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Exocrine-to-endocrine cross talk in the pancreas is crucial
to maintain 3-cell function. However, the molecular mech-
anisms underlying this cross talk are largely undefined.
Trefoil factor 2 (Tff2) is a secreted factor known to promote
the proliferation of B-cells in vitro, but its physiological role
in vivo in the pancreas is unknown. Also, it remains unclear
which pancreatic cell type expresses Tff2 protein. We
therefore created a mouse model with a conditional knock-
out of Tff2 in the murine pancreas. We find that the Tff2
protein is preferentially expressed in acinar but not ductal
or endocrine cells. Tff2 deficiency in the pancreas reduces
B-cell mass on embryonic day 16.5. However, homozygous
mutant mice are born without a reduction of B-cells and
with acinar Tff3 compensation by day 7. When mice are
aged to 1 year, both male and female homozygous and
male heterozygous mutants develop impaired glucose tol-
erance without affected insulin sensitivity. Perifusion anal-
ysis reveals that the second phase of glucose-stimulated
insulin secretion from islets is reduced in aged homozy-
gous mutant compared with controls. Collectively, these
results demonstrate a previously unknown role of Tff2 as
an exocrine acinar cell-derived protein required for main-
taining functional endocrine p-cells in mice.

The pancreas contains exocrine and endocrine compart-
ments, which secrete digestive enzymes and hormones

ARTICLE HIGHLIGHTS

e Exocrine-to-endocrine cross talk is important in main-
taining pancreatic cell homeostasis, but the molecular
mechanisms remain largely undefined.

¢ In the pancreas, the physiological role of the secreted
factor Tff2 and the cell type that expresses Tff2 has
been unclear.

e Pancreatic acinar cells are the major cell type express-
ing Tff2 protein, and specific loss of Tff2 in the pancreas
reduces B-cells during development and attenuates
glucose-stimulated insulin secretion during aging in
conditional Tff2 knockout mice.

e Tff2 is a positive exocrine-produced factor required
for the development and function of endocrine B-cells,
which has implications in diabetes disease progres-
sion and therapy.

that regulate blood glucose homeostasis, respectively. Dys-
function of the endocrine B-cells can result in type 1 or
type 2 diabetes (T1D/T2D), which remains a global health
concern (1). Increasing evidence indicates abnormalities in
the exocrine pancreas impact B-cell function (2), such as
cystic fibrosis (3,4), pancreatitis (5,6), and pancreatic cancer
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(7,8), potentially through secreted factors. However, the
exocrine cell-derived signaling factors that regulate B-cell
function remain largely unknown.

The trefoil family of secretory peptides consists of
three proteins: Tff1, Tff2, and Tff3. In adult murine pan-
creas, Tff2 (9) and Tff3 (10) but not Tffl (11) are de-
tected, and Tff2 is expressed at higher levels than Tff3
(12). Tff2 is conserved from birds to humans (13), and is
highly resistant to denaturing conditions and enzymatic
digestion due to the seven intramolecular disulfide bonds
in its tertiary structure and compact quaternary structure
(14). Tff2 is abundantly expressed in stomach (15,16) and
immune cells (17), where it binds with mucins to form
protective gastric mucus barriers (18) and regulates im-
mune response (19,20). Additionally, Tff2 is expressed in
the central nervous system (21,22), anterior pituitary (21),
hypothalamus (23), and pancreas (12,24). When added ex-
ogenously in vitro, Tff2 promotes the proliferation of adult
murine pancreatic B-cells (25) and rescues embryonic
B-cell apoptosis (9). However, the physiological role of Tff2
in the pancreas has not been discerned. Furthermore, im-
munohistochemistry studies disagree on whether Tff2 is
expressed by endocrine (25) or exocrine pancreas in mice
(9). Thus, there is a critical need to clarify which compart-
ment expresses Tff2.

Here, we generated a conditional Tff2 knockout mouse
model to test the physiological requirement of Tff2 in the
pancreas, and to clarify the expression pattern of Tff2. We
find that Tff2 protein is preferentially expressed by adult
murine pancreatic acinar cells, and that Tff2 deficiency re-
sults in reduced B-cell mass in the embryonic pancreas and
impaired glucose tolerance (IGT) in aged mice. Our findings
demonstrate previously unknown roles of Tff2 in the en-
dogenous pancreas and implicate Tff2 as a key signaling
factor mediating exocrine-to-endocrine crosstalk.

RESEARCH DESIGN AND METHODS

Mice and Maintenance

Experiments on mice were approved by the City of Hope In-
stitutional Animal Care and Use Committee, Duarte, CA. All
mice had a C57BL/6J genetic background, which harbors
nicotinamide nucleotide transhydrogenase mutation (26)
(Supplementary Fig. 1). The generation of Pdx1:Cre;Tff2™"
mice was achieved by intercrossing Pdx1:Cre mice (Jax
#014647) with the Tff2 floxed (Tff2<tml.1Htk> MGI:
7620295; T2 /Y mice (see below).

Generation of Tff2 Floxed Mice
The mice harboring conditional knockout allele for Tff2
were designed and produced by Ozgene Pty Ltd. (Perth,
Australia) (Supplementary Fig. 2).

Genotyping
PCR on genomic DNA with allele-specific primers (Supple-
mentary Table 1) was used to determine genotypes.
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Quantitative RT-PCR

Total RNA was isolated, converted into ¢cDNA, and assayed
using Tagman probes (Supplementary Table 2). 3-Actin was
used as the internal control.

Morphometric and Cell Quantification

Tile images from frozen and paraffin slides were collected,
and then processed and quantified using QuPath v0.2.3
software.

Glucose-Stimulated Insulin Secretion

Static glucose-stimulated insulin secretion (GSIS) was per-
formed as previously described (27). The levels of insulin
release were adjusted based on total protein content and
number of islets. Islet perifusion was conducted as previ-
ously described (28).

Statistical Analysis
Statistical significance was determined by unpaired, two-
tailed Student t test when comparing two groups; Welch
correction was used when comparing unequally sized sam-
ples. One-way ANOVA followed by Tukey post hoc analysis
was used for comparing more than three groups. Data
were analyzed with the GraphPad Prism 9 software and
presented as mean + SD or mean + SEM.

Detailed methods are described in the Supplementary
Material.

Data and Resource Availability

All data are available in the article or Supplementary
Material. Data sets and resources are available from the
corresponding author upon reasonable request.

RESULTS

Among the Trefoil Factor Family Members, Tff2
Transcripts Are More Highly Expressed in

Wild-Type Murine Pancreas Compared With Tff3

and Tff1

Quantitative RT-PCR analyses revealed that Tff2 was
most expressed followed by Tff3 and Tffl at embryonic
day 16.5 (E16.5), postnatal day 0 (P0), P7, and 6 weeks
(Fig. 1A). Consistent with a previous report (9), Tff2 in-
creased over time in the pancreas (Fig. 1B). Publicly
available single-cell RNA-sequencing (scRNA-seq) data-
bases indicate Tff2 is expressed in trunk, acinar, endo-
crine progenitor, and endocrine cells at E15.5 and/or
E18.5 (29) (Supplementary Fig. 3), and in adult acinar
and ductal cells (12) (Supplementary Fig. 4). Because of
this promiscuous gene expression pattern, we deleted
Tff2 in the whole pancreas.

Generation of Mice With Tff2 Knockout in the
Pancreas

We generated Tff2-floxed mice containing two loxP sites
that flank exons 2 and 3 of the Tff2 gene, which code for
the trefoil domain necessary for Tff2 function (30), as
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Figure 1—T{f2 is expressed more highly than Tff1 and Tff3 in the wild-type murine pancreas and generation of a conditional Tff2 knockout
mouse model. A: Conventional qRT-PCR analysis of Tff1, Tff2, and Tff3 in pancreata collected at E16.5, PO, and P7, and 6 weeks old (6
wks). B-Actin was used as internal control; n = 3-4 pancreata. B: Tff2 expression relative to B-actin increases over developmental time; n
= 3-4 pancreata C: Schematic of generation of Tff2 floxed mice (Tff2™™). Lox-P sites flanked exons 2 to 3, which allowed T#2 gene dele-
tion after crossing with mice with Cre-recombinase expression (Pdx1:Cre). D: Representative brightfield images of E16.5 control (T2 /)
and mutant (Pdx1:Cre; Tff2 ") pancreata (outlined with white-dashed lines; pan); st, stomach; sp, spleen. Scale bar = 1 mm. E: Co-IF stain-
ing of Tff2 (red) with E-cad (green) at E16.5 (n = 4-6 pancreata). Scale bar = 50 pm. F and G: Conventional gRT-PCR analysis of all Tffs rel-
ative to B-actin in the pancreas (F) and stomach (G) at E16.5 among mutant samples compared with controls (n = 14-15 for F, and n = 6-7
for G). Error bars represent SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and not significant (ns) determined by one-way
ANOVA with Tukey post hoc test for A and B and unpaired t test with Welch correction for F and G.

well as a Neo cassette flanked by two Frt sites inserted to  transgenic mice to generate the T2 mice, which were
the 5" end of exon 3 (Fig. 1C). Subsequently, the Neo cas- mated to transgenic Pdx1-Cre mice to delete Tff2 in pan-
sette was removed by crossing with Pgkl-Flp recombinase creatic cells (Pdx1:Cre;Tf2 ™).
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Figure 2—Tff2 protein is preferentially expressed by wild-type pancreatic acinar cells. A: Co-IF staining of Tff2 (red), insulin (green), and
DAPI (blue) at E16.5, E18.5, PO, P7, and 6 weeks old (6 wks). Control tissue (6 wks, bottom right) treated with secondary antibodies only
was used as negative control to adjust signal levels for Tff2. B: Co-IF staining of Tff2 (red), amylase (green), and DAPI (blue) at E16.5, P7,
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Brightfield analysis of E16.5 embryos showed no observ-
able differences in pancreas size and architecture between
mutants and controls (Fig. 1D and Supplementary Fig. 5).
Co-immunofluorescence (co-IF) staining of Tff2 and
E-cadherin (E-cad, Cdhl) confirmed reduction of Tff2 pro-
tein in the pancreatic epithelium of mutants (Fig. 1E). Ad-
ditionally, Tff2 transcripts were reduced in the pancreas
(Fig. 1F) but not in the stomach (Fig. 1G) of E16.5 mu-
tants, confirming specificity. Furthermore, Tff2 protein in
E16.5 stomach was maintained (Supplementary Fig. 6), but
reduced in duodenum in mutants (Supplementary Fig. 6),
as Pdx1 is expressed in both the duodenum and pancreas
(31). Together, these results demonstrate that Tff2 is spe-
cifically reduced in the pancreas and duodenum.

Tff2 Protein Is Expressed in the Wild-Type Acinar but
Not in B-Cells

To clarify Tff2 protein expression patterns, co-IF analyses
revealed that Tff2 was absent in B-cells (Fig. 24) and en-
docrine cells (Supplementary Fig. 7A). Instead, Tff2 colo-
calized with acinar cells (Fig. 2B and C) but not ductal
cells (Fig. 2D). Colocalization of an epithelial cell marker
(EpCAM) with Tff2 in P7 pancreas, duodenum, and stom-
ach validated the specificity of the anti-Tff2 antibody
(Fig. 2E and Supplementary Fig. 7B and C). Together,
these results demonstrate that Tff2 protein is expressed
preferentially in the murine acinar cells compared with
B-cells or ductal cells.

Pancreatic Tff2 Knockout Alters a Broad Array of Gene
Networks in E16.5 Embryos

To gain insights into the consequence of Tff2 knockout,
genome-wide gene expression analysis was performed us-
ing bulk mRNA-sequencing (RNA-seq) on E16.5 pancreata.
Multidimensional scaling analysis separated mutants from
controls, suggesting distinct gene expression patterns
(Supplementary Fig. 84). A total of 1,143 differentially ex-
pressed genes (DEGs) were identified, with 695 upregu-
lated and 448 downregulated (Fig. 34, Supplementary Fig.
8B, and Supplementary Data Set 1). Gene set enrichment
analysis (GSEA) of DEGs using Hallmark molecular signa-
ture database identified downregulated biological pathways:
pancreatic B-cells, oxidative phosphorylation, and DNA re-
pair (Fig. 3B). In contrast, upregulated pathways included
epithelial mesenchymal transition, mitotic spindle, and
G2M checkpoint (Fig. 3B). Another computational tool, Da-
tabase for Annotation, Visualization and Integrated Discov-
ery, identified downregulated biological processes in mutants,
incduding peptide transport, hormone secretion, endocrine
pancreas development, maturity onset diabetes of the young,

Ortiz and Associates 1451

and type II diabetes mellitus (T2D). Upregulated pathways in
mutants induded nervous system development, cell adhesion
molecules, and phagosome (Supplementary Fig. 8C and D).
These analyses suggest that early knockout of Tff2 impacts
a wide range of biological processes in the embryonic
pancreas.

Pancreatic Tff2 Deletion Reduces Endocrine and
B-Cells in E16.5 Embryo

Because pancreatic 3-cells was the most significant down-
regulated pathway in the mutant embryos (Fig. 3B), we ex-
amined endocrine marker expression. Tff2 was the most
downregulated gene (Fig. 3C), confirming the knockout.
Many downregulated genes were known endocrine lineage
markers, such as Ins1, Ins2, Geg, Ppy, and Sst (Fig. 3C). Ad-
ditional B-cell-related genes were also decreased in mutant
pancreas samples, such as Rfx6, Pax4, Pax6, Slc2a2, Iapp,
Nkx6-1, Abcc8, Insm1, and Syt13 (Fig. 3D). gqRT-PCR analy-
sis confirmed the reduction of Insl, Ins2, Gcg, Ppy, Sst,
Chga, Iapp, Abcc8, and G6pc2 in mutant pancreata (Fig. 3E).
The co-IF staining revealed that the ratios of total endo-
crine cell (Chga+) (Fig. 3F and H) and B-cell (Insulin™)
area to total pancreas area (Fig. 3G and I) were reduced in
mutants. The pancreas area (E-cad™) was not different be-
tween mutant and control embryos (Fig. 3J) nor was the
percent sampling size (Supplementary Fig. 9). The ratio of
ductal area (DBA™) to total pancreas area was also not dif-
ferent (Fig. 3K). Together, these results demonstrate a loss
of the endocrine compartment at E16.5 in response to
Tff2 knockout.

Pancreatic Tff2-Deficient Mice Survive Birth and Have
Tff3 Compensation at P7

Given the reduction in the embryonic B-cells at E16.5
(Fig. 3), we anticipated hyperglycemia in mutant mice af-
ter birth. Surprisingly, P7 mutant mice exhibited normal non-
fasting blood glucose level, body weight, and pancreas weight
(Fig. 4A-C). Mice were born in a Mendelian inheritance ratio
with no observable changes in gross anatomy of the P7 mutant
pancreas (Fig. 4D). Similar to E16.5, AmylaseJr acinar, DBA™"
ductal cells (Fig. 4E-G and Supplementary Fig. 10A), and pan-
creas area (Supplementary Fig. 10B) were not different in P7
mutants. However, unlike E16.5, the endocrine cells in P7
pancreas were no longer reduced in mutants (Fig. 4H and I).
Also, no difference in Ki67" proliferating cells among mutant
and control endocrine cells was observed (Fig. 4J).

Gene compensation is known to occur when mutations
are deleterious (32). Given the similarities between the tre-
foil family proteins (14) and the known compensation of
Tff3 in the stomach of a Tff2 global knockout mouse model

and 6 wks. White arrows indicate Tff2* amylase™ cells (yellow). C: Co-IF staining of Tff2 (red), Cpa-1 (green), and DAPI (blue) at P7 and
6 wks. D: Co-IF staining of Tff2 (red), DBA (green), and DAPI (blue) at P7 and 6 wks. E: Co-IF staining of Tff2 (red), EpCAM (green), and
DAPI (blue) in P7 positive control tissues (pancreas, duodenum, stomach). Right panels show a x4.9 magnification for A to E or x13 mag-
nification for B E16.5 or x 1.1 magnification for B P7 of the area marked by a white square. Yellow dotted lines and asterisk (*) outline islet/
B-cell areas. Blue dotted lines outline ductal cell areas. Scale bar = 50 pm.
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Figure 3—Loss of Tff2 in the E16.5 pancreas leads to a reduction of islet and B-cells. A: Volcano plot showing a total of 1,143 DEGs in mu-
tant compared with control pancreata at E16.5, with 448 downregulated and 695 upregulated DEGs (n = 3 pancreata per group). FC, fold
change; FDR, false discovery rate. B: Hallmark pathways from GSEA. C: List of the top 15 downregulated DEGs. D: Reads per kilobase of
transcript per million reads mapped (RPKM) levels of canonical pancreatic -cell genes. E: Conventional qRT-PCR analysis of selected
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(33), potential compensation by Tffl and/or Tff3 in the mu-
tant pancreas was examined. Tff3, but not Tff1, was upregu-
lated in P7 mutant pancreas, and Tff2 remained reduced
(Fig. 4K). To further darify, P7 pancreatic islets and exo-
crine tissues were separately examined: the only changes
found were decreased Tff2 and increased Tff3 in the mutant
exocrine compartment (Fig. 4L). IF staining confirmed the
absence of Tff2 (Fig. 4M) and the presence of Tff3 protein
(Fig. 4N) in the exocrine pancreas of P7 mutant mice. Anti-
body staining for Tff2 and Tff3 in positive control tissues
confirmed specificity (Fig. 40 and Supplementary Fig. 10C).

Further examination of PO pancreas revealed no differ-
ence in body weight, pancreas weight, gross anatomy,
Tff3 expression, endocrine pancreas area, proliferation of
endocrine cells, or islet cell mass (Supplementary Fig.
10D-N). Together, these results indicate that early loss of
Tff2 in the embryonic pancreas leads to recovery of endo-
crine cell mass by PO and Tff3 compensation in acinar
cells by P7.

Glucose Intolerance Develops in Pancreatic
Tff2-Deficient Mice After Reaching 1 Year of Age
Despite Tff3 compensation in the pancreas of P7 mutant
mice, we hypothesized that the loss of Tff2 may impact en-
docrine function because 1) Tff2 has a much higher (2,722 +
797-fold; n = 3 each group; range 1,826-4,311) gene ex-
pression level compared with Tff3 in 6-week pancreata
(Fig. 14), and 2) Tff2 transcript in acinar cells is found to
be highest among 20 organs from adult mice in scRNA-seq
analyses (12) (Supplementary Fig. 11). Therefore, homozy-
gous (Pdx1:Cre;Tf2 'y and heterozygous (Pdx1:Cre;Tff2 /%y
mutants and controls (Tf{2 ) were monitored from 10 to
60 weeks of age. Body weight increased at 60 weeks for
both male (Fig. 5A and Supplementary Fig. 12A) and female
(Fig. 5B and Supplementary Fig. 12B) homozygous mutants
compared with heterozygous and control mice. Fasting
blood glucose levels were elevated >200 mg/dL at 40 weeks
in male (Fig. 5C), but not female (Fig. 5D), homozygous mu-
tant mice compared with heterozygous and control mice,
suggesting females were protected. However, by 60 weeks,
both male and female homozygous mutants had elevated
fasting blood glucose compared with heterozygous mutants
and controls (Fig. 5C and D and Supplementary Fig. 12C
and D). Glucose tolerance, assayed by intraperitoneal glu-
cose tolerance test (IP-GTT), was not different at 20 weeks
of age (Fig. 5E and F). However, at 40 weeks, male (Fig. 5G)
but not female (Fig. 5H) homozygous mutants became glu-
cose intolerant, again indicating various degrees of impact
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by sex. By 60 weeks of age, male heterozygous mutants also
became glucose intolerant (Fig. 5I), demonstrating Tff2 hap-
lodeficiency impacts male mice. Female homozygous mutants
also became glucose intolerant by 60 weeks (Fig. 5J).

To determine whether the glucose intolerance of mutant
mice was due to insulin resistance, an intraperitoneal insu-
lin tolerance test was performed. No difference was ob-
served for both males and females (Supplementary Fig. 12E
and F), indicating that insulin sensitivity in the peripheral
tissues is conserved in homozygous and heterozygous mu-
tant mice. Together, these results demonstrate the require-
ment of pancreatic Tff2 in maintaining glucose homeostasis
during aging. Based on these results, we focused our atten-
tion on homozygous mutant male mice at ~1 year of age
in subsequent studies.

Pancreas Size Is Reduced in Aged Homozygous
Mutant Mice Without Affecting Islet and p-Cell Mass
Decreased glucose clearance (Fig. 5I and J) with unchanged
insulin sensitivity (Supplementary Fig. 12E and F) suggested
a defect in B-cells in 1-year-old mutants. Tff2 knockout
was first confirmed in acinar cells of homozygous mutants
(Supplementary Fig. 13A and B). Surprisingly, pancreas
weight and pancreas-to-body weight ratio were reduced for
both mutant males (Fig. 6A and B) and females (Supple-
mentary Fig. 13C and D).

To determine changes in islets, morphometric analysis
was performed with a 5% sampling rate (Supplementary
Fig. 13E). Hematoxylin and eosin staining (Fig. 6C) first
confirmed that total pancreas area (Fig. 6D) and exocrine
cell mass (Fig. 6E and Supplementary Fig. 13F) were re-
duced in male homozygous mutants. However, the islet-
to-pancreas ratio (Supplementary Fig. 13G) and islet cell
mass (Fig. 6F) were not different. Next, insulin colorimet-
ric staining and morphometric analysis (Fig. 6G) revealed
lowered total pancreas area (Fig. 6H) without changes in
insulin-to-pancreas area ratio and (3-cell mass (Fig. 61 and J)
in mutant mice. Together, these results indicate that early
loss of Tff2 perturbs pancreas size without altering islet and
B-cell mass during aging.

Second-Phase Insulin Secretion Is Reduced in Islets
From Aged Homozygous Mutant Male Mice

To determine changes in (3-cell function, we isolated islets
from aged male mice and performed an in vitro GSIS assay;
islets were sequentially treated with low (2.8 mmol/L),
high (20 mmol/L), and low concentrations of p-glucose, fol-
lowed by 30 mmol/L KCl to stimulate maximal release of

endocrine cell genes relative to -actin (n = 4-6 pancreata). Error bars represent SEM. F and G: Representative co-IF images from control
(TH2™"™ and mutant (Pdx1:Cre;Tff2 ") embryos (E16.5) double-stained for Chromogranin A (ChgA: red) and DBA (green) (F) or Tff2 (red)
and Insulin (green) (G) and DAPI (blue). Scale bar = 50 um. H-K: Quantification of total islet, 8, and ductal mass ratios relative to total pan-
creas area (10-16 sections 100 pm apart per pancreas, n = 4 pancreata). The ratio of total Chromogranin A* area (square micrometers) di-
vided by total pancreas area (square micrometers) (H), the ratio of total insulin® area (square micrometers) divided by total pancreas area
(square micrometers) (/), total pancreas area (square micrometers) (J), and the ratio of total DBA + area (square micrometers) divided by
total pancreas area (square micrometers) (K) (n = 4 pancreata). Error bars represent SD. *P < 0.05, **P < 0.01 and not significant (ns) de-
termined by two-tailed Student t test for £ and H-K and unpaired t test with Holm-Sidak method for D.
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insulin (Fig. 6K and L). As expected, islets isolated from
control mice secreted more insulin in response to high glu-
cose or KCl compared with low glucose (Fig. 6L, left). Islets
from homozygous mutant mice also responded to high glu-
cose or KCl, but the levels of insulin secreted were reduced
(Fig. 6L, right). The protein content was not different be-
tween the mutant and control islets (Fig. 6M), indicating
equivalent islet mass was used. These results indicate that
static insulin secretion is impaired in the homozygous mu-
tant islets.

To discern differences in insulin secretion dynamics,
in vitro perifusion GSIS was performed. Insulin secretion
was recorded every minute during glucose concentration
changes, allowing quantification of the first and second
phase of insulin secretion (Fig. 6N). As expected (28), con-
trol islets reached a peak in insulin secretion within
5 min of high-glucose stimulation, followed by a reduced
yet sustained second phase that persisted in the presence
of glucose (Fig. 6N). The areas under the curve (AUCs) for
the first phase (14-20 min) trended lower but did not reach
significance in the homozygous mutants (Fig. 60, 1st phase).
However, AUC of the second phase (22-45 min) was ~45%
lower in islets from homozygous mutants (Fig. 60, 2nd
phase), suggesting the recruitment of insulin granules from
the internal storage pool is affected in B-cells. Tff2 was re-
duced in the exocrine fraction post-islet isolation for the
perifusion experiment (Fig. 6P, left), whereas Tff3 expression
remained higher in homozygous mutant exocrine fractions
(Fig. 6P, right). Overall, these results suggest that loss of exo-
crine Tff2 impacts the second phase of insulin secretion in
aged mouse B-cells.

Islets From Homozygous Mutant Male Mice Exhibit
Reduced Melanophilin

To further characterize global gene expression changes in
islets from homozygous mutants (n = 5 male mice, each
group), bulk RNA-seq was performed. Surprisingly, only 22
DEGs were identified, with 15 genes upregulated and
7 genes downregulated (Fig. 7A and B and Supplementary
Data Set 2). The exocrine fraction from homozygous mu-
tant pancreata was confirmed to express lower levels of
Tff2 and higher levels of Tff3 (Supplementary Fig. 14A and
B). GSEA using Hallmark and Gene Ontology, Biological
Processes molecular signature databases revealed downre-
gulated pathways including protein secretion, Golgi vesicle
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transport, vesicle organization, establishment of protein locali-
zation to organelle, and vesidle localization (Fig. 7C and D). In
contrast, upregulated pathways included TNFa signaling
via NFkB, oxidative phosphorylation, glycolysis, cyto-
plasmic translation, inflammatory response, and leuko-
cyte chemotaxis. This analysis suggests that reduced vesicle
transport to the plasma membrane and increased metabo-
lism and inflammatory response affects islets from homo-
zygous mutant mice.

Melanophilin (Miph) was identified as the most down-
regulated gene (Fig. 7B). Mlph in B-cells plays key roles in
the second phase of insulin secretion (34). Co-IF analysis
revealed that Mlph was coexpressed with insulin in aged
control islets (Fig. 7E, top), as expected. However, aged
mutant islets exhibited reduced Mlph expression among
B-cells (Fig. 7E, bottom, and 7F). Together, these results
demonstrate that the absence of pancreatic Tff2 corre-
lates with reduced Mlph in aged B-cells.

DISCUSSION

In this study, we generated a conditional Tff2 knockout
mouse model and demonstrated the critical physiological
role of Tff2 in the pancreas. Because of Tff2’s expression
in multiple organs, investigating the pancreas in the global
Tff2 knockout mice would have introduced confounding
factors, especially from stomach, pituitary, and hypothala-
mus, which are known to participate in the metabolism of
the whole body (35). We found that Tff2 loss in the pan-
creas resulted in a reduction of the endocrine compartment
including the B-cells in E16.5 pancreas (Fig. 3). Upon reach-
ing 1 year of age, homozygous mutant mice (both male and
female) eventually developed glucose intolerance (Fig. 5)
and showed defects in the second phase of GSIS (Fig. 6).
Mutant males exhibited IGT much earlier than female mu-
tants (Fig. 5), suggesting some impact by sex. This may be
explained by the estrogen hormone produced by females
that is known to protect against the development of meta-
bolic syndrome, obesity, T2D, and insulin resistance in the
C57BL/6 strain of mice (36).

Interestingly, endocrine mass recovered as early as PO
(Supplementary Fig. 10N), while Tff3 compensation in ac-
inar was observed starting in P7 (Fig. 4L) and continued
in 1-year-old homozygous mutant pancreas (Fig. 6P). These
results suggest that Tff3 upregulation is not directly re-
sponsible for endocrine recovery prior to birth. However,

Quantification of total acinar (amylase™) and ductal (DBA™) cell mass ratios relative to total pancreas area (10-16 sections 100 um apart
per pancreas, n = 5-6 pancreata). H: Representative co-IF images for Chromogranin A (ChgA; red) and Ki67 (green). I: Quantification of to-
tal ChgA/total pancreas area ratio (10-16 sections 100 um apart per pancreas, n = 6-7 pancreata). J: Quantification of total Ki67* ChgA*
cells/total ChgA™ cells (n = 5-6 pancreata). Error bars represent SD. K: Conventional qRT-PCR analyses of all Tffs relative to g-actin in dis-
sected pancreata (n = 4-6 mice). L: Similar to K, but exocrine and islet fractions were separated and compared between mutant and con-
trol samples (n = 6 mice per group). Error bars represent SEM. M and N: Representative co-IF images from P7 samples double-stained for
insulin (green) with Tff2 (red) (M) or Tff3 (red) (N). DAPI (blue) stains for nuclei. Right panels in M and N show x4.1 magnification of the area
marked by a white dotted square. Islet/B-cell areas in M are outlined by white dotted lines. O: Co-IF staining of control tissues using Tff2
(red) with E-cad (green) in stomach or Tff3 (red) with E-cad (green) in duodenum. DAPI (blue) stains for nuclei. *P < 0.05, **P < 0.01,
***P < 0.001 and not significant (ns) determined by two-tailed unpaired t test with Welch correction for A-C, F, G, and I-L. DP, dorsal pan-
creas; VP, ventral pancreas. Scale bar = 50 pm.
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Figure 5—Upon reaching 1 year of age, homozygous mutant mice exhibit higher body weights and fasting blood glucose levels as well as
IGT. A and B: The body weight of control (T2™"; black), heterozygous (Pdx1:Cre;Tff2™*; blue), and homozygous (Pdx1:Cre; Tff2 ", red)
male (A) and female (B) mice was monitored from 10 to 60 weeks (n = 5-41 for males, n = 5-40 for females). C and D: Blood glucose levels
after a 6-h fasting period were monitored from 10 to 60 weeks of age for male (C) and female (D) cohorts (n = 5-41 for males, n = 340 for
females). E-J: IP-GTT in male and female cohorts at 20 (E and F), 40 (G and H), and 60 weeks (/ and J) (n = 5-41 for males, n = 5-40 for fe-
males). Right graphs in E-J depict quantification of the AUC from 0 to 90 min after intraperitoneal injection of p-glucose (2 g/kg body
weight). Error bars represent SD. *P < 0.05, **P < 0.01, ***P < 0.001 and not significant (ns) determined by one-way ANOVA with Tukey
post hoc test (A-J).
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Figure 6 —Aged homozygous mutants exhibit smaller pancreas organ size and impaired second-phase insulin secretion. A: Representa-
tive brightfield images of 1-year-old (1 yr) control (Tff2™" and homozygous mutant (Pdx1:Cre;Tff2™" pancreata. Scale bar = 1 mm.
B: Body weight, pancreas weight, and pancreas-to-body weight ratio for aged males (n = 14-22 for males). Error bars represent SD.
C: Representative photomicrographs of hematoxylin-eosin-stained aged control and mutant pancreata. Scale bar = 1 mm. D-F: Quantifi-
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the upregulated Tff3 in acinar cells (Supplementary Fig.
10N and Fig. 4L) paired with the Tff3 in islet cells (Fig. 4L
and N) may be sufficient to maintain glucose metabolism
in mutant mice from P7 until 1 year of age because of
Tff3's effects on B-cell proliferation (10) and insulin sensi-
tivity (37).

Although endocrine cell mass was preserved, pancreas
size was reduced in the aged homozygous mutant mice
(Fig. 6), suggesting requirement of Tff2 in maintaining exo-
crine cell mass. This observation is echoed in a prior study
by Kodama et al. where Pdx1l was specifically knocked
down in acinar cells (38); these mice developed smaller
exocrine pancreas and B-cell dysfunction. Interestingly, a
follow-up study from the same group found that the
smaller exocrine tissue was associated with reduced Tff2
(9). Our study provides causal evidence of Tff2 deficiency
in exocrine size reduction. Pancreas weight and area was
not changed at PO (Supplementary Fig. 10E and K) or P7
(Fig. 4C and Supplementary Fig. 10B) in our mutant mice.
Thus, pancreas size reduction occurs between P8 and
1 year, which can be influenced through proliferation in
the exocrine pancreas during postnatal growth (P7-P28)
(39), or a secondary effect of the lowered insulin trophic
factor for acinar cells (40) from T1D or T2D islets (41,42).

We caution that Tff2 deficiency in the duodenum
(Supplementary Fig. 6B) may contribute to body weight
increase (Fig. 5) and pancreas size decrease (Fig. 6) in
1-year-old mutants. For example, duodenal ulcers can
lead to weight gain due to postprandial pain relief (43),
and duodenal obstruction may contribute to pancreatitis,
affecting pancreas organ size (44). However, we did not
observe morphological characteristics indicative of pancrea-
titis in aged mutants. Interestingly, our findings on weight
gain differ from those reported by De Giorgio et al., who
demonstrated that Tff2 null mice were protected from
weight gain, because of increased energy expenditure and
locomotor activity (23). This discrepancy may be attributed
to confounding effects between global versus conditional
T2 knockout mice.

Using co-IF staining, we clarified that Tff2 protein ex-
pression in the pancreas, between E16.5 and 6 weeks of
age, is restricted to acinar cells (Fig. 2). Orime et al. dem-
onstrated strong Tff2 protein expression in the islets of
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adult (10-14 weeks) murine pancreas (25). Using a differ-
ent antibody, Hirata et al. showed Tff2 protein expression
in the exocrine (both acinar and ductal cells) pancreas at
E16.5, E18.5, and P1 (9); however, co-IF was not done to
confirm lineage. We used the same commercially available
antibody as Hirata et al., but with a higher dilution, and
in combination with lineage markers. Hirata et al. further
investigated the gene localization of Tff2 using in situ hy-
bridization, and found it expressed only in the acinar cells
in 8-week-old pancreas (9). scRNA-seq analysis of 20 adult
(10-15 weeks old) murine organs showed stronger ex-
pression of Tff2 in pancreatic acinar compared with ductal
cells (Supplementary Fig. 11C), and an absence of Tff2 in
islet cells (Supplementary Fig. 4B) (12). We found that
Tff2 was only expressed in the exocrine tissue (Fig. 4L
and M). More recently, constitutive Tff2-Cre mice were
generated that show embryonic lineage tracing to adult
acinar but not endocrine or ductal cells (45). Notably, the
aforementioned studies also utilized mice with C57BL/6
background, which indicates that the differences we ob-
served in expression patterns were not due to strain
differences. Taken together, we conclude that Tff2 is
preferentially expressed by the exocrine acinar cells in
the murine pancreas.

Transcriptomic analysis of aged islets from homozy-
gous mutants versus control led to the identification of
melanophilin (MIph), a leading-edge gene in the vesicle lo-
calization pathway that is downregulated in mutants (Fig.
7B and D). Mlph functions in membrane trafficking, and,
in skin, melanocytes form a complex with a GTPase,
Rab27a, and myosin-Va on cortical actin filaments to di-
rect the transfer of melanosomes (organelles that carry
pigment) to the plasma membrane for secretion to neigh-
boring keratinocytes (46). Mutations in Miph cause prob-
lems with melanosome transportation that result in leaden
(light-colored) mice compared with control mice with dark
color (47). Additionally, leaden mice exhibit IGT due to re-
duced Mlph-associated insulin granule transportation to
the plasma membrane during the second phase of insulin
secretion (34,48). Our Tff2-deficient aged mice demon-
strate the same reduction in the second phase of insulin
secretion (Fig. 6N and O), which may be explained by the
downregulation of Mlph (Fig. 7B and F). Future mechanistic

for each pancreas, n = 7-8 male mice). Error bars represent SD. G: Representative photomicrographs of immunohistochemistry staining
of insulin (red) and hematoxylin (blue) in aged control and mutant pancreata. Scale bar = 1 mm. H-J: Quantification of total pancreas area
(square micrometers) (H), the ratio of total insulin + area (square micrometers) divided by total pancreas area (/), and total B-cell mass (J)
relative to total pancreas weight (five to eight sections 100 um apart for each pancreas, n = 7 male mice). Error bars represent SD. K and
L: In vitro GSIS in static incubation for cultured islets isolated from aged control and homozygous mutant male mice (n = 4-7). Error bars
represent SEM. M: Protein content (N) of islets from M (n = 3-4 islet batches from four to seven male mice). Error bars represent SEM. N:
Islets were isolated from aged male control or mutant mice and handpicked into groups of 40 and layered onto bead columns for parallel
perifusion analysis. The islets were preincubated for 30 min in low glucose (2.8 mmol/L) followed by basal sample collection (1-13 min) to
establish a baseline. Glucose was then elevated to 20 mmol/L for 35 min. Eluted fractions were collected at 1-min intervals at a flow rate
of 0.3 mL/min, and secreted insulin was measured by radioimmunoassay. O: Quantification of the AUC for first-phase (14 to 20 min) and
second-phase (22 to 45 min) insulin release from islets isolated from aged male control or mutant mice (n = 4 islet batches from eight male
mice). Error bars represent SD. P: Conventional gRT-PCR analyses of Tff2 and Tff3 relative to B-actin in exocrine tissue fraction after islet
isolation shown in O (n = 8 mice). Error bars represent SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and not significant (ns)
determined by two-tailed unpaired t test for H-J, O, and P or with Welch correction for B, D-F, L, and M.
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Figure 7 —Melanophilin (MIph) gene and protein are reduced in islets of homozygous mutants at 1 year of age. A: Bulk RNA-seq followed by vol-
cano plot showing a total of 22 DEGs in aged homozygous mutant male pancreata compared with controls, with 7 downregulated and 15 upregu-
lated genes (n = 5 each group). FC, fold change; FDR, false discovery rate. B: List of the seven downregulated DEGs (false discovery rate < 0.05).
C and D: GSEA using Hallmark (C) and Gene Ontology, Biological Pathways (GOBP) (D) molecular signature databases. E: Representative co-IF
images from aged control (T2 ") and mutant (Pdx7:Cre;T#2™" male mice pancreata stained with insulin (green), Miph (red), and DAPI (blue).
F: Quantification of Miph protein signal intensities per individual -cells per individual mouse (n = 4 mutant and 5 control male 1-year-old mice;
n=3,589 + 1,356 [range 1,949-5,800] B-cells per pancreas). Error bars represent SD. **P < 0.01 determined by two-tailed unpaired t test with Welch
correction. Right panels in E show a x12.9 magnification of the area marked by a white dotted square (n = 4-5 each group). Scale bar = 50 pm.
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studies are underway to clarify how the absence of Tff2 in
the mouse pancreas leads to a downregulation of Mlph
in aged B-cells. Interestingly, Mlph was also downregulated
in the E16.5 mutants compared with controls (Fig. 3C), po-
tentially through a different mechanism because E16.5
B-cells are not yet functional in GSIS (49).

Our results add to a growing number of studies that
demonstrate that signals from the exocrine pancreas can
affect the endocrine pancreas. For example, the risk of de-
veloping diabetes is increased by exocrine diseases, such
as cystic fibrosis (3,4), pancreatitis (5,6), and pancreatic
cancer (7,8). Also, patients with a mutation in an acinar-
specific gene, carboxyl ester lipase, known as MODY8
gene, develop diabetes through secretion of the toxic mu-
tant carboxyl ester lipase that is uptaken by the (-cells,
causing dysfunction (50). Our study now identifies Tff2
as a beneficial protein, secreted from exocrine tissue, re-
quired for maintaining 3-cell function.

In summary, we demonstrate that Tff2 is an exocrine
regulator required for maintaining -cell number during
embryo development and sustaining 3-cell secretory func-
tion during aging. Our finding has implications for diabe-
tes disease progression and therapy.
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