Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Sep 15;262(3):747–751. doi: 10.1042/bj2620747

Phosphoinositide hydrolysis in mitogen-stimulated human peripheral-blood T lymphocytes.

S King 1, G Whitley 1, M Salmon 1, A Johnstone 1
PMCID: PMC1133337  PMID: 2556109

Abstract

Both phytohaemagglutinin and antibodies to the CD3 molecule induced proliferation and phosphoinositide hydrolysis in human peripheral-blood T lymphocytes, but the magnitude of the inositol phosphate response was small and the rate of accumulation slow [significant increases in Ins(1,4,5)P3 were observed only after 10 min]. Hence this response differs from the well-characterized Ins(1,4,5)P3 responses of many other systems. This slow response, its abrogation in Ca2+-depleted medium, the slow and maintained increase in Ca2+ as measured by Quin-2, and the ability of the Ca2+ ionophore A23187 to stimulate Ins(1,4,5)P3 accumulation all suggest that the increase in Ins(1,4,5)P3 occurs, at least in part, as a result of receptor-mediated Ca2+ influx in mitogen-stimulated T lymphocytes.

Full text

PDF
747

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R. T., Ho S. N., Barna T. J., McKean D. J. Transmembrane signaling during interleukin 1-dependent T cell activation. Interactions of signal 1- and signal 2-type mediators with the phosphoinositide-dependent signal transduction mechanism. J Biol Chem. 1987 Feb 25;262(6):2719–2728. [PubMed] [Google Scholar]
  2. Batty I. R., Nahorski S. R., Irvine R. F. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J. 1985 Nov 15;232(1):211–215. doi: 10.1042/bj2320211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol lipids and cell proliferation. Biochim Biophys Acta. 1987 Apr 20;907(1):33–45. doi: 10.1016/0304-419x(87)90017-5. [DOI] [PubMed] [Google Scholar]
  5. Bocckino S. B., Blackmore P. F., Exton J. H. Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. J Biol Chem. 1985 Nov 15;260(26):14201–14207. [PubMed] [Google Scholar]
  6. Cockcroft S., Lamb J. R., Zanders E. D. Inositol lipid metabolism in human T lymphocytes activated via the T3 complex. Immunology. 1987 Feb;60(2):209–212. [PMC free article] [PubMed] [Google Scholar]
  7. Croll A. D., Siggins K. W., Morris A. G., Pither J. M. The induction of IFN-gamma production and m-RNAs of interleukin 2 and IFN-gamma by phorbol esters and a calcium ionophore. Biochem Biophys Res Commun. 1987 Aug 14;146(3):927–933. doi: 10.1016/0006-291x(87)90735-2. [DOI] [PubMed] [Google Scholar]
  8. Fahey K. A., DeFranco A. L. Cross-linking membrane IgM induces production of inositol trisphosphate and inositol tetrakisphosphate in WEHI-231 B lymphoma cells. J Immunol. 1987 Jun 1;138(11):3935–3942. [PubMed] [Google Scholar]
  9. Gelfand E. W., Mills G. B., Cheung R. K., Lee J. W., Grinstein S. Transmembrane ion fluxes during activation of human T lymphocytes: role of Ca2+, Na+/H+ exchange and phospholipid turnover. Immunol Rev. 1987 Feb;95:59–87. doi: 10.1111/j.1600-065x.1987.tb00500.x. [DOI] [PubMed] [Google Scholar]
  10. Goronzy J., Weyand C., Imboden J., Manger B., Fathman C. G. Heterogeneity of signal requirements in T cell activation within a panel of human proliferative T cell clones. J Immunol. 1987 May 15;138(10):3087–3093. [PubMed] [Google Scholar]
  11. Hasegawa-Sasaki H., Sasaki T. Phytohemagglutinin induces rapid degradation of phosphatidylinositol 4,5-bisphosphate and transient accumulation of phosphatidic acid and diacylglycerol in a human T lymphoblastoid cell line, CCRF-CEM. Biochim Biophys Acta. 1983 Dec 20;754(3):305–314. [PubMed] [Google Scholar]
  12. Imboden J. B., Stobo J. D. Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J Exp Med. 1985 Mar 1;161(3):446–456. doi: 10.1084/jem.161.3.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Imboden J., Weyand C., Goronzy J. Antigen recognition by a human T cell clone leads to increases in inositol trisphosphate. J Immunol. 1987 Mar 1;138(5):1322–1324. [PubMed] [Google Scholar]
  14. Irvine R. F., Anggård E. E., Letcher A. J., Downes C. P. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J. 1985 Jul 15;229(2):505–511. doi: 10.1042/bj2290505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King S. L. An assessment of phosphoinositide hydrolysis in antigenic signal transduction in lymphocytes. Immunology. 1988 Sep;65(1):1–7. [PMC free article] [PubMed] [Google Scholar]
  16. Koretzky G. A., Daniele R. P., Greene W. C., Nowell P. C. Evidence for an interleukin-independent pathway for human lymphocyte activation. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3444–3447. doi: 10.1073/pnas.80.11.3444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lo T. N., Saul W., Beaven M. A. The actions of Ca2+ ionophores on rat basophilic (2H3) cells are dependent on cellular ATP and hydrolysis of inositol phospholipids. A comparison with antigen stimulation. J Biol Chem. 1987 Mar 25;262(9):4141–4145. [PubMed] [Google Scholar]
  18. Michell R. H., Kirk C. J., Jones L. M., Downes C. P., Creba J. A. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):123–138. doi: 10.1098/rstb.1981.0177. [DOI] [PubMed] [Google Scholar]
  19. Mills G. B., Stewart D. J., Mellors A., Gelfand E. W. Interleukin 2 does not induce phosphatidylinositol hydrolysis in activated T cells. J Immunol. 1986 Apr 15;136(8):3019–3024. [PubMed] [Google Scholar]
  20. Mire-Sluis A. R., Hoffbrand A. V., Wickremasinghe R. G. Evidence that guanine-nucleotide binding regulatory proteins couple cell-surface receptors to the breakdown of inositol-containing lipids during T-lymphocyte mitogenesis. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1223–1231. doi: 10.1016/s0006-291x(87)80263-2. [DOI] [PubMed] [Google Scholar]
  21. Pantaleo G., Olive D., Harris D., Poggi A., Moretta L., Moretta A. Signal transducing mechanisms involved in human T cell activation via surface T44 molecules. Comparison with signals transduced via the T cell receptor complex. Eur J Immunol. 1986 Dec;16(12):1639–1642. doi: 10.1002/eji.1830161228. [DOI] [PubMed] [Google Scholar]
  22. Pantaleo G., Olive D., Poggi A., Kozumbo W. J., Moretta L., Moretta A. Transmembrane signalling via the T11-dependent pathway of human T cell activation. Evidence for the involvement of 1,2-diacylglycerol and inositol phosphates. Eur J Immunol. 1987 Jan;17(1):55–60. doi: 10.1002/eji.1830170110. [DOI] [PubMed] [Google Scholar]
  23. Salmon D. M., Bolton T. B. Early events in inositol phosphate metabolism in longitudinal smooth muscle from guinea-pig intestine stimulated with carbachol. Biochem J. 1988 Sep 1;254(2):553–557. doi: 10.1042/bj2540553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taylor M. V., Metcalfe J. C., Hesketh T. R., Smith G. A., Moore J. P. Mitogens increase phosphorylation of phosphoinositides in thymocytes. 1984 Nov 29-Dec 5Nature. 312(5993):462–465. doi: 10.1038/312462a0. [DOI] [PubMed] [Google Scholar]
  25. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES