, we look up the probability mass function f(x) corresponding to the length 

range that contains ℓ to determine the most likely band bi to which a transcript of length ℓ
would have migrated to. If j ≠ i and j ≠ i + 1, we remove t. Note that band bi + 1 corresponds 

to the next longer range of transcripts but can also contain slightly shorter transcripts from 

band bi due to secondary structure effects. Similarly, if t was assembled in the combination 

of bands j and j + 1, we discard t if j < i or j > i + 2. To account for potential overlap with 

longer UTRs, we do not remove too-long transcripts assembled in a band i + 2…7 if they are 

sufficiently highly expressed (>1 TPM), if they contain a unique intron and if their first or 

last exon is longer than 500 bp.

The individual assemblies are subsequently merged using the GffCompare tool, which 

computes the union of all intron chains. In other words, transcripts that imply the same 

sequence of introns as a transcript assembled in a different band are discarded. We further 

eliminate single-exon transcripts that are identified as redundant by the merge mode of 

StringTie2 as well as transcript fragments that are fully contained in other transcripts with 

compatible intron chains. These transcripts most likely constitute transcript fragments that 

were only partially assembled from reads obtained from transcripts that migrated to a 

different band. We retain, however, transcripts with identical (partial) intron chains if they 

start or end within an intron of the containing transcript, unless a very small overhang of, 

at most, 2 bases indicates noisy read alignments. Finally, we quantify assembled transcripts 

using our statistical model of Ladder-seq implemented in kallisto-ls and report transcripts 

estimated to be expressed with at least 0.1 TPM.

De novo transcript assembly by Trinity-ls.

The Ladder-seq-based de novo assembly follows a very similar scheme as applied in the 

reference-based assembly. We run Trinity on the reads from each band separately using 

default parameters. In contrast to the reference-based assembly, we do not pool reads from 

neighboring bands because the absence of a reference genome makes it more difficult 

to subsequently detect and remove false-positive transcripts. After estimating migration 
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patterns from Ladder-seq data using the histogram-based method described above, Trinity-

ls applies length constraints to assembled transcripts following the same strategy as in 

the reference-based approach. It then concatenates the individual assemblies, because the 

absence of a reference genome does not allow detection of potential redundancy with 

respect to the exon–intron structure of transcripts. Again, Trinity-ls quantifies assembled 

transcripts using our statistical model of Ladder-seq implemented in kallisto-ls and applies 

an expression threshold of 0.1 TPM.

Animals.

All animal procedures used in this study were performed in accordance with the protocol 

approved by the Institutional Animal Care and Use Committee of Johns Hopkins University 

School of Medicine.

Mettl14 conditional KO mice contain a deletion of exons 7, 8 and 9 in the developing 

mouse nervous system starting at embryonic day (E) 11.5. Deletion was achieved using the 

Nestin-Cre;Mettl14f/f cKO model45.

Mettl14 floxed mice were crossed with Nestin-Cre mice and maintained in C57BL/6J 

background before all experiments. E14.5 embryos were collected (three Nestin-Cre+/

+;Mettl14f/f or three Nestin-Cre−/+;Mettl14f/f, respectively) to isolate NPCs from the 

forebrains. Mice were bred and maintained under specific pathogen-free conditions and 

kept at an ambient temperature of 21 °C and humidity of 40–60% under a 12-h light/dark 

cycle with standard chow diet.

Primary mouse NPCs.

Mouse NPCs were isolated from Mettl14 WT and cKO mouse embryonic cortices and 

cultured in Neurobasal medium (Gibco BRL) containing 20 ng ml−1 of FGF2, 20 ng ml−1 

of EGF, 5 mg ml−1 of heparin, 2% B27 (v/v, Gibco BRL), GlutaMAX (Invitrogen) and 

penicillin–streptomycin (Invitrogen) on culture dishes precoated with Matrigel matrix (2%, 

Corning).

Generation of Ladder-seq libraries from mouse NPCs.

Total RNA fraction was isolated from cultured NPC samples with TRIzol reagent (Thermo 

Fisher Scientific) followed by total RNA extraction using RNA Clean and Concentrator-25 

(Zymo Research). mRNA was isolated from total RNA with Dynabeads mRNA Purification 

Kit (Thermo Fisher Scientific).

Next, 5 μg of mRNA per sample was loaded in each well of a denaturing agarose gel 

(MOPS/2% formaldehyde). NEB single-stranded RNA ladder was loaded in the wells 

flanking the samples for guidance in the gel slicing step. Gel electrophoresis was run at 100 

V for 55 min in chilled 1× MOPS buffer. Gel was stained with SYBR Gold (Thermo Fisher 

Scientific) and visualized under ultraviolet light for slicing. Each sample was sliced into 

seven fractions (bands) by slicing the gel at the following approximate lengths: 1,000 bp, 

1,500 bp, 2,000 bp, 3,000 bp, 4,000 bp and 6,000 bp. mRNA was extracted from gel slices 

using the Zymoclean Gel RNA Recovery Kit (Zymo Research) with gel incubation at room 
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temperature. RNA-seq libraries were prepared with the NEBNext Ultra II RNA Library 

Prep Kit for Illumina, and each band of each sample used a unique index PCR primer 

(NEBNext Multiplex Oligos for Illumina). Libraries were multiplexed 1:1 for sequencing in 

the NextSeq 500 (Illumina), yielding approximately 100 million 2 × 75-bp paired-end reads 

per sample.

Nanopore direct cDNA sequencing.

For nanopore direct cDNA sequencing, two biological replicates per genotype (WT and 

Mettl14 KO) were prepared from mouse NPCs. Total RNA was extracted from cultured 

NPC pellets with TRIzol reagent (Invitrogen), treated with DNase I (Takara) and cleaned up 

using RNeasy MinElute (Qiagen). Each 1.5 μg of purified total RNA with 0.1 μl of RCS 

from direct RNA-seq kit (SQK-RNA002) and 0.1 ng of the SIRV set 3 (Lexogen) control 

was prepared as a sequencing library following manufacturer instructions (SQK-DCS109, 

ONT), with some modifications as follows. A mixture of 1 μl each of RNase T1 (1 U 

μl−1, Invitrogen) and RNase A (10 mg ml−1, Thermo Fisher Scientific) was treated to 

degrade RNA after reverse transcription. Second-strand synthesis was carried out with 10 

U of DreamTaq Hot Start DNA Polymerase (5 U μl−1, Thermo Fisher Scientific) with 

5 μl of 10× DreamTaq buffer and 2 μl of dNTP Mix (10 mM each, Thermo Fisher 

Scientific) by incubating the mixture at 95 °C for 90 s, 50 °C for 30 s and 72 °C for 20 

min. The libraries were sequenced in parallel with four R9.4.1 flowcells (FLO-MIN106D, 

ONT) and separate MinION Mk1b devices (controlled by MinKNOW 4.1.2, ONT). The 

basecalls were produced offline using guppy 4.5.2 with ONT’s high-accuracy model, 

yielding approximately 5.8 million and 4.9 million reads in WT and KO NPCs, respectively.

Nanopore native RNA sequencing.

For nanopore native RNA sequencing, two biological replicates per genotype (WT and 

Mettl14 KO) were prepared from mouse NPCs. Total RNA was extracted using TRIzol 

from cell pellets following the manufacturer’s protocol (Invitrogen). After DNase I treatment 

(Takara), the reaction was cleaned up using RNeasy MinElute (Qiagen). Each 4 μg of 

the purified total RNA was prepared as a sequencing library for direct RNA-seq by the 

standard kit (SQK-RNA002, ONT). The libraries were loaded onto R9.4.1 flowcells (FLO-

MIN106D, ONT) and sequenced using four MinION Mk1b devices separately in parallel 

(MinKNOW 4.1.2, ONT). Acquired squiggles were basecalled offline using guppy 4.4.1 

with the ‘res_rna2’ flipflop model (ONT), yielding approximately 2.1 million and 1.8 

million filtered high-quality reads in WT and KO NPCs, respectively.

Reconstruction of WT and Mettl14 NPC transcriptomes.

We used StringTie-ls to reconstruct novel transcripts expressed in WT and Mettl14 NPCs 

but employ Ladder-seq replicates and the well-annotated mouse reference transcriptome 

(Ensembl release 95) to obtain high-quality transcriptomes for the two conditions. More 

specifically, we assemble transcripts using StringTie-ls in each sample independently and 

consider all transcripts that do not match any annotated transcript in their sequence of 

introns as novel. Among these novel transcript structures, we retain those that occur in 

at least three of the four replicates per genoypte and merge the two resulting sets of 

transcripts to a high-confidence set of novel transcripts across genotypes. We add these 
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novel transcripts to the mouse reference transcriptome and use this catalog of transcripts in 

all subsequent analyses of NPC samples. We apply the same procedure when comparing 

the outcomes to the conventional RNA-seq analysis but replace StringTie-ls by conventional 

StringTie2. Depending on the quality of the reference annotation, a stepwise addition of 

novel isoforms as in AIDE5 can help prioritize annotated transcripts in the subsequent 

quantification.

To compute the number and rate of detected annotated transcripts (Ensembl release 95) in 

a Ladder-seq or RNA-seq dataset, we quantified transcript abundance using conventional 

kallisto, pooling reads from different bands in Ladder-seq. A transcript was considered 

detected if its estimated count was at least 1.

Differential isoform usage analysis.

Abundance estimates per sample were obtained with kallisto-ls. The R Bioconductor 

package IsoformSwitchAnalyzeR61 was used for differential isoform usage (DIU) analysis. 

Identification of differentially used isoforms across all genes with IsoformSwitchAnalyzeR 

is done through DEXseq62, which is a statistical method originally developed for differential 

exon usage based on the likelihood ratio test that has since been shown to adequately 

control for false discovery rate (FDR) in the setting of DIU. Analysis of consequences 

of isoform switches was performed through IsoformSwitchAnalyzeR with the function 

analyzeSwitchConsequences. This function allows the addition of input data from CPAT63 

for analysis of coding potential and from PfamScan64 for protein domain annotation.

Analysis of published m6A sequencing from mouse NPCs.

We built a set of high-confidence m6A peaks from a publicly available dataset of m6A 

sequencing in mouse NPCs23. BED files containing peaks called by MACS2 (ref. 65) from 

two replicates with two input samples each were downloaded from the National Center of 

Biotechnology Information’s Gene Expression Omnibus (GSE104686). Using BEDTools 

intersect66, we identified peaks that were reproducible in both replicates with both 

input controls. We then annotated these high-confidence peaks using the annotatePeaks.pl 

program from the Homer suite67 to identify the genes harboring m6A methylation.

Analysis of m6A enrichment at differentially spliced regions.

Pairs of switching isoforms from m6A methylated genes were partitioned into minimal 

exonic segments that are bounded by splice sites, transcription start sites or transcription end 

sites of the two involved transcripts. These segments represent the largest exonic fragments 

that are entirely contained in one or both of the two transcripts. A segment bounds a 

differentially splice region if it is part of only one of the two transcripts, if it is not the 

first or last segment of that transcript and if it is adjacent to a segment that is contained 

in both transcripts. We take into account the length of segments in Fisher’s exact test by 

distinguishing individual bases that can lie within or outside of bounding segments and that 

can be methylated or not.
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GO enrichment analysis.

All GO enrichment analyses were performed using the R Bioconductor package TopGO68. 

Only genes passing the pre-filtering step for differential isoform usage (TPM >1) were 

considered for the gene universe.

Splicing analysis.

Alternative splicing analysis was performed using the IsoformSwitchAnalyzeR R 

Bioconductor package61 with the functions extractSplicingSummary, which summarizes 

the types of alternative splicing events occurring in each isoform switch, and 

extractSplicingEnrichment, which identifies the uneven usage of a particular alternative 

splicing type in one of the conditions assayed.

Processing of ONT long-read libraries.

ONT reads were aligned to the Ensembl mouse genome assembly GRCm38 using minimap2 

version 2.17-r941. Following recommendations at https://github.com/lh3/minimap2, we used 

option -ax splice to allow spliced alignments and provided splice junctions extracted 

from the corresponding Ensembl release 95 transcriptome annotation with parameter –

junc-bed. In the alignment of native RNA reads, we additionally used options -k14 

-uf as recommended. We used FLAIR version 1.5.1 (ref. 32) to identify transcripts and 

StringTie2 (ref. 17) to assemble transcripts from ONT reads. We ran FLAIR with default 

settings on pooled reads from both WT and KO replicates and extracted condition-specific 

transcripts that had an estimated count of at least 1 in at least one of the two replicates per 

condition. FLAIR uses minimap2 internally to align reads using options -ax splice -t 

8 –secondary=no and corrects misaligned splice sites using the Ensemble 95 annotation. 

It groups corrected reads with identical intron chains while comparing TSS/TSE with a 

window size of 100 bp, collapsing them to representative transcripts. It retains transcripts 

with at least three aligned reads with a minimum MAPQ of 1. StringTie2 was run with the 

-L option (for long reads) on each of two BAM files generated, respectively, from pooled 

replicates of two conditions. GffCompare version 0.10.4 was used to compare transcripts 

between ONT datasets and with transcripts assembled in Ladder-seq. Transcripts were 

considered identical if they shared the same sequence of introns.

To quantify expression and to compute the number and rate of detected annotated transcripts 

(Ensemble release 95) in an ONT dataset, we followed the strategy proposed in ref. 12. We 

aligned reads to the mouse cDNA sequences from Ensembl GRCm38.95 using minimap2 

with options -ax map-ont and quantified their expression using salmon version 1.2.1 with 

options -l A and –noErrorModel. A transcript was considered detected if its estimated 

count was at least 1.

RT–qPCR analysis.

For relative isoform expression analysis, total RNA was isolated from biological triplicate 

WT and Mettl14 KO NPC samples using the RNeasy Plus Mini Kit (Qiagen) and 

treated with DNAseI. Equal amounts of total RNA from each sample were then reverse 

transcribed using SMARTScribe Reverse Transcriptase (Takara). Relative isomer expression 
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was measured by quantitative real-time PCR on a 7500 Real-Time PCR system (Applied 

Biosystems) by adding SYBR Green to cDNA and using custom primers unique to each 

isomer of interest (Supplementary Table 22). For each gene, three isomers were tested: 

one common isomer identified in both WT and Mettl14 KO NPC RNA-seq data and two 

distinct isomers with differential expression between WT and Mettl14 KO NPC RNA-seq 

data. All samples were tested in triplicate and normalized to β-actin. The expression of the 

differentially expressed isomers was normalized to the expression level of the shared isomer, 

which consistently showed no significant difference between WT and KO NPCs.

Extended Data

Extended Data Fig. 1 |. Reduced (effective) gene complexity in Ladder-seq.
We estimate transcript expression in Mettl14 KO sample 1 using kallisto on Ladder-seq 

reads pooled across bands and show the histogram of gene complexity measured as the 

number of expressed transcripts. In Ladder-seq, we partition the set of expressed transcripts 

into 7 bands and count the number of transcripts contained in each band according to their 

annotated length (plus 200 nt average poly(A) tail size46), assuming cuts at 1000 bp, 1500 

bp, 2000 bp, 3000 bp, 4000 bp and 6000 bp. The resulting histogram of effective gene 

complexity shows an increased fraction of gene bands with low complexity.

Ringeling et al. Page 22

Nat Biotechnol. Author manuscript; available in PMC 2024 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2 |. In silico gel for WT and Ko NPC samples.
For every annotated transcript the intensity of a point with y- coordinate equal to its 

annotated length (plus 200 nt average poly(A) tail size) shows the fraction of reads obtained 

from each band (x-axis) that can be assigned unambiguously to it. As expected, each band 

contains predominantly reads from transcripts of a distinct length range.

Extended Data Fig. 3 |. Overview of the benchmark strategy.
1. The ground truth transcriptome including abundances and error profile is calculated by 

RSEM from GEUVADIS sample NA12716_7. 2. Reads are simulated from the ground 

truth transcriptome by RSEM to obtain RNA-seq samples of different sequencing depths. 

3. A matching Ladder-seq sample is obtained by separating reads in silico according 

to probability mass functions estimated from our NPC Ladder-seq sample (and variants 

thereof). 4. Transcripts are quantified and assembled by our Ladder-seq tailored transcript 

analysis methods kallisto-ls, StringTie-ls, and Trinity-ls from the Ladder-seq sample, while 

their conventional counterparts are run on the corresponding RNA-seq sample. 5. The results 

are compared to the ground truth to evaluate and compare their accuracy.

Ringeling et al. Page 23

Nat Biotechnol. Author manuscript; available in PMC 2024 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. Quantification accuracy of kallisto-ls on 75 million simulated reads.
Mean values across 20 simulations are reported. Pearson correlation of estimated and ground 

truth abundance in log2 transformed transcripts per million (TPM) and mean absolute 

relative difference (MARD) are shown as a function of gene complexity, that is the number 

of transcripts expressed by a gene. For ease of visualization, we omit genes expressing a 

single transcript, many of which are estimated to be lowly expressed in GEUVADIS sample 

NA12716_7 by RSEM.

Extended Data Fig. 5 |. Accuracy of transcript assembly from 75 million simulated reads.
RNA-seq and Ladder-seq reads were aligned identically to the reference genome (GRCh38) 

using STAR. Sensitivity and precision of StringTie-ls and its conventional counterpart 

StringTie2 are shown as a function of gene complexity measured as the number of expressed 

transcripts. Sensitivity and precision are calculated with respect to the same set of ground 

truth transcripts as in the smaller 30 million read pairs data set.
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Extended Data Fig. 6 |. Accuracy of de novo transcript assembly from 30 million (top row) and 75 
million (bottom row) simulated reads.
(a) Sensitivity of Trinity-ls and its conventional counterpart Trinity at 90% transcript length 

cut-off is shown as a function of gene complexity measured as the number of expressed 

transcripts. (b) Total number of correctly assembled transcripts at different transcript length 

cut-offs. (c) Precision at different transcript length cut-offs.
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Extended Data Fig. 7 |. Ladder-seq improves differential analysis of reconstructed 
transcriptomes.
(a) Computational pipeline for differential isoform usage analysis with conventional RNA-

seq and Ladder-seq. Reads were aligned using STAR aligner prior to transcript assembly 

for both pipelines. (b) Venn diagram showing overlap between switching genes identified 

by Ladder-seq and conventional RNA-seq. (c and e) Isoform switches identified only by 

Ladder- seq in genes Exo1 and Tram1l1 (between n=4 WT and n=4 KO samples). Red 

arrows show location of m6A methylation. TCONS_00000541 and TCONS_00000542 are 

novel isoforms of Exo1 detected only by Ladder-seq. TCONS_00006855 is a novel isoform 

of Tram1l1 that was assembled by both methods, but conventional RNA-seq failed to 

identify the isoform switch. Without length information, conventional RNA-seq reads in 

KO bands 2 and 3 were predominantly assigned to the annotated transcript in band 4. 

Barplots represent mean ± SEM; ***FDR corrected p<0.001. (d and f) Coverage plots 
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for switching genes Exo1 and Tram1l1 showing separation of reads from transcripts of 

different lengths. (g) Jensen Shannon divergence for Ladder-seq and conventional RNA-seq 

for all identified transcripts grouped by relative difference in abundance estimation by both 

methods (n=18761 for <0.5, n=12722 for 0.5–1, n=7918 for 1–1.5, n=6292 for 1.5–2 relative 

difference). Relative difference is defined as the absolute difference in estimated transcript 

abundance (in TPM) divided by the average of the two. Boxplot definition: Bottom and 

top of the box correspond to lower and upper quartiles of the data, bar is the median and 

whiskers are median ± 1.5x interquartile range.

Extended Data Fig. 8 |. Mettl14 Ko leads to isoform switches in m6A methylated genes.
(a) Gene Ontology for m6A methylated genes containing isoform switches. (b) Isoform 

switch in Ptprz1 (between n=4 WT and n=4 KO samples). Red arrow shows location of 

m6A methylation. Barplots represent mean ± SEM; ***FDR corrected p<0.001. (c) Gene 

Ontology analysis for genes with loss of protein domains in KO NPCs. (d) Splicing analysis: 

Number of gains and losses of each splicing event in KO NPCs. A3: Alternative 3’ acceptor 

site; A5: Alternative 5’ acceptor site; ES: Exon skipping; IR: Intron retention; MEE: 

Mutually exclusive exon; MES: Multiple exon skipping. (e) Gene Ontology enrichment 

analysis of genes with intron retention loss in KO NPCs.
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Extended Data Fig. 9 |. Comparison of Ladder-seq and oNT-cDNA sequencing on mouse NPCs.
(a) Orange bars show validation by StringTie2 (left panel) or by an independent ONT 

dataset (Dong et al.) (right panel) of transcripts found by both Ladder-seq and ONT-cDNA 

while light blue bars show validation values for transcripts reported only by ONT-cDNA. 

In comparison, 32.5% of transcripts uniquely identified by Ladder-seq (average TPM ≥ 1) 

were also identified in the dataset by Dong et al. (b) Boxplots showing expression levels 

(TPM) for transcripts identified both by long- reads and Ladder-seq (green boxes) and 

for transcripts identified only by Ladder-seq (grey boxes). Left panel shows values for all 

Ladder-seq transcripts with TPM higher than 1 (n=6169 identified only by Ladder-seq, 

n=15099 by both). Right panel shows values for Ladder-seq switching transcripts with TPM 

higher than 1 (n=905 identified only by Ladder-seq, n=2012 by both). Boxplot definition: 

Bottom and top of the box correspond to lower and upper quartiles of the data, bar is the 

median and whiskers are median ± 1.5x interquartile range.

Extended Data Fig. 10 |. Cumulative percentage of Ladder-seq transcripts identified by long-
read sequencing.
Bars show percentage of Ladder-seq transcripts identified by FLAIR (green), plus those 

additionally identified by StringTie2 (blue), plus transcripts additionally found in a recently 

published long-read mouse NPC transcriptome (light blue).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Ladder-seq uses mRNA length information to aid transcriptome reconstruction.
a, Ladder-seq uses a denaturing agarose gel to separate mRNA by length into discrete 

bands before library preparation and sequencing. Each band contains transcripts of a certain 

length range that depends on the location of cuts through the gel. The originating band of 

the resulting reads is tracked using barcodes. In our dataset of mouse NPCs, Ladder-seq 

reveals transcript Paip2b-204 that contains intronic sequence of transcript Paip2b-201. b, 

Assessment of length separation by denaturing gel electrophoresis. Length-separated mRNA 

was run on a new denaturing agarose gel with each band loaded into a separate lane. This 

assay was conducted once. c, In silico gel. For every annotated transcript, the intensity of 

a point with y coordinate equal to its annotated length (plus 200-nt average poly(A) tail 

size46) shows the fraction of reads obtained from each band (x axis) that can be assigned 

unambiguously to it.
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Fig. 2 |. Reduced read assignment ambiguity in Ladder-seq improves transcript quantification.
a, This illustrative example shows reads that were sampled in bands 2, 3, 6 and 7 in 

our genome-wide simulation study from three transcripts (t1 = ENST00000519483, t2 = 

ENST00000524124 and t3 = ENST00000357668; not all transcripts shown). The color 

of each read indicates the transcript to which the read is dominantly assigned after 

the first E-step of the EM algorithm in the original kallisto implementation based on 

conventional RNA-seq data (bottom) and in our extension of the algorithm to Ladder-seq 

(top). More precisely, we color every read according to the additional fraction that is 

assigned to the transcript of maximal assignment. The original algorithm fractionally assigns 

each read equally to every transcript that it overlaps (normalized by length), leading to 

indistinguishable black reads. Our adaptation of the algorithm uses the partitioning of reads 

into bands to hint at the read’s originating transcript, shown by matching read and transcript 

colors. Based on the migration patterns estimated from the length of the three transcripts, 

our EM algorithm assigns larger read fractions to transcripts that are expected to occur 

more abundantly in the read’s band (Methods). This length-based deconvolution allows 

the EM algorithm to ultimately quantify transcript abundances more accurately. In this 

example, our Ladder-seq-specific EM algorithm estimates 17, 257 and 67 counts (rounded) 

for transcripts t1, t2 and t3 respectively, which closely match their true expression of 15, 250 

and 83 counts, respectively. In contrast, original kallisto fails to detect expression of t3 (zero 

counts) and overestimates expression of t2 (334 counts) from highly ambiguous RNA-seq 

reads. It estimates four counts for t1. b, Quantification accuracy of kallisto-ls compared 

to conventional kallisto on 30 million simulated reads. Mean values over 20 repeated 

simulations are reported. Pearson correlation of estimated and ground truth abundance in 

log 2 transformed TPM and mean absolute relative difference are shown as a function of 

gene complexity—that is, the number of transcripts expressed by a gene. Genes expressing a 

single transcript (omitted) or two transcripts were estimated to be lowly expressed by RSEM 

(Supplementary Table 4), making their quantification less accurate (Supplementary Tables 5 

and 6).
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Fig. 3 |. Ladder-seq-based transcript assembly.
a, Overview of the proposed computational framework. For each band, a graph is 

constructed that captures connectivity information contained in read alignments. Reference-

based assembly methods, such as StringTie2, use variants of splicing graphs to capture 

connectivity of exonic segments in expressed transcripts evidenced by spliced alignments 

of reads. Transcript sequences are then assembled by traversing paths through these graphs 

according to some optimization criteria, such as maximum flow for StringTie2. In contrast to 

conventional RNA-seq, where truly expressed transcripts need to be identified among a large 

number of possible paths through a single graph per locus, Ladder-seq limits the search for 

expressed transcripts to paths in smaller graphs that are constructed for each band separately. 

In addition, reads in different bands are obtained from transcripts of a certain length range, 

imposing length constraints that can further direct the search for the correct paths. After 

having inferred the best possible set of transcripts satisfying given length constraints in 

each band independently, we integrate them to a refined set of transcripts by assigning 

reads to them according to our statistical model of Ladder-seq, which relies on previously 

estimated migration patterns through the gel. b, Accuracy of transcript assembly from 30 

million simulated RNA-seq and matching Ladder-seq reads. Reads were aligned to the 

reference genome using STAR47. Sensitivity (left) and precision (right) of StringTie-ls and 

its conventional counterpart StringTie2 are shown as a function of gene complexity defined 

as the number of expressed transcripts. The lower ground truth expression of some genes 

with complexity 1 (Supplementary Table 4) makes them detectable with lower sensitivity 

than transcripts of genes with complexity 2. StringTie-lsi denotes the result of StringTie-ls 

on the simulated Ladder-seq dataset to which i-fold error reduction was applied (Methods), 

starting from the migration error estimated from the NPC sample (StringTie-ls). StringTie-

ls-perfect represents the results of StringTie-ls on the most optimistic Ladder-seq experiment 

in which transcripts perfectly separate by length, without any migration error. All results are 

listed in Supplementary Tables 7–10.
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Fig. 4 |. Accuracy of de novo transcript assembly from 75 million simulated RNA-seq and 
matching Ladder-seq reads.
Trinity-lsi denotes the results of Trinity-ls on the simulated Ladder-seq dataset to which 

i-fold error reduction was applied (Methods), starting from the migration error estimated 

from the NPC sample (Trinity-ls). Trinity-ls-perfect represents the results of Trinity-ls on 

the most optimistic Ladder-seq experiment in which transcripts perfectly separate by length, 

without any migration error. A transcript is correctly assembled if its BLAT alignment to a 

true transcript covers at least 90% of the full transcript length. Left, Sensitivity of Trinity-ls 

and its conventional counterpart Trinity is shown as a function of gene complexity defined as 

the number of expressed transcripts. The low expression of some genes expressing a single 

transcript (Supplementary Table 4) makes them more difficult to assemble than transcripts 

of genes with a higher complexity. Middle, Total number of correctly assembled transcripts. 

Right, Overall precision. Assembled transcript fragments cannot be assigned unambiguously 

to individual genes. All results are listed in Supplementary Tables 15–18.
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Fig. 5 |. Ladder-seq improves differential analysis of reconstructed transcriptomes.
a, Gene complexity and effective gene complexity for switching genes identified by only 

one of the two or both methods (n = 755 by conventional only, n = 1,512 by Ladder-seq 

only and n = 1,123 by both). The effective complexity is defined as the number of expressed 

transcripts contained in a single band. b, Isoform switch identified only by Ladder-seq. 

Pi4k2a expresses mostly the annotated ENSMUST00000066778 transcript in WT (n = 4), 

whereas KO (n = 4) also expresses a shorter unannotated transcript (TCONS_00005143) in 

which a normally m6A-tagged exonic region is spliced out. The red arrow shows the location 

of m6A methylation. Overall gene expression level is unchanged between WT and KO. Bar 

plots represent mean ± s.e.m.; ***FDR-corrected P < 0.001. c, Coverage plot for bands 4 and 

5 of Pi4k2a showing how reads from the shorter unannotated transcript TCONS_00005143 

are separated from reads belonging to the longer ENSMUST00000066778. d, Relative 

quantification of isoform expression with RT–qPCR. Three biological replicates were tested 

per genotype. Each sample was tested in triplicate and normalized to β-actin. Expression 

levels of each differentially expressed isoform were normalized to the expression of a 

common isoform identified in both WT and Mettl14 KO, which consistently showed no 

significant difference between WT and KO NPCs. Bars represent mean values; error bars 

represent the s.e.m. e, JSD between estimated and assigned read band distributions for 

differentially used isoforms identified by only one of the two or both methods (n = 729 

by conventional only, n = 1337 by Ladder-seq only and n = 1,745 by both). f, JSD 

between estimated and assigned read band distributions for all identified transcripts by 

Ladder-seq and conventional RNA-seq grouped by number of available uniquely mapping 

reads (Ladder-seq: n = 14,024 for 0, n = 1,266 for 0–100, n = 1,392 for 100–200 and n 
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= 6,206 for >200 uniquely mapping reads; Conventional: n = 17,568 for 0, n = 1,446 for 

0–100, n = 1,483 for 100–200 and n = 6,248 for >200 uniquely mapping reads). Box plot 

definition: bottom and top of the box correspond to lower and upper quartiles of the data; bar 

is the median; and whiskers are median ±1.5× interquartile range. a.u., arbitrary units.
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Fig. 6 |. Mettl14 Ko leads to isoform switches in m6A methylated genes and leads to loss of 
protein domains and loss of intron retentions.
a, Venn diagram showing overlap between switching genes and m6A methylated genes. P 
value from two-sided Fisher’s exact test. b, Enrichment of m6A methylation within exonic 

segments bounding differentially spliced regions. In this example, both the differentially 

spliced exonic region and the two segments flanking it (in orange) are considered. Pie charts 

show percentage of exonic segments overlapping m6A peaks. P value and odds ratio from 

two-sided Fisher’s exact test. c, d, Isoform switch in genes Fbxl5 (c) and Kif1b (d) (between 

n = 4 WT and n = 4 KO samples). Red arrows show location of m6A methylation. Bar 

plots represent mean ± s.e.m; ***FDR-corrected P < 0.001. Isoform switch in Kif1b leads to 

upregulation of shorter Kif1b-alpha isoform, which lacks multiple domains and is expressed 

in non-neuronal tissues. The longer Kif1b-beta is the neuronal isoform and is responsible 

for the transport of synaptic vesicle precursors48. Overall gene expression level is unchanged 

between WT and KO. e, Splicing enrichment analysis. Proportion of isoform switches (n 
= 2,634) resulting in gain of each splicing event in KO NPCs (n = 482 intron retentions, 

n = 573 alt 5′ splice sites, n = 12 mutually exclusive exons, n = 926 exon skippings, n 
= 483 alt 3′ splice sites and n = 396 multiple exon skippings). Test of equal proportions 

was used to identify proportions significantly different from 0.5. Points indicate fraction of 

switches resulting in gain of splicing event, and bars represent 95% confidence intervals. f, 
Number of intron retention losses resulting in NMD sensitive or insensitive isoforms (left) 

and shorter or longer 3′ UTR length (right).
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