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Predicting the risk category 
of thymoma with machine 
learning‑based computed 
tomography radiomics signatures 
and their between‑imaging phase 
differences
Zhu Liang 1,6, Jiamin Li 3,6, Yihan Tang 3, Yaxuan Zhang 3, Chunyuan Chen 1, Siyuan Li 4, 
Xuefeng Wang 1, Xinyan Xu 3, Ziye Zhuang 3, Shuyan He 2,5* & Biao Deng 1*

The aim of this study was to develop a medical imaging and comprehensive stacked learning‑based 
method for predicting high‑ and low‑risk thymoma. A total of 126 patients with thymomas and 5 
patients with thymic carcinoma treated at our institution, including 65 low‑risk patients and 66 
high‑risk patients, were retrospectively recruited. Among them, 78 patients composed the training 
cohort, while the remaining 53 patients formed the validation cohort. We extracted 1702 features 
each from the patients’ arterial‑, venous‑, and plain‑phase images. Pairwise subtraction of these 
features yielded 1702 arterial‑venous, arterial‑plain, and venous‑plain difference features each. The 
Mann‒Whitney U test and least absolute shrinkage and selection operator (LASSO) and SelectKBest 
methods were employed to select the best features from the training set. Six models were built 
with a stacked learning algorithm. By applying stacked ensemble learning, three machine learning 
algorithms (XGBoost, multilayer perceptron (MLP), and random forest) were combined by XGBoost to 
produce the the six basic imaging models. Then, the XGBoost algorithm was applied to the six basic 
imaging models to construct a combined radiomic model. Finally, the radiomic model was combined 
with clinical information to create a nomogram that could easily be used in clinical practice to predict 
the thymoma risk category. The areas under the curve (AUCs) of the combined radiomic model in 
the training and validation cohorts were 0.999 (95% CI 0.988–1.000) and 0.967 (95% CI 0.916–1.000), 
respectively, while those of the nomogram were 0.999 (95% CI 0.996–1.000) and 0.983 (95% CI 0.990–
1.000). This study describes the application of CT‑based radiomics in thymoma patients and proposes 
a nomogram for predicting the risk category for this disease, which could be advantageous for clinical 
decision‑making for affected patients.
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PAS  Picture archiving and communication system
ADC  Apparent diffusion coefficient
TETs  Thymic epithelial tumors
SVM  Support vector machine
MLP  Multilayer perceptron

Thymoma, a rare neoplasm of thymic epithelial origin, is the predominant malignancy of the anterior 
 mediastinum1, accounting for approximately 47% of all neoplasms in this  region2,3; in Asia, its prevalence is 
approximately 0.49 per 100,000 person-year4,5. Notably, thymoma is associated with paraneoplastic  syndromes6, 
particularly myasthenia gravis. In 2015, the World Health Organization (WHO) introduced a new classification 
system for thymic epithelial tumours, which includes six categories: types A, AB, B1, B2 and B3 and thymic 
 carcinoma7. Based on the biological behaviour of the tumour, the categories can be simplified into low-risk 
thymoma (types A, AB, and B1) and high-risk thymoma (types B2 and B3)8.

Surgery is the primary treatment for thymoma, with complete resection resulting in the best survival  rates9,10. 
Patients with low-risk thymoma typically do not require adjuvant therapy, whereas those in the high-risk group 
may require multimodal  therapy11. Early and accurate diagnosis and differentiation between the risk groups 
are therefore crucial. However, tissue biopsy is limited by the spatiotemporal heterogeneity of the tumour and 
the risks associated with deep and transpleural biopsy. Computed tomography (CT) is a noninvasive imaging 
modality with wide  applicability12. Radiomics enables the noninvasive quantification of tumour heterogeneity 
and identification of malignant  characteristics13.

In recent years, numerous studies have focused on the use of radiomics for predicting the risk category of 
 thymomas14. These studies include that by Tian et al.15, who investigated the performance of radiomic-based 
CT phenomics in predicting the pathological stage and survival outcomes of thymic epithelial tumour patients, 
achieving integrated areas under the curve (AUCs) of 0.935 and 0.811. Xiao et al.16 developed a comprehen-
sive radiomic diagnostic model using multivariate logistic regression analysis that incorporates clinical and 
conventional MR imaging characteristics, apparent diffusion coefficient (ADC) values, and radiomic features 
and demonstrated excellent performance in distinguishing low- from high-risk thymoma patients. Feng et al.17 
utilized 14 machine learning models with different feature selection strategies to establish a three-class model 
based on radiomic features, predicting simplified risk categories of thymic epithelial tumours (TETs). MM 
et al.14 trained a support vector machine (SVM)-based classification model to differentiate between thymomas 
and thymic carcinomas. Integration of traditional and radiomic features in the model achieved the highest 
diagnostic  performance18.

However, few studies have been conducted to extract and analyse characteristic differences between the 
features in plain scan and arterial and venous phase CT images. The objective of this study was to propose an 
imaging-based radiomic and machine learning approach to predict high- and low-risk  thymoma19. To achieve 
this aim, we extracted imaging features and their paired differences among plain-, arterial-, and venous-phase 
CT images and input these data into machine learning algorithms to establish robust predictive  models20. By 
combining radiomic features with clinical characteristics, we sought to provide clinicians with more refined 
diagnostic and prognostic insights into thymoma, thereby enabling them to make more precise personalized 
treatment  decisions21.

Materials and methods
Patient cohort and pathological evaluation
This retrospective study was approved by the Ethical Review Committee of the Affiliated Hospital of Guangdong 
Medical University. Because of the retrospective nature of the study, the Ethics Committee waived the need for 
written informed consent. The study design and pipeline are illustrated in Fig. 1. We acquired data from a cohort 
of 126 patients diagnosed with thymoma and 5 patients diagnosed with thymic carcinoma (Fig. 2) obtained 
exclusively from the hospital’s picture archiving and communication system (PACS). The data were collected 
from patients who were seen at the hospital from 2015 to 2023, including 74 male and 57 female patients, with 
ages ranging from 16 to 80 years. The inclusion criteria were as follows: (1) archival data indicating that the 
patient was postoperatively pathologically diagnosed with thymoma between January 2015 and October 2023; 
and (2) complete CT images and clinicopathological data. The following exclusion criteria were applied: (1) CT 
imaging artefacts; (2) no relevant treatment prior to the preoperative CT scan; and (3) incomplete clinical data.

CT imaging protocol
CT scans were performed with a GE Medical Systems Optima CT680 series scanner at the Affiliated Hospital 
of Guangdong Medical University. The imaging protocol followed standardized procedures to ensure consistent 
image acquisition across all patients. For each patient, a series of axial images were acquired with the following 
settings: slice thickness: 0.625 mm, tube voltage: 120 kV, tube current: 261 mA, reconstruction diameter: 380.00. 
For enhanced scanning, iodohexanol was injected into the median cubital vein at a flow rate of 4 ml/s and a dose 
of 0.9–1.0 ml/kg. Phase triggering was performed with aortic tracking: when the CT value reached and exceeded 
100 HU, the arterial phase was initiated, and the venous phase followed after a 15-s delay.

Image segmentation and feature extraction
The original images from the plain phase (PP), arterial phase (AP) and venous phase (VP) were stored in cor-
responding folders in DICOM format. A radiologist with 5 years of experience used ITK-SNAP 3.8 software 
(https:// www. itksn ap. org) to manually delineate the lesions layer by layer; these delineations were then verified 
by a radiologist with more than 20 years of experience, and if the findings were disputed, a third radiologist 

https://www.itksnap.org
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Figure 1.  Study design and pipeline.

Figure 2.  Flowchart of patient selection. CT, computed tomography.
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with more than 30 years of experience made the final decision. The window width and window level were set 
to 35 and 450, respectively. Features were extracted from the segmented images with PyRadiomics using the 
following settings: Partition width: 25; Resampling pixel spacing: [1, 1, 1] (in millimetres); interpolator: nearest 
neighbour; normalization: enabled. The RadiomicsFeatureExtractor class was used to extract features from each 
phase with all features and image types enabled. The extracted features mainly included first-order histogram 
features, morphological features, texture features, and Gaussian wavelet transform filter features.

By integrating the ITK-SNAP and PyRadiomics libraries, thymoma feature information can be accurately 
extracted from CT images . We used PyRadiomics to extract features from the PP, VP and AP images separately, 
obtaining 1702 features from each phase for a total of 5106 features. The pairwise differences between the features 
from each phase were then calculated to generate an additional 5106 features, resulting in a dataset containing 
a total of 10,212 features.

Feature selection
The comprehensive set of 10,212 radiomic features consisted of the features extracted from the plain-, arterial-, 
and venous-phase images and the between-phase differences in those features. A total of 1702 features each 
were extracted from the arterial-phase, venous-phase, and plain scan-phase images. These features were then 
pairwise subtracted, resulting in 1702 arterial-venous difference features, 1702 arterial-plain difference features, 
and 1702 venous-plain difference features. These features are hereafter referred to as plain, arterial, venous, 
delta_arterial_venous, delta_plain_arterial, and delta_plain_venous features, encompassing a diverse spectrum 
of quantitative imaging characteristics.

To select the most informative features, a multistep approach was employed. First, the Mann‒Whitney U test 
was applied to compare features between the risk group; features with p values less than 0.05 were  retained22. The 
least absolute shrinkage and selection operator (LASSO) method was subsequently utilized to further streamline 
the feature set based on their coefficients; however, the size of the resulting feature set remained substantial. To 
achieve optimal performance and interpretability, the SelectKBest method, which selects the top ten features 
within a feature set with the highest discriminatory potential, was employed (Suppl Appendix A1) The six sets 
of features described above underwent the aforementioned feature selection processes, and the relevant results 
are shown in Fig. 3.

Model building based on stacked ensemble learning
To verify the stability of the model, Bootstrapping method was used for model evaluation given the small size of 
the sample. Bootstrapping is an effective resampling technique that can generate multiple sample sets through 
repeated sampling from the original dataset with repositions. These sample sets are used to train and validate 
the models, thus providing estimates of the performance of multiple  models23. To scale up the predictive power 
of multiple machine learning algorithms, we used a stacked ensemble learning approach to build a robust and 
accurate model for predicting high-risk thymoma. In the first layer, three different machine learning algorithms 
were selected to develop the six radiomic models, including XGBoost, random forest, and multilayer perceptron 
(MLP). The results were fed into the second layer, which was then trained on the inputs with  XGBoost24, yielding 
the final model. We chose XGBoost as the meta-learner to summarize the prediction results of the base model 
(Suppl Appendix A3).

During the construction of the between-phase features, data from the plain, arterial, and venous phases were 
systematically analysed. Pairwise subtraction was performed to derive the corresponding difference features 
between these phases. These difference features serve as pivotal metrics for comprehending the characteristic 
changes in thymoma across distinct stages.

The above basic model was trained with the features from the plain, arterial and venous phases and the three 
sets of difference features. The base models were integrated using XGBoost to generate the final six independent 
 models25. The radiomic signature is the output of the integrated image model, which is constructed as follows. We 
use stacked learning methods to learn the arterial, venous, plain, and difference features. The first layer of stacked 
learning consists of three basic learners: XGBoost, random forest, and MLP, and the second layer is XGBoost. 
The final output was used to construct six independent models with the arterial phase, venous phase, plain phase, 
and three sets of difference features. XGBoost was subsequently used to integrate the six imaging-based models 
to output the third layer model, the combined radiomics model (the seventh model). Through multiple logistic 
regression, a nomogram (the eighth model) was constructed based on the combined radiomic model as well as 
age and sex. The model building process is shown in Fig. S2.

Statistical analysis
The Mann‒Whitney U test was used to compare continuous data (the radiomic features) between groups in 
Python via the SciPy library, and a unilateral p value < 0.05 was considered to indicate statistical significance. 
The Chi-square test and t test were conducted in Excel to compare sex and age, respectively, and two-tailed p val-
ues < 0.05 were considered to indicate statistical significance. Python (3.9.12) was used to implement the LASSO 
and SelectKBest algorithms for filtering imaging omics features and the MLP, random forest, and XGBoost 
algorithms to develop imaging omics models. The nomogram was constructed via the code at the following 
address: "https:// github. com/ Hhy096/ nomog ram". The AUCs of the models were compared with the DeLong 
test in Python (3.9.12), whose results are shown in Table 1. Decision curve analysis (DCA) was performed in 
Python (3.9.12) to evaluate the clinical utility of the models, and calibration curves were drawn to describe the 
calibration ability of the models in the training and validation sets.

https://github.com/Hhy096/nomogram
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Figure 3.  Radiomic feature selection. (a–f) Cross-validation curves of the LASSO regression model. (a) 
Arterial-phase features, (b) venous-phase features, (c) plain scan-phase features, (d) differences between the 
arterial-phase features and the venous-phase features, (e) differences between the arterial-phase features and the 
plain scan-phase features, (f) differences between the plain scan-phase features and the venous-phase features. 
(g–l) Coefficient curves for the radiomic features. (g) Arterial-phase features, (h) venous-phase features, (i) 
plain scan-phase features, (j) differences between the arterial-phase features and the venous-phase features, (k) 
differences between the arterial-phase features and the plain scan-phase features, (l) differences between the 
plain scan-phase features and the venous-phase features. (m–r) Coefficients in the LASSO model. (m) Arterial-
phase features, (n) venous phase features, (o) plain scan-phase features, (p) differences between the arterial-
phase features and the venous-phase features, (q) differences between the arterial-phase features and the plain 
scan-phase features, (r) differences between the plain scan-phase features and the venous-phase features.
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Ethics approval and consent to participate
This retrospective clinical study was approved by the Ethics Committee of the Affiliated Hospital of Guangdong 
Medical University, and was carried out in accordance with the Declaration of Helsinki. The requirement for 
the informed consent was waived.

Results
Patient characteristics
This study included 131 patients with thymomas who received treatment at our hospital, of whom 65 were low 
risk and 66 were high risk. Among these patients, 78 were assigned to the training cohort, while the remaining 
53 formed the validation cohort. Table 2 presents the baseline characteristics of the thymoma patients at the 
onset of the study. The clinical and pathological characteristics did not differ significantly between the training 
and validation cohorts.

Feature selection
After a comprehensive feature set was extracted with the PyRadiomics library, a multistage feature selection 
process was implemented to identify the most informative  features26. First, we normalized the features of the 
arterial-phase, venous-phase, and plain scan phase images and the pairwise differences between the phases; 
a total of 1702 features were extracted from each of the six sets of images. We subsequently used the Mann‒
Whitney U test to exclude features with p values greater than 0.0527 and retained 19, 27 and 45 features in the 
arterial phase, venous phase and plain scan phase, respectively. Additionally, 231 features were retained from 
the arterial-venous phase set, 190 from the arterial-plain phase set, and 41 from the venous-plain phase set. 
Then, we implemented LASSO with tenfold cross-validation for further feature screening, retaining 7, 9 and 45 
features from the arterial-phase, venous-phase and plain scan-phase features, respectively. Furthermore, 19, 17, 
and 14 features were retained from the arterial-venous phase, arterial-plain phase, and venous-plain phase sets, 
respectively. Finally, we selected the most relevant features with the SelectKBest method. A total of 7, 9 and 10 
features were retained form the arterial-phase, venous-phase, and plain scan-phase sets, respectively, while 10 
features each were retained from the three difference sets.

Table 1.  DeLong test results for each model.

Model
(AUC Value)

a
(0.820)

a_p
(0.795)

a_v
(0.853)

p
(0.738)

p_v
(0.800)

v
(0.783)

nomogram
(0.983)

radiomics
(0.967)

a
(0.820) 1 – – – – – – –

a_p
(0.795)  < 0.01 1 – – – – – –

a_v
(0.853) 0.525 0.037 1 – – – – –

p
(0.738) 0.273  < 0.01 0.485 1 – – – –

p_v
(0.800) 0.108  < 0.01 0.897 0.101 1 – – –

v
(0.783) 0.593 4.913 0.162 0.887  < 0.01 1 – –

nomogram
(0.983) 0.014 0.651 0.142 0.027 0.137 0.012 1 –

radiomics
(0.967) 0.026 0.542 0.446 0.074 0.580 0.084 0.368 1

Table 2.  Baseline patient characteristics.

Characteristic Types N
Mean age
(± standard deviation) P-value Sex P-value

WHO classification

Low risk thymoma

A 19 55.5 (± 14.653) 0.034 Male 29; female 36 0.472

AB 32

B1 14

High risk thymoma

B2 39 51.0 (± 13.214) Male 45; female 21

B3 14

B2B3 5

Thymic carcinoma 8

Total 131 53.3 (± 14.073) Male 74; female 57
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Radiomic model development
By exploring the key stages of radiomic model development, the features selected above were used to create a 
robust predictive model for predicting high-risk thymoma.

The six feature sets were used to construct a feature-enhanced dataset that encapsulates the essence of the 
radiomic attributes for each patient. To build the radiomic model, a series of machine learning algorithms (ran-
dom forest, XGBoost, and MLP) were employed, each customized to exploit the potential of the curated features. 
Stacked integrated learning methods were used to integrate the outputs of individual machine learning models 
to create powerful metamodels. The performance of the radiomic models was rigorously evaluated through a 
variety of metrics, including accuracy, positive predictive value, negative predictive value, sensitivity, specific-
ity, and AUC. The performance of the models is shown in Fig. 4, and the detailed values are shown in Table 3.

Ensemble model development and validation
The ensemble model is a combination of the plain, arterial and venous phase models, exploiting the collective 
strengths of the predictive capabilities of each imaging  phase28. XGBoost was chosen as the meta-learner to 
aggregate the predictions of the base models. The nomogram combining the age, sex, and the radiomics model 
output is shown in Fig. 5. The performance of the integrated model was thoroughly evaluated in the training 
and independent validation datasets. The results of DCA are shown in Fig. 6. To determine the stability and 
generalizability of the model in different datasets, cross-validation and external validation were performed. 
Feature importance analysis was performed on the ensemble model to reveal the impact of individual radiomic 
attributes on the ensemble prediction and to facilitate model  interpretation29.

Figure 4.  Model performance. (a–d) ROC curves of the models. (a,b) Models based on the plain scan-phase, 
venous-phase, and arterial-phase features and the corresponding pairwise differences in the features between 
imaging phases in the training (a) and test sets (b). (c,d) Combined radiomic model (c) and nomogram (d) in 
the training and test sets. (e,f) Comparison of the AUCs in the training and test sets for the radiomic model (e) 
and the combined model (f). (g,h) Bar plot of the performance of the eight prediction models in the training set 
and test set.
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Discussion
In the field of medical imaging research, differential analysis of CT imaging across different phases has become 
a valuable diagnostic tool. Previous studies have shown that differences in scan and enhancement CT values 
can form the basis for optimizing contrast agent injection plans and increasing the quality and accuracy of 
diagnostic  imaging30. Tang et al. reported that the difference in CT values between the arterial phase and portal 
venous phase (PVPMAP) was an independent factor in stratifying the risk of stomach gastrointestinal stromal 
tumours (GISTs)31. With this background, this study is the first to propose the use of an ensemble learning 
method to evaluate the risk category of thymoma by combining the CT radiomics features from three different 
phases (plain phase, arterial phase and venous phase) with those from the pairwise differences in the phases to 
construct models with good predictive performance that could serve as an innovative and more accurate method 
for assessing the risk of thymoma.

In this study, the AUCs of the models constructed with the differential features tended to be greater than those 
of the three-phase models. The reason may be that the three-phase CT images provided information about the 
morphology and density of the tumours in different blood flow states, whereas the differential values provided 
information about dynamic changes. By using the differential values, subtle differences in tumour growth and 
angiogenesis could be better captured. Second, the differential images may allow the early detection of lesions or 

Table 3.  Performance of the prediction models.

Training dataset Test dataset

AUC (95% CI) Accuracy PPV NPV Sensitivity Specificity AUC (95% CI) Accuracy PPV NPV Sensitivity Specificity

Arterial phase 0.945 0.833 0.842 0.825 0.821 0.846 0.822 0.774 0.826 0.733 0.704 0.846

Venous phase 0.943 0.846 0.935 0.787 0.744 0.949 0.782 0.660 0.714 0.625 0.556 0.769

Unenhanced phase 0.901 0.833 0.861 0.810 0.795 0.872 0.743 0.698 0.690 0.708 0.741 0.654

The change between the 
arterial phase and the 
venous phase

0.991 0.897 0.844 0.970 0.974 0.821 0.845 0.774 0.759 0.792 0.815 0.731

The change between the 
arterial phase and the 
unenhanced phase

0.963 0.885 0.826 0.969 0.974 0.795 0.785 0.717 0.929 0.641 0.481 0.962

The change between the 
unenhanced phase and the 
venous phase

0.922 0.846 0.846 0.846 0.846 0.846 0.775 0.642 0.900 0.581 0.333 0.962

Figure 5.  Combined radiomic nomogram for predicting the risk category of thymoma. After calculating the 
total score, the probability of high-risk thymoma can be derived from the point on the curve corresponding to 
the total score on the x-axis.
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abnormalities more easily, as small changes can be masked in the static phases. Finally, the differential signature 
better reflects the enhancement pattern produced by the contrast agent within the tumour, which is very valuable 
for evaluating the tumour blood supply and aggressiveness. Our model effectively demonstrated the changes in 
the heterogeneity within the area of the tumour.

Additionally, in this study, we utilized stacked ensemble learning in the prediction of high- and low-risk 
thymomas. Previously, Liu et al.32 used transfer learning with clinical, radiomic, and deep features to establish 
an SVM classifier-based model for predicting high- and low-risk thymomas, achieving AUCs of 0.99 and 0.95, 
respectively. The nomograms we exported via stacked learning achieved AUC values of 0.99 and 0.98, respectively, 
exceeding the AUCs reported in previous studies. The reason may be that stacked learning integrates predictions 
from multiple base models, effectively improving the accuracy and robustness over individual radiomic models 
in predicting thymoma risk. This approach not only handles complex imaging data well but also produces mod-
els with good generalization abilities, providing clinicians with a more reliable tool for assessing thymoma risk. 
Compared with biopsy, machine learning models have significant value in diagnosing benign and malignant 
tumours due to their noninvasive nature, providing efficient clinical assessment tools for patient comfort and 
diagnostic effectiveness (Suppl Appendix A2). We used the interpretable machine learning algorithm Random 
Forest to build a model based on features selected during the arterial phase. The model achieved an AUC of 
0.78 on the test set, which is lower than the AUC of 0.84 achieved by the model constructed using the stacked 
learning algorithm.

Through the analysis of the selected features, we noted that various types of image features, including texture 
features (such as arterial_original_gldm_SmallDependenceEmphasis), morphological features (such as shape-
based (3D)), and first-order statistical features (such as first-order statistics) were screened. Features extracted 
from the arterial phase, such as arterial_original_gldm_SmallDependenceEmphasis and arterial_wavelet-LLH_
gldm_DependenceEntropy (abbreviated feature names), depict specific morphological and textural character-
istics of the lesion during arterial perfusion that are closely related to vascular perfusion. Features extracted 
from the venous phase, such as venous_wavelet-LHH_glszm_SizeZoneNonUniformity and venous_wavelet-
HHH_gldm_Dependence Variance, highlight the specificity in identifying the lesion during venous perfusion. 
Plain scan phase features such as plain_wavelet-LHL_gldm_SmallDependence_HighGrayLevelEmphasis and 
delta_plain_venous_exponential_glszm_LargeArea_HighGrayLevelEmphasis provide baseline image informa-
tion independent of the use of contrast agent. Differential features, such as delta_plain_arterial_original_glcm_
MCC and delta_plain_arterial_original_glrlm_RunEntropy, may reflect significant changes occurring between 

Figure 6.  Decision curve analysis. The net benefit of each model is plotted on the y-axis, and the x-axis 
indicates the threshold values. The black and dashed lines indicate the assumptions that all or no patients have 
thymoma, respectively. (a,b) Combined radiomic model in the training (a) and test sets (b). (c,d) Nomogram in 
the training (c) and test set (d).
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the two corresponding phases that may be associated with malignant transformation or other lesion features, 
providing strong clues for diagnosing benign and malignant  thymomas33. These features appear to prioritize the 
basic morphological characteristics of the lesion, helping identify the inherent properties of lesions without the 
influence of contrast agent. Furthermore, these features reveal significant changes that occur within thymomas 
under different blood supply states. This multilevel feature extraction aids in comprehensively describing the 
complex characteristics of thymomas, providing clinicians with more information about the lesions and dem-
onstrating potential for influencing clinical decision-making and in the formulation of personalized treatment 
strategies.

Although we did not assess pathological molecular markers such as Ki-67 and TdT in the construction of 
the predictive models in this study, their importance should not be ignored. Instead, in future studies, we can 
combine machine learning with medical imaging features not only to predict thymoma risk but also to determine 
the pathological type of the tumour. This combined approach would be conducive to providing personalized 
therapies, optimizing treatment regimens, and improving patient survival. Our ultimate goal is to develop a 
universal predictive model for all types of cancer, opening new horizons for cancer research and treatment. 
Achieving this goal, however, requires in-depth research into the role of pathological molecular markers in cancer 
and their application in predictive models. This is a challenging but promising mission that could provide new 
perspectives for understanding and fighting cancer.

In this study, we encountered challenges related to the small sample size and complexity of the model design, 
both of which can lead to overfitting and consequently degrade model performance on new data. To increase the 
robustness and predictive accuracy of the model, we employed the bootstrap method, mitigating the depend-
ence on a single dataset through repeated sampling and providing confidence intervals for various performance 
metrics. By effectively utilizing limited data, this strategy improved model robustness.

However, this study has several other limitations that should be noted. First, its single-centre nature limits 
the generalizability of the results, since the clinical and demographic characteristics of patients may differ across 
regions. Second, the retrospective design and limited sample size resulted in a relatively small dataset, which may 
have affected model training and performance evaluation, increased the risk of overfitting, and reduced external 
validity. Furthermore, the lack of inclusion of genomic data is an important limitation, as it may provide key 
insights into the biological mechanisms of thymomas.

To overcome these limitations, future research should adopt a multicentre and prospective design to col-
lect more comprehensive and consistent data, increase the sample size to improve the statistical strength of the 
data, and integrate genomic data to complement the radiological and clinical features. Such an approach would 
facilitate a more complete understanding of thymoma, identifying molecular biomarkers associated with dis-
ease prognosis and treatment response. With these improvements, the accuracy and reliability of the thymoma 
risk prediction models could be improved, leading to improvements in clinical decision-making and patient 
outcomes.

In conclusion, our study revealed that radiomics can effectively predict the risk level of thymic tumour 
patients, with clinical differential radiomic signatures demonstrating stronger predictive power than the single-
phase radiomic signatures. This knowledge can aid clinicians in guiding the selection of personalized treatment 
plans for early-stage thymoma patients. The proposed approach provides robust support for personalized therapy, 
with important implications for future clinical practice.
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