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Macrophage (Mu) plasticity is critical for normal wound
repair; however, in type 2 diabetic wounds, Mus persist in
a low-grade inflammatory state that prevents the resolu-
tion of wound inflammation. Increased NLRP3 inflamma-
some activity has been shown in diabetic wound Mus;
however, the molecular mechanisms regulating NLRP3
expression and activity are unclear. Here, we identified
that diabetic wound keratinocytes induce Nlrp3 gene ex-
pression in wound Mus through IL-1 receptor–mediated
signaling, resulting in enhanced inflammasome activation
in the presenceof pathogen-associatedmolecular patterns
and damage-associatedmolecular patterns. We found that
IL-1a is increased in human and murine wound diabetic
keratinocytes compared with nondiabetic controls and
directly induces Mu Nlrp3 expression through IL-1 re-
ceptor signaling. Mechanistically, we report that the his-
tone demethylase, JMJD3, is increased in woundMus late
post-injury and is induced by IL-1a from diabetic wound
keratinocytes, resulting in Nlrp3 transcriptional activation
through anH3K27me3-mediatedmechanism. Using genet-
ically engineered mice deficient in JMJD3 in myeloid cells
(Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls
Mu-mediated Nlrp3 expression during diabetic wound
healing. Thus, our data suggest a role for keratinocyte-
mediated IL-1a/IL-1R signaling in driving enhanced NLRP3
inflammasome activity in wound Mus. These data also
highlight the importance of cell cross-talk in wound tissues
and identify JMJD3 and the IL-1R signaling cascade as

important upstream therapeutic targets for Mu NLRP3 in-
flammasome hyperactivity in nonhealing diabeticwounds.

Wound healing is a complex process involving coordina-
tion through the stages of homeostasis, inflammation, re-
epithelization, and resolution for proper healing to occur.
Macrophage (Mu) plasticity is essential during the in-
flammation phase of tissue repair for wounds to transi-
tion into the resolution state (1,2). During the initial
inflammatory phase, Mus demonstrate increased produc-
tion of inflammatory cytokines and inflammasome activa-
tion, while late inflammatory-phase Mus produce other
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mediators important in the transition to the proliferative
and resolution phases of wound healing; however, this has
been shown to not occur in type 2 diabetes (T2D) wounds. In
the diabetic state, wound Mus display a prolonged inflamma-
tory phenotype and promote low-grade inflammation associ-
ated with enhanced inflammasome activity that contributes
to poor wound healing (1–6). Although keratinocytes can reg-
ulate Mu phenotypes within the wound environment (7), the
molecular mechanisms regulatingMu activity, and, in particu-
lar, the increase in inflammasome activity, in diabetic wounds
have not been explored.

Activation of the NOD-like receptor protein 3 (NLRP3)
inflammasome is closely linked to driving skin inflammation
in diabetic wounds (8–12). NLRP3 inflammasome activation
consists of two steps, where signal 1 is the priming step and
involves the induction of gene transcription of NLRP3 in-
flammasome components (i.e., NLRP3, caspase 1, pro-IL1b)
(13). Signal 2 is the activation step; this entails the cleavage
of proform caspase-1, which then cleaves and activates
proinflammatory cytokines IL-1b and IL-18 (14). Elevated
levels of IL-1b have been found in human and murine dia-
betic wound Mus, which correlates with increased NLRP3
inflammasome activity (15–17), yet the mechanism driving
the inflammasome activity has remained ill defined. Studies
have identified that increased priming of Mus, resulting in
elevated inflammasome gene transcription, can lead to en-
hanced inflammasome activation (18,19); therefore, the
priming step may play a critical role in driving the enhanced
Mu NLRP3 inflammasome activation and IL-1b release
seen in pathologic diabetic wounds.

Mediators in diabetic wounds can induce increased
NLRP3 inflammasome activity in monocytes (16); how-
ever, the reasons for this were not well explored. Keratino-
cytes are the primary cell type in the epidermis, and are
involved via cross-talk with immune cells in the dermis to
regulate inflammation during wound healing (20). Follow-
ing cutaneous injury, keratinocytes release chemokines
and inflammatory cytokines that can activate and recruit
immune cells to the injury site (7,21–25). In particular, in-
terleukin 1a (IL-1a) is constitutively expressed and in-
duced by keratinocytes following skin injury (26,27). The
IL-1a precursor, unlike IL-1b, is biologically active and can
bind to the IL-1 receptor (IL-1R) to induce skin inflamma-
tion after being released from cells (28,29). IL-1R signaling
can regulate Mu Nlrp3 expression; however, whether IL-1a
is dysregulated in keratinocytes in the context of diabetic
wounds and the mechanism by which it can regulate Mu
Nlrp3 expression are unknown.

Our group and others have shown that epigenetic regula-
tion plays an essential role in Mu phenotype during wound
healing by suppressing or promoting specific genes im-
portant for inflammation (30). Jumanji domain-containing
protein-3 (JMJD3), a histone demethylase that regulates the
trimethylation of histone H3 on lysine 27 (H3K27me3), has
been shown to regulate Nlrp3 expression in Mus during coli-
tis (31), but this has not been explored in the context of

diabetes or wound repair. Further, our group recently iden-
tified that JMJD3 is upregulated in diabetic wound Mus
(32,33); however, the influence of keratinocytes on this
pathway as well as upstream regulation and the down-
stream gene expression patterns related to NLRP3 were
not examined.

Here, we demonstrate that diabetic wound keratinocytes
induce Mu JMJD3-mediatedNlrp3 expression via IL-1R sig-
naling. We found that stimulation of Mus with diabetic
wound keratinocyte-conditioned media (KCM) induced in-
creased Nlrp3 expression and enhanced inflammasome acti-
vation through an IL1-R signaling pathway. Further, we
found that IL-1a is increased in human and murine diabetic
wound keratinocytes and drives increased Nlrp3 expression
in Mus. Using an epigenetic PCR array on Mus treated with
diabetic wound KCM, we identified that JMJD3 was the
most significantly altered enzyme, and pharmacologic inhi-
bition of JMJD3 in Mus decreased Nlrp3 expression follow-
ing IL-1a stimulation and treatment with diabetic wound
KCM. We then examined this in vivo using our Mu-specific
JMJD3-deficient mice (Jmjd3f/flyz2Cre1) and found that
JMJD3 regulates Nlrp3 expression and inflammasome acti-
vation in wound Mus following injury. Altogether, our data
highlight the keratinocyte-Mu cross-talk in wounds and
suggest a role for IL-1a/IL-1R signaling in driving increased
JMJD3-mediatedNlrp3 expression and enhanced inflamma-
some activation in diabetic woundMus.

RESEARCH DESIGN AND METHODS

Mice
Male C57BL/6J mice were purchased from The Jackson Lab-
oratory and maintained in breeding pairs on a normal chow
diet (13.5% kcal fat; LabDiet) in the Unit for Laboratory Ani-
mal Medicine facilities. To initiate a “diabetic” state, male
C57BL/6J mice were fed a high-fat diet (60% kcal fat; Re-
search Diets) for 12–16 weeks to generate the DIO model.
Jmjd3f/fLyz2Cre mice on a C57BL/6J background were created
as previously reported by our group to obtain male mice
deficient in Jmjd3 in Mus, monocytes, and granulocytes
(32). All mouse protocols were approved by and complied
with the guidelines established by the Institutional Animal
Care and Use Committee at the University of Michigan,
Ann Arbor, MI.

Wound Creation and Healing
Four-millimeter punch biopsy wounds were created on
mouse dorsal skin as previously described (7). In local injec-
tion experiments, Anakinra, anti-IL1a, or control were in-
jected subcutaneously at two points along the wound edge,
as previously described by our group (7). For the acute
wound healing model, photographs were taken following
injury, and the wound area was calculated, as described
previously (7). The 6-mm wound biopsies (2-mm wound
edge) were collected at the indicated time points and pre-
pared for keratinocyte or Mu isolation.
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Wound Keratinocyte Isolation
Primary keratinocytes were isolated from the wounds of
mice as previously described (7). Following isolation and cul-
ture of primary wound keratinocytes, cells were harvested
for RNA, and KCM was collected for Mu stimulation and
protein studies.

Isolation of Wound Monocytes/Mu
For monocyte/Mu isolation, wounds were digested, and
monocyte/Mus (CD3-CD19-Ly6G-NK1.1-CD11b1) were iso-
lated as described previously by our group (32). Cells were im-
mediately saved or cultured ex vivo for RNA, cDNA, or
protein studies.

Bone Marrow–Derived Mu Culture and Stimulation
Bone marrow–derived Mus (BMDMs) were grown as detailed
previously (34). On day 6, the cells were replated and stimu-
lated with control or DIO wound KCM, IL-1a, GSK-J4, IgG, or
anti-IL1a. For siRNA experiments, cells underwent transfec-
tion using Lipofectamine RNAimax (Invitrogen), as previously
described (35). Briefly, 20 pmol of the nontargeting siRNA or
JMJD3 pooled siRNA were added to BMDM cultures prior
to KCM stimulation. siRNA information is provided in the
Supplementary Material. After 5 h of stimulation, the cells
were placed in Trizol (Invitrogen) for RNA analysis. After
24 h of stimulation, cells were either immediately saved for
western and chromatin immunoprecipitation (ChIP) analysis
or continued in culture for IL-1b ELISA experiments.

ELISA
Wound Mus and BMDMs were cultured for 4 h in RPMI
with lipopolysaccharide (LPS) (100 ng/mL) and 2 h with
ATP (5 mmol/L). After stimulation, the cell-free supernatant
was collected and analyzed by a specific enzyme immunoas-
say kit for IL-1b. Primary wound KCM was analyzed by a
specific enzyme immunoassay kit for IL-1a or IL-1b. All
ELISA kits are from R&D Systems and were performed ac-
cording to the manufacturer’s instructions.

Quantitative PCR
RNA was isolated from BMDMs, wound Mus, and kerati-
nocytes using chloroform, isopropanol, and ethanol. Super-
script III Reverse Transcriptase (Thermo Fisher Scientific)
kits were then used to reverse transcribe RNA to cDNA.
Real-time PCR was performed with 2 × TaqMan Fast PCR
mix via the 7500 Real-Time PCR System. Primers are listed
in the Supplementary Material. Data were examined in a
relative quantification analysis to 18S (2–DDCt). All samples
were performed in triplicate.

Microarray
RNA was extracted from BMDMs treated with control or
DIO KCM using an RNeasy Micro kit (Qiagen), and then
column DNAase digestion was used to eliminate genomic
DNA contamination. After digestion, the RT2 First Strand
kit (Qiagen) was used to prepare cDNA from RNA. Next,
the RT2 Profiler PCR array (PAMM-085Z; Qiagen) was

used for gene expression analysis of chromatin-modifying
enzymes. Data were analyzed using the GeneGlobe web
portal (Qiagen).

ChIP
ChIP was performed on cells using an anti-H3K27me3 an-
tibody or isotype control, as detailed previously by our
group (32). H3K27me3 deposition was measured by quan-
titative PCR (qPCR) using 2× SYBR PCR mix (Invitrogen),
and primers are listed in the Supplementary Material.

Western Blot
BMDM protein suspensions in lysis buffer were standard-
ized for protein concentrations and subjected to gel elec-
trophoresis and wet transfer as previously described (32).
Nitrocellulose membranes were probed with b-actin pri-
mary antibody (8H10D10; Cell Signaling) or NLRP3 pri-
mary antibody (D4D8T; Cell Signaling) diluted to 1:1,000
and 1:500, respectively, in 5% BSA in Tris-buffered saline
with Tween buffer, followed by incubation with anti-mouse
IgG or anti-rabbit IgG horseradish peroxidase–conjugated
secondary antibody (Cell Signaling, Inc.) and then visual-
ized with chemiluminescence (Thermo Fisher Scientific).
ImageJ (National Institutes of Health) was used to calcu-
late densitometry.

Histology
Six-millimeter punch biopsy whole wounds were excised
from mice. Wound sections were fixed overnight in 10%
formalin before embedding the wound in paraffin. Five-
micrometer sections were stained with hematoxylin-eosin
as described previously (7). Images were taken using a
Zeiss Axioskop 2 microscope at 4× magnification.

Single-Cell RNA Sequencing Analysis
Single-cell RNA sequencing (scRNA-seq) was performed on
8-mm punch biopsy samples obtained from normal and
diabetic wounds, as previously described (36). The data
accession numbers include GSE154557 and GSE179162
(Gene Expression Omnibus). Patient consent for collecting
wound tissue was exempt by the institutional review board
because the tissue was obtained from discarded surgical
material (protocol no. HUM00060733).

Statistics
All data were analyzed and graphed with GraphPad Prism
software. Data comparing differences between two groups
were obtained using a two-tailed Student t test for nor-
mally distributed groups, and Welch correction was ap-
plied for data with unequal variances. Analysis between
more than two groups was done using one-way ANOVA.
All P values less than 0.05 were considered significant.

Detailed methods are provided in the Supplementary
Material.
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Data and Resource Availability
All data needed to support the conclusions of the paper
are present in the paper. All materials are available by
request, restricted by institutional material transfer
agreements.

RESULTS

Diabetic Wound Keratinocytes Drive Increased Mu
NLRP3 Inflammasome Activity via IL-1R Signaling
Given that increased priming of Nlrp3 gene transcription
activation in Mus is important for enhanced inflamma-
some activation and keratinocytes in the skin regulate Mu
phenotype through inflammatory cytokine production fol-
lowing injury (7,19), we examined the role of diabetic
wound keratinocytes in driving increased Nlrp3 expression
and enhanced inflammasome activation in Mus. First, to
establish the kinetics of Nlrp3 expression in Mus from dia-
betic wounds, we generated a diet-induced obesity (DIO)
murine model of T2D. C57BL/6J DIO mice were wounded
with a 4-mm punch biopsy, and Nlrp3 expression was as-
sessed in sorted wound Mus (CD3-CD19-Ly6G-NK1.
1-CD11b1) isolated on days 1, 3, and 5 following injury.
We found that Nlrp3 is upregulated by day 5 in DIO wound
Mus, confirming the increased regulation of Nlrp3 gene
expression within the diabetic wound environment takes
place late following injury (Fig. 1A). Further, Nlrp3 expres-
sion is significantly increased in Mus isolated from DIO
wounds compared with control on day 5 post-injury (Fig. 1B).
A trending increase in Nlrp3 expression was detected in
spleen Mus (Supplementary Fig. 1). To understand the
translational relevance, we examined human Mus previ-
ously analyzed by our group using scRNA-seq from non-T2D
and T2D chronic wounds (7). Similar to others, we see that
NLRP3 was increased in Mus from chronic wounds of T2D
patients (Fig. 1C). To determine the relevance of keratino-
cytes in inducing the increased Mu Nlrp3 expression seen in
diabetic wounds, total wound keratinocytes were isolated
and cultured on day 5 following injury from control and
DIO mice. This period is consistent with the day Nlrp3 ex-
pression is elevated in DIO wound Mus. Following the cul-
ture of the wound keratinocytes, the KCM were collected
and added to woundMus or BMDMs.We identified a signif-
icant increase in Nlrp3 expression in wound Mus and
BMDMs stimulated with DIO wound KCM compared with
controls (Fig. 1D and E). NLRP3 protein was also increased
in BMDMs stimulated with DIO wound KCM compared
with control (Fig. 1F). These data suggest that keratinocytes
play a role in priming Mus for increased Nlrp3 gene expres-
sion levels within the diabetic wound environment late fol-
lowing injury.

Since IL-1R signaling can activate Nlrp3 transcription in
Mus, we then examined the extent to which diabetic
wound keratinocyte induction of Mu Nlrp3 expression re-
lied on the IL-1R signaling pathway. To determine this, we
stimulated BMDMs from IL-1R knockout (KO), MyD88
KO, and wild-type (WT) mice with DIO wound KCM. We

observed that KO of the IL-1R and MyD88 in BMDMs re-
sulted in decreased Nlrp3 expression following stimulation
with DIO wound KCM compared with WT, suggesting the
induction of Nlrp3 expression in Mus occurs in part via
IL-1R/MyD88 signaling (Fig. 1G). We next examined whether
this increased priming of Nlrp3 gene transcription in Mus re-
sulted in enhanced inflammasome activation. To activate the
inflammasome, Mus were stimulated with LPS and ATP fol-
lowing the addition of wound KCM, and the release of
IL-1b was used to track inflammasome activation changes.
We noted the enhanced release of IL-1b by BMDMs stimu-
lated with DIO wound KCM compared with control and
media alone. Additionally, IL-1R KO BMDMs displayed de-
creased IL-1b release following stimulation with DIO wound
KCM, indicating that the enhanced inflammasome activation
occurs via IL-1R signaling (Fig. 1H). To further evaluate the
role of IL-1R signaling in regulating Mu Nlrp3 expression and
enhanced inflammasome activation in diabetic wounds, DIO
mice were subcutaneously injected with PBS or Anakinra
(an IL-1R antagonist) following injury. We observed that local
injection of Anakinra resulted in decreased Mu Nlrp3 expres-
sion and inflammasome activity, indicated by decreased re-
lease of IL-1b (Fig. 1I and J). However, local injection of
Anakinra did not result in improved healing. This may be due
to Anakinra’s shortened half-life and bioactivity following in-
jection (Supplementary Fig. 2). Together, these data show
that Nlrp3 is increased late following injury in DIO wound
Mus, and keratinocytes within the diabetic wound environ-
ment can induce Nlrp3 expression and enhance inflamma-
some activation in part via IL-1R signaling.

IL-1a Is Increased in Diabetic Wound Keratinocytes
and Induces Mu Nlrp3 Expression Through a
JMJD3-Mediated Mechanism
Since IL-1a is constitutively expressed by keratinocytes and
signals through the IL-1R to induce tissue inflammation
(26,27), we investigated the differences in IL-1a levels be-
tween keratinocytes from normal and diabetic wounds. We
noted that Il1a was increased in DIO keratinocytes isolated
from day 5 wounds (Fig. 2A). These cells also demonstrated
increased release of IL-1a, but not IL-1b, into the KCM
compared with control (Fig. 2B and Supplementary Fig. 3A).
Using scRNA-seq from non-T2D and T2D chronic wounds,
we found that IL1A was increased in keratinocytes from
chronic wounds of T2D patients (Fig. 2C). While IL1B was
increased in T2D chronic wound keratinocytes compared
with control, a smaller percentage of keratinocytes in T2D
chronic wounds express IL1B (Supplementary Fig. 3B).
Since IL-1a is increased in DIO wound KCM, we then ex-
amined the ability of IL-1a to prime Nlrp3 transcriptional
activation in Mus. We found that stimulation of BMDMs
with IL-1a increasedNlrp3 expression (Fig. 2D). To directly
examine the effects of IL-1a in DIO KCM on Mu Nlrp3 ex-
pression, we added anti-IL1a or IgG control antibodies to
BMDMs following stimulation with DIO KCM. We observed
a significant decrease in Nlrp3 expression in BMDMs after
the addition of anti-IL1a antibodies following stimulation
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Figure 1—Diabetic wound keratinocytes enhance Mu Nlrp3 inflammasome activity. A: Wound monocytes/Mus (CD3�CD19�NK1.1�

Ly6G�CD11b1) were isolated from DIO mice on days 1, 3, and 5, n = 4 mice per group, wounds pooled, repeated in triplicate. Gene ex-
pression of Nlrp3 was measured via qPCR. B: Nlrp3 expression was examined via qPCR in wound monocytes/Mus isolated from DIO and
control mice on day 5 post-injury; n = 4 mice per group, wounds pooled, repeated in triplicate. C: UMAP cluster analysis of single-cell se-
quencing from non-T2D (n = 2) and T2D wound (n = 1) samples. Dot plot demonstrating NLRP3 expression within Mus in human T2D and
non-T2D samples. The dot size represents the proportion of cells within the group expressing NLRP3, and the dot color corresponds to
the level of expression. D and E: Nlrp3 expression was examined via qPCR in WT wound monocyte/Mus and BMDMs isolated from non-
DIO mice following stimulation with and without DIO or control day 5 wound KCM for 5 h; n = 4 mice per group for KCM, wounds pooled,
repeated in triplicate. F: Protein levels of NLRP3 were assayed in WT BMDMs isolated from non-DIO mice stimulated with and without
DIO or control wound KCM for 24 h. Representative blot shown (b-actin served as loading control). Protein band density of NLRP3 was
normalized to b-actin, as digitally quantified by ImageJ; n = 4 mice per group for KCM, wounds pooled, repeated in triplicate. G: BMDMs
were harvested from non-DIO WT, IL-1R KO, and MyD88 KO mice and stimulated with DIO wound KCM for 5 h. Nlrp3 expression was ex-
amined via qPCR; n = 4 mice per group for KCM, wounds pooled, repeated in triplicate. H: BMDMs from non-DIO WT or IL-R KO mice
were treated with DIO or control KCM overnight; 100 ng/mL LPS and 5 mmol/L ATP were added before harvesting to activate the NLRP3
inflammasome and release mature IL-1b. Supernatants were collected, and IL-1b was measured by ELISA; n = 4 mice per group for KCM,
wounds pooled, repeated in triplicate. I: Four-millimeter punch biopsy wounds were created on DIO mice, and wounds were injected daily
post-injury with Anakinra (0.75 mg/100 mL) or PBS control. Wound monocytes/Mus (CD3�CD19�NK1.1�Ly6G�CD11b1) were isolated
from Anakinra or PBS control mice on day 5; n = 5 mice per group, wounds pooled, repeated in triplicate. Nlrp3 gene expression was mea-
sured via qPCR; n = 5 mice per group, wounds pooled, repeated in triplicate. J: IL-1b was measured by ELISA from day 5 wound mono-
cyte/Mus isolated from Anakinra-treated and PBS control mice; n = 4 mice per group, wounds pooled, repeated in triplicate. Data were
analyzed for variances, and a one-way ANOVA or two-tailed Student t test was performed. *P < 0.05, **P < 0.01, ***P < 0.001, and
****P< 0.0001. Data are presented as mean and SEM.
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Figure 2—IL-1a is increased in human diabetic wound keratinocytes and induces Mu Nlrp3 expression via JMJD3. A: Four-millimeter
punch biopsy wounds were created on DIO and control mice. Wound keratinocytes were isolated on day 5. Il1a expression was measured
via qPCR; n = 4 mice per group, wounds pooled, repeated in triplicate. B: IL-1a production by DIO and control day 5 wound keratinocytes
were measured by ELISA; n = 4 mice per group, wounds pooled, repeated in triplicate. C: Dot plot demonstrating IL1A expression within
keratinocytes in human T2D and non-T2D samples. The dot size represents the proportion of cells within the group expressing IL1A, and
the dot color corresponds to the level of expression. D: Nlrp3 expression was assayed via qPCR in non-DIO WT BMDMs stimulated with
and without 3 pg/mL IL-1a for 5 h, repeated in three independent experiments. E: Non-DIO WT BMDMs stimulated with DIO KCM with
IgG control or anti-IL1a for 5 h. Nlrp3 gene expression was assayed via qPCR, repeated in three independent experiments. F and G: Four-
millimeter punch biopsy wounds were created on DIO mice, and wounds were injected daily post-injury with 1 mg/kg IgG control or anti-
IL1a. F: Wound monocytes/Mus were isolated from IgG control or anti-IL1a–treated mice on day 5. Nlrp3 gene expression was measured
via qPCR; two wounds per mouse, n = 4 mice per group, pooled, repeated in triplicate. G: The changes in wound area were recorded daily
and analyzed using ImageJ software. Displayed is the percent of initial wound area on day 5 post-injury. Representative photographs of
the wounds and hematoxylin-eosin stained representative images (magnification, 4×) were taken on day 5; two wounds per mouse, n = 4
mice per group. H: Jmjd3 expression was assayed via qPCR in non-DIO WT BMDMs stimulated with and without 3 pg/mL IL-1a for 5 h, re-
peated in three independent experiments. I: Nlrp3 gene expression was assayed via qPCR in non-DIOWT BMDMs stimulated with and without
3 pg/mL IL-1a and 10 mmol/L GSK-J4 for 5 h, repeated in three independent experiments. J: NLRP3 protein levels were examined in non-DIO
WT BMDMs stimulated with and without 3 pg/mL IL-1a and 10 mmol/L GSK-J4 for 24 h. Representative blot shown (b-actin served as loading
control). Data were analyzed for variances, and a one-way ANOVA or two-tailed Student t test was performed. *P < 0.05, **P < 0.01, and
***P< 0.001. Data are presented as mean and SEM.
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with DIO KCM compared with control (Fig. 2E), suggesting
that keratinocyte IL-1a production may contribute to in-
creasedMu Nlrp3 expression in chronic diabetic wounds. To
further evaluate the role of IL-1a signaling in regulating Mu
Nlrp3 expression in diabetic wounds, DIO mice were subcuta-
neously injected with anti-IL1a or IgG control following in-
jury. We observed that local injection of anti-IL1a in DIOmice
resulted in decreased Mu Nlrp3 expression and improved
healing compared with control (Fig. 2F andG).

Since JMJD3 has previously been identified as one of
the most relevant epigenetic enzymes in driving the dia-
betic Mu inflammatory profile late post-injury and has
been shown to regulateNlrp3 expression inMus during co-
litis (31–33), we sought to determine the extent to which

IL-1a induced Mu Nlrp3 expression via a JMJD3-mediated
mechanism. Following stimulation of BMDMs with IL-1a,
we identified that Jmjd3 expression was significantly
increased (Fig. 2H). Furthermore, addition of GSK-J4, a
JMJD3 inhibitor, to BMDMs following IL-1a stimulation
resulted in decreased Nlrp3 gene expression and protein
levels (Fig. 2I and J), suggesting that increased IL-1a pro-
duced by DIO wound keratinocytes late post-injury con-
tributes to priming Nlrp3 gene transcriptional activation
in Mus via a JMJD3-mediated mechanism.

Inhibition of JMJD3 Decreases Keratinocyte-Induced
Nlrp3 Expression in Mus
Since diabetic wound keratinocytes produce increased
IL-1a, and JMJD3 plays a central role in IL-1a–mediated

Figure 3—Diabetic wound keratinocytes induce Mu Nlrp3 expression via JMJD3. A: BMDMs were harvested from non-DIO WT mice and
stimulated with and without DIO or control KCM for 24 h. ChIP analysis for H3K27me3 at the Nlrp3 promoter; n = 4 mice per group for
KCM, wounds pooled, repeated in triplicate. Dotted line represents IgG controls. B: An epigenetic array on non-DIO WT BMDMs stimu-
lated with DIO or control KCM for 5 h. Color corresponds to the level of expression. The red box outlines Kdm6b (Jmjd3). C: Jmjd3 expres-
sion assayed by qPCR in BMDMs isolated from non-DIO mice stimulated with and without DIO or control KCM for 5 h; n = 4 mice per
group for KCM, wounds pooled, repeated in triplicate. D: Nlrp3 expression was examined via qPCR in BMDMs isolated from non-DIO mice
stimulated with and without DIO KCM and 10 mM GSK-J4 for 5 h; n = 4 mice per group for KCM, wounds pooled, repeated in triplicate.
E: NLRP3 protein levels were assayed in BMDMs isolated from non-DIO mice stimulated with DIO KCM with and without 10 mM GSK-J4 for
24 h. A representative blot is shown (b-actin served as loading control). Protein band density of NLRP3 normalized to b-actin, as digitally quantified
by ImageJ; n = 4 mice per group for KCM, wounds pooled, repeated in triplicate. Data were analyzed for variances, and a one-way ANOVA or
two-tailed student t test was performed. *P< 0.05, **P< 0.01, and ***P< 0.001. Data are presented asmean and SEM.
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Nlrp3 expression in Mfs, we examined whether diabetic
wound keratinocytes induced Nlrp3 transcriptional activation
via a JMJD3-mediated mechanism. JMJD3 regulates gene
expression by demethylating H3K27, so we first examined
Mus following stimulation with DIO and control wound
KCM for changes in H3K27me3 levels at theNlrp3 promoter
by ChIP. We found a significant decrease in the repressive
H3K27me3mark at theNlrp3 promoter in BMDMs stimulated
with DIO wound KCM compared with control and media only
(Fig. 3A). Since several methyltransferases and demethylases
are specific for H3K27, we performed an epigenetic PCR array
on BMDMs stimulated with control or DIO wound KCM.
We observed Jmjd3 (Kdm6b) was the main epigenetic en-
zyme that was increased following stimulation with DIO
wound KCM (Fig. 3B). Quantitative PCR analysis also revealed
a significant increase in Jmjd3 expression in DIO wound KCM-
stimulated BMDMs (Fig. 3C). Interestingly, we found that
pharmacologic inhibition (GSK-J4) or siRNA knockdown of
JMJD3 following the addition of DIOwound KCM to BMDMs
resulted in a significant decrease in Nlrp3 expression (Fig. 3D

and Supplementary Fig. 4). Concurrently, this decrease was
also noted at the protein level (Fig. 3E). Taken together, these
data demonstrate that diabetic wound keratinocytes late post-
injury can induce Nlrp3 gene transcription in Mus via a
JMJD3/H3K27me3-mediatedmechanism.

Mu-Specific JMJD3 KO Decreases NLRP3
Inflammasome Activity Late Post-Injury
Our group has demonstrated that Mu-specific inhibition of
JMJD3 improves diabetic wound healing (32). Additionally,
as previously identified, we see increased Jmjd3 expression
in DIO wound Mus late following injury (Fig. 4A). To iden-
tify whether JMJD3 could regulate Mu Nlrp3 gene expres-
sion in vivo, we isolated Mus from DIO and control mice
from day 5 wounds, and examined changes in H3K27me3 at
the Nlrp3 promoter by ChIP. We found a significant decrease
in the H3K27me3 mark at the Nlrp3 promoter in DIO
wound Mus (Fig. 4B). Next, to confirm the relevance of
JMJD3 in regulating Nlrp3 transcriptional activation in Mus
during wound repair, we utilized the Cre recombinase Lox-P

Figure 4—Mu-specific KO of JMJD3 decreases NLRP3 inflammasome activity. A: Four-millimeter punch biopsy wounds were created on
DIO and control mice. Wound monocytes/Mus were isolated from day 5 wounds. Gene expression of Jmjd3 was measured via qPCR; n =
5 mice per group, wounds pooled, repeated in triplicate. B: ChIP analysis for H3K27me3 on the Nlrp3 promoter from monocyte/Mus iso-
lated from DIO and control day 5 wounds; n = 5 mice per group, wounds pooled, repeated in triplicate. Dotted line represents IgG controls. C:
Nlrp3 expression in Jmjd3f/f Lyz2Cre1 and littermate control wound monocyte/Mus harvested on day 5; n = 4 mice per group, wounds pooled,
repeated in triplicate. D: Monocyte/Mus were isolated from Jmjd3f/f Lyz2Cre1 and littermate control day 5 wounds. ChIP analysis for H3K27me3
at the Nlrp3 promoter; n = 4 mice per group, wounds pooled, repeated in triplicate. Dotted line represents IgG controls. E: IL-1b
release measured by ELISA. n = 4 mice per group, wounds pooled, repeated in triplicate. Data were analyzed for variances, and a one-way
ANOVA or two-tailed student t test was performed. *P< 0.05, **P< 0.01, and ***P< 0.001. Data are presented as mean and SEM.
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system to generate a myeloid-specific, JMJD3-deficient
mouse (Jmjd3f/f Lyz2Cre1). Wound Mus isolated on day 5
following injury from Jmjd3f/f Lyz2Cre1 mice exhibited a
decrease in Nlrp3 expression compared with the control
mice (Fig. 4C), and ChIP analysis of the Nlrp3 promoter
showed an increase in H3K27me3 levels in these Mus
(Fig. 4D). These data indicate that the increased Nlrp3 ex-
pression observed in DIO wound Mus late following injury
is mediated by JMJD3/H3K27me3 activity. Finally, we ex-
plored the effect of Mu specific loss of JMJD3 on inflamma-
some activation during wound repair by examining IL-1b
release from wound Mus on day 5 and found decreased re-
lease of IL-1b by Jmjd3f/f Lyz2Cre1 mice compared with con-
trol (Fig. 4E). Taken together, these data suggest a central
role for JMJD3 in regulating Mu NLRP3 inflammasome hy-
peractivity noted in chronic diabetic wounds.

DISCUSSION

NLRP3 inflammasome activity is elevated in diabetic wound
Mus and contributes to impaired wound healing (5,6);

however, the molecular mechanism regulating this is unclear.
In this study, we showed that Mu Nlrp3 expression is in-
creased late post-injury in diabetic wounds, and stimulation
of wound Mus with conditioned media from keratinocytes
isolated from diabetic wounds late following injury results in
both increased Nlrp3 expression and enhanced inflamma-
some activation that is regulated in part by IL-1R signaling.
Next, we identified that IL-1a is increased by human and
murine diabetic wound keratinocytes, and neutralization
of IL-1a inhibits induction of Mu Nlrp3 expression by
diabetic wound keratinocytes. Furthermore, we demon-
strated that diabetic wound keratinocytes induce Nlrp3
expression through a JMJD3/H3K27me3-mediated mecha-
nism. Significantly,Mu-specific KO of JMJD3 (Jmjd3f/flyz2Cre1)
reduced Nlrp3 expression and inflammasome activity in
wound Mus late following injury. Together, our data sug-
gest a role for keratinocyte IL-1a/IL-1R signaling in driving
the JMJD3-mediated increased Nlrp3 expression and enhanced
inflammasome activity seen in chronic diabetic wound Mus
(Fig. 5).

Figure 5—NLRP3 inflammasome activity regulation in diabetic wound Mus late post-injury.
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Current literature has demonstrated an important role
for epigenetic modifications, including histone modification,
DNAmethylation, and RNA interference in regulating proper
wound healing through controlling structural and immune
cell phenotype (2,30,37). In particular, our group and others
have examined the role of histone demethylase JMJD3 on
Mu phenotype and keratinocyte re-epithelization during
wound healing (32,33,38–40). In normal wound healing,
JMJD3 drivesMus toward an inflammatory phenotype early
after injury, whereas, in diabetic wounds, this occurs late fol-
lowing injury contributing to impaired wound healing. In
this work, we found that JMJD3 is important for regulating
the increased Nlrp3 expression and the resulting enhanced
inflammasome activation seen in chronic diabetic wounds.
In diabetic wound Mus, Jmjd3 expression can be regulated
by janus kinase/signal transducer and activator of transcrip-
tion and MyD88 signaling (32,33). This pathway differs de-
pending on the ligand and the downstream targeted genes of
interest. This study suggests a role for IL-1a/IL-1R signaling
via MyD88 in driving Mu JMJD3-mediated NLRP3 inflam-
masome activity in diabetic wounds.

Similar to others, we showMus in diabetic wounds have in-
creased Nlrp3 expression and inflammasome activity, suggest-
ing these cells are primed for enhanced inflammasome
activation. Our data identify that keratinocytes within diabetic
wounds late after injury can drive increased Nlrp3 transcrip-
tional activation in BMDMs and wound Mus. While BMDMs
display a stronger response, this difference may occur because
BMDMs are stimulated with KCM from baseline. This in-
creased priming of Mus by diabetic wound keratinocytes re-
sults in enhanced inflammasome activation in the presence of
pathogen-associated molecular patterns. To this end, diabetic
patients exhibit increased polymicrobial colonization, which is
associated with impaired healing (41). Neutrophils are also as-
sociated with contributing to Mu NLRP3 inflammasome acti-
vation at the posttranslational modification level through the
induction of reactive oxygen species in Mus by the secretion
of neutrophil extracellular traps (42), which are increased in
diabetic injured skin (43).

Following injury, keratinocytes secrete NFkB-regulated cy-
tokines and type I IFNs (T1IFN) that can regulate immune
cell phenotype (7,21–25). Our group has previously shown
that IFNk, a keratinocyte-produced T1IFN, is increased early
during normal wound healing and is decreased in diabetic
wound keratinocytes (7). While this decreased keratinocyte
IFNk contributes to the impaired Mu inflammatory pheno-
type seen initially in diabetic wounds, the factors driving the
delayed chronic increase in Mu inflammatory phenotype
have remained undefined. This study demonstrates that
IL-1a is increased in diabetic wound keratinocytes late fol-
lowing injury, which is significant since IL-1a is associated
with driving skin inflammation (26,27,44). Our study sug-
gests IL-1a drives inflammation through priming the Mu
NLRP3 inflammasome in diabetic wounds.

Although this study provides insight into the mechanisms
behind the dysregulation of Mu NLRP3 inflammasome

activity in diabetic wounds, a few limitations must be ad-
dressed. First, we acknowledge that IL-1a is produced by
other cell types, such as activatedMus; however, nonhemato-
poietic cells are considered the primary source of pathogenic
IL-1a, and we show it is elevated in diabetic wound keratino-
cytes. Second, while this paper focuses on changes in Mu
Nlrp3 expression in diabetic wounds, we see a trending in-
crease in Nlrp3 expression in spleen Mus; however, it is un-
clear whether keratinocytes are the source of this systemic
effect. Third, we acknowledge that no cre-specific transgene
line is perfect for Mus, and that using the Lyz2Cre system
generates a myeloid-specific KO of JMJD3. While this paper
focused on Mus, other cell interactions could also be af-
fected within the Lyz2Cre system. Fourth, even though
JMJD3 appears to regulate Mu Nlrp3 expression via an
H3K27-mediated mechanism, we recognize that other epi-
genetic enzymes may also regulate Nlrp3 gene expression.
Finally, although IL-1a influencesMu Nlrp3 expression, fur-
ther studies assessing the role of IL-1a in Mus using ChIP
sequencing and RNA sequencing would be useful to deter-
mine other genes influenced by IL-1a.

In summary, our study suggests an important role for
keratinocytes within the diabetic wound environment in
inducing Mu NLRP3 inflammasome activity in chronic dia-
betic wounds. To our knowledge, this study is the first to
examine keratinocyte-produced IL-1a in both normal and
diabetic wounds. It provides important mechanistic infor-
mation that IL-1R signaling regulates JMJD3-mediated
Nlrp3 transcriptional activation. Given that JMJD3 plays a
central role in regulating NLRP3 inflammasome activity
during wound healing, Mu-specific targeting of JMJD3 as
well as IL-1a/IL-1R signaling may be a viable therapeutic
for decreasing NLRP3 inflammasome-mediated inflamma-
tion in chronic diabetic wounds.
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