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Identification of the novel 
exhausted T cell CD8 + markers 
in breast cancer
Hengrui Liu 3, Angela Dong 4, Ayana Meegol Rasteh 5, Panpan Wang 2* & Jieling Weng 1*

Cancer is one of the most concerning public health issues and breast cancer is one of the most 
common cancers in the world. The immune cells within the tumor microenvironment regulate cancer 
development. In this study, single immune cell data sets were used to identify marker gene sets for 
exhausted CD8 + T cells (CD8Tex) in breast cancer. Machine learning methods were used to cluster 
subtypes and establish the prognostic models with breast cancer bulk data using the gene sets to 
evaluate the impacts of CD8Tex. We analyzed breast cancer overexpressing and survival-associated 
marker genes and identified CD8Tex hub genes in the protein–protein-interaction network. The 
relevance of the hub genes for CD8 + T-cells in breast cancer was evaluated. The clinical associations 
of the hub genes were analyzed using bulk sequencing data and spatial sequencing data. The pan-
cancer expression, survival, and immune association of the hub genes were analyzed. We identified 
biomarker gene sets for CD8Tex in breast cancer. CD8Tex-based subtyping systems and prognostic 
models performed well in the separation of patients with different immune relevance and survival. 
CRTAM, CLEC2D, and KLRB1 were identified as CD8Tex hub genes and were demonstrated to have 
potential clinical relevance and immune therapy impact. This study provides a unique view of the 
critical CD8Tex hub genes for cancer immune therapy.
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Cancer is one of the most concerning public health issues in the  world1. It is estimated that in 2024, there will be 
approximately 2,001,140 new cancer cases and 611,720 cancer-related deaths in the United  States2. In China, it 
was estimated that approximately 4,800,000 new cancer cases occurred, causing about 3,200,000 cancer-related 
 deaths3. Breast cancer is one of the most common cancers in the world 3. Much as the prevention and tumorigen-
esis of breast cancer have been studied intensively in the past  decades4, the incidence of breast cancer increased 
by 0.5% each year from 2014 to  20185. The development of breast cancer was impacted by both genetic risk fac-
tors and environmental risk factors. Clinical breast cancer was subtyped by the expression level of certain breast 
cancer critical receptors: the estrogen receptor (ER), the progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2). Breast cancer was divided into the following 4 molecular subtypes: Luminal 
A, Luminal B, Triple negative (all called basal-like), and HER2-enriched.

It has been widely accepted that the immune cells within the tumor microenvironment regulate cancer 
 development6. Tumor-infiltrating immune cells have emerged as clinically relevant and highly associated with 
prognosis and response to treatment for breast cancer as well as other cancer types 7. Checkpoint blockade 
therapies have demonstrated notable advancements in treating various human cancer  types8–10. Breast cancer, 
previously considered poorly immunogenic, has been an  exception11. Even though breast cancer isn’t typically 
considered highly immunogenic due to its relatively low tumor mutational burden, the abundance of tumor-
infiltrating lymphocytes in breast cancer correlates with markedly improved prognoses, both with and without 
PD-1 targeted  immunotherapy12,13. Two checkpoint inhibitors targeting the PD-1/PD-L1 pathway, atezolizumab 
and pembrolizumab, have gained approval for treating triple-negative breast cancer  patients14,15. Our comprehen-
sion of the mechanisms underlying resistance or response to immunotherapy remains incomplete, as does our 
understanding of the intricate cellular interactions within the tumor immune microenvironment. To develop 
new immunotherapies and utilize existing ones effectively for breast cancer patients, it is imperative to grasp the 
tumor immune microenvironment comprehensively. Although breast cancer tumor-infiltrating lymphocytes are 
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mainly composed of CD3 + T  cells16,17, recent research has identified a subset of CD8 + T cells that play a crucial 
role in breast  cancer18. This finding is supported by a single-cell RNA sequencing study of CD3 + T cells isolated 
from human primary breast  cancer18. This subset of CD8 + T cells exhibited elevated expression levels of immune 
checkpoint molecules like PDCD1 (PD-1), CTLA4, HAVCR2 (TIM-3), and LAG3. The transcriptional signature 
originating from these cells was linked to improved prognoses, irrespective of the total quantity of CD8 + T cells 
present and the administered  treatment18,19. For immune cells and other cells in cancer, the unique biomarkers 
of cells can be used to evaluate the abundance of the cells in tumors. The discovery and investigation of these cell 
biomarkers in cancer facilitate the understanding of the role and function of the corresponding cells in tumors.

The inherent heterogeneity of breast cancer poses significant challenges for conventional diagnostic and 
therapeutic  methods20. Typically, these approaches rely on analyzing bulk tumor tissue samples, which may 
obscure underlying heterogeneity due to their focus on average expression  levels20. However, emerging tech-
nologies like single-cell analysis offer promising alternatives, already widely used in oncology  research21,22. By 
examining gene expression, phenotypes, protein levels, and other cellular properties at an individual cell level, 
these techniques are well-suited to tackle tumor heterogeneity, particularly in highly diverse cancers like breast 
 cancer23–25. Single-cell analysis can aid in predicting cellular evolution during tumor progression and enhance 
the precision of predicting treatment outcomes and patient  prognosis23–25. Moreover, these techniques play a 
vital role in devising novel therapeutic strategies by enabling the detailed examination of genetic variations and 
phenotypic characteristics of tumor cells, leading to the identification of new therapeutic  targets20. This, in turn, 
facilitates the development of highly targeted treatment strategies, improving our ability to predict treatment 
efficacy and potential drug resistance. Single-cell gene sequencing, utilizing next-generation sequencing (NGS), 
has become indispensable for studying breast cancer  heterogeneity26. Unlike traditional Sanger sequencing, NGS 
systems employ massive parallel sequencing to generate billions of DNA reads, allowing for the detection of 
various genetic variations, including single-nucleotide mutations, small insertions/deletions, and copy number 
 variations27. This comprehensive view aids in streamlining the development of targeted treatment strategies. For 
example, in HER2-positive breast cancer, single-cell sequencing identifies diversity in HER2 gene amplifica-
tion across different cells, facilitating personalized treatment  plans28. NGS versatility extends to RNA sequenc-
ing (RNA-seq), enabling quantitative and sequence analyses of diverse RNA types and their expression levels, 
enriching our understanding of breast cancer molecular  mechanisms29. RNA sequencing has been wildly used 
in cancer research 30–39.

For transcriptomic data, generally, bulk sequencing data provides averaged expression levels of all cells in a 
tissue sample, while single-cell sequencing data has been used to decipher the cellular and molecular landscape 
at a single-cell resolution 40. The advantage of bulk sequencing data is that it often comes with the clinical infor-
mation of the patients. Such patient levels data facilitate the analysis of diagnosis and prognosis as well as other 
clinical factors associated with cancers. In addition, spatial sequencing provides gene expression profiles of a 
sample with positional information, which is useful for studying heterogeneity within a tumor sample 41. Single-
cell RNA sequencing (scRNA-seq) presents significant new prospects for systematically delineating the cellular 
landscape of tumors and uncovering fresh insights into cell biology, disease etiology, and drug  response42,43. 
Numerous studies have effectively employed scRNA-seq to examine selected populations within human breast 
tumors, unveiling a spectrum of differentiation states within tumor-infiltrating  lymphocytes44, highlighting 
the role of tissue-resident CD8 cells in breast  cancer18, and shedding light on chemoresistance mechanisms in 
breast cancer neoplastic  cells45. Recent endeavors have utilized mass cytometry with antibody marker panels 
to scrutinize breast cancer cell types and ecosystems across hundreds of  patients46,47. Consequently, there is a 
pressing need for a more comprehensive transcriptional atlas of breast tumors at high molecular resolution, 
encompassing all subtypes and cell types. Such an atlas would aid in refining the disease’s taxonomy, delineating 
heterotypic cellular interactions, and elucidating cellular differentiation processes. Equally crucial are data sys-
tematically mapping the spatial transcriptomic architecture of breast tumors, as this can unveil how cells in the 
tumor microenvironment (TME) are organized into functional units. A recent paper integrated single-nucleus 
RNA sequencing with microarray-based spatial transcriptomics to delineate cell populations and their spatial 
distribution within breast cancer tissues 48.

Our study focused on exhaust CD8 + T cells (CD8 + Tex). The recent surge in cancer immunotherapy, primar-
ily based on checkpoint blockade, has been a breakthrough in treating various cancer types. However, certain 
factors are hindering the progress of these treatments, such as varying genetic make-up of individuals, resistant 
tumor sub-types, and immune-related adverse events. While the focus of immunotherapies has been on improv-
ing CD8 + T cells, the relationship between CD4 + T cells and CD8 + T cells is also gaining attention. The tumor-
infiltrating T regulatory (Treg) cells are a major obstacle in the cross-talk between CD4 + T cells and CD8 + T 
cells since they are capable of inhibiting anti-tumour  immunity49. CD8 + Tex, which is often seen in chronic 
infections and cancer, is a progressive process characterized by decreased effector function and upregulation of 
inhibitory receptors such as PD-1 and Tim-3. Although immunological checkpoint inhibitors have allowed for 
the eradication of tumors, a better understanding of the mechanisms by which T cell–exhaustion pathways work 
in tumors and the factors that drive them is needed. In this regard, the role of CD8 + Tex in immunosuppression 
is key to the resistance of cancer in immune therapy.

The study hypothesized that certain genes can be biomarkers of CD8 + T cells in breast cancer as well as other 
cancer types. In this study, we aimed to identify these genes and demonstrate their association with cancers. We 
believe this study provides a unique view of the critical T cell hub genes for cancer immune therapy.
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Methods
Overview of the study
Single immune cell data sets were used to identify marker gene sets for CD8 + Tex cells in breast cancer. A 
machine learning method, consensus clustering, was used to cluster TCGA BRCA patients using the identified 
marker genes, hence, we constructed CD8 + Tex-based genetic subtypes based on the abound of CD8 + Tex in 
breast cancer samples. We compared the immune cell infiltration levels and predicted immune checkpoint block-
ade response rate among subtypes to demonstrate the potential clinical value of the subtype systems for immune 
therapy of breast cancer. The identified marker gene sets were also used to construct the prognostic models for 
breast cancer patients using a machine learning algorithm lasso (least absolute shrinkage and selection opera-
tor) with TCGA BRCA cohort, which further identified the critical genes for the subsequent study. We further 
analyzed the protein–protein interaction of these molecules and identified hub genes in the protein–protein-
interaction network. The correlation between the hub genes and CD8 + T-cell infiltration levels of breast cancer 
was evaluated using different immune cell calculation algorithms. The clinical associations of these hub genes 
were analyzed using the clinical information of breast cancer patients and their expression differences in invasive 
ductal cancer and ductal cancer in situ were analyzed using spatial sequencing data. The pan-cancer cancer-non-
cancer expression and survival association of these hub genes were analyzed. The correlation between the hub 
genes and CD8 + infiltration levels and the immune therapy predictive values of these hub genes were analyzed 
using immune checkpoint blockade sub-cohorts.

Data collection
Single-cell cohorts were accessed and analyzed from the TISCH2  platform50(http:// tisch. comp- genom ics. org/). In 
this study, 4 single-cell sequence data sets were included as shown in Table 1. This dataset comprises expression 
data from immune cells obtained through fluorescence-activated cell sorting (FACS), focusing on an enriched 
fraction of immune cells. The MAESTRO v1.1.0  workflow51 (https:// github. com/ liulab- dfci/ MAEST RO/ blob/ 
master/ README. md) employed PCA for dimension reduction and KNN and Louvain  algorithms52,53 for cluster-
ing to identify 2000 variable features for each dataset; the number of principal components and the resolution for 
graph-based clustering were adjusted according to the cell number. Previous studies revealed that MAESTRO 
demonstrated superior consistency across nearly all cell types, regardless of whether the correlation was com-
puted using all genes or solely the top 2000 variable  genes51, hence in this study, only the top 2000 variable genes 
were used. UMAP was used to reduce the dimension and visualize the clustering  results54, and the Wilcoxon test 
was used to identify differentially expressed (DE) genes of each cluster of cell type (|logFC|> = 0.25, FDR < 1e-05). 
Data from The Cancer Genome Atlas (TCGA, https:// www. cancer. gov/ ccg/ resea rch/ genome- seque ncing/ tcga) 
and GTEx (https:// gtexp ortal. org/ home/) were obtained, which included gene expression profiling data and 
clinical information on cancer tissues. This data was obtained in accordance with the guidelines and policies.

Single-cell data quality control
A standardized analysis pipeline utilizing MAESTRO v1.1.051 was employed to process all gathered datasets. This 
workflow encompassed quality control, batch effect mitigation, cell clustering, differential expression analysis, 
cell-type annotation, and malignant cell classification. The raw count, TPM, or FPKM table served as input for 
this standardized workflow. Cell quality was assessed using two metrics: total counts (UMI) per cell (library size) 
and the number of detected genes per cell. Cells with low quality were excluded if the library size was < 1000 or 
the number of detected genes was < 500.

Single-cell data batch effect correction
To systematically assess batch effects across each dataset, an entropy-based metric 44,57 was utilized to quantify 
data mixing among batches. Typically, samples from different patients in most datasets are susceptible to batch 
effects. A k-NN graph (k = 30) was constructed based on the Euclidean distance between cells in UMAP coordi-
nates for datasets with more than one patient. For each cell j, the distribution of patients in its nearest neighbors 
was computed. The measure of mixing between patients Hj is defined as:

here, ptj represents the proportion of cells from patient t among the 30 nearest neighbors of cell j, while T denotes 
the total number of patients. High entropy, indicating that the most similar cells in a cell’s neighborhood come 

Hj = −

T∑

t=1

ptj log2 p
t
j

Table 1.  Information for single-cell data sets.

Dataset Name Species Treatment
Patients 
number Cells CD8Tex cells CD8Tex cell (%) Platform

Primary or 
metastasis PublicationS

GSE110686 Human None 2 6,035 622 10.3 10 × Genomics Primary and 
metastasis

18

GSE114727_10X Human None 3 28,678 1389 4.8 10 × Genomics Primary 44

GSE176078 Human None 26 89,471 13,500 15.1 10 × Genomics Primary 55

EMTAB8107 Human None 14 33,043 5193 15.7 10 × Genomics Primary 56

http://tisch.comp-genomics.org/
https://github.com/liulab-dfci/MAESTRO/blob/master/README.md
https://github.com/liulab-dfci/MAESTRO/blob/master/README.md
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://gtexportal.org/home/
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from different patients, suggests potential batch effects. Conversely, low entropy suggests that the most similar 
cells originate from the same patient, indicating a potential batch effect. It is noteworthy that datasets primarily 
composed of malignant cells (malignant % > 75%) may exhibit low entropy due to the heterogeneity of malignant 
cell expression among different tumors 42. Consequently, the collected datasets were classified into three groups. 
Firstly, for datasets primarily containing malignant cells, there was no need to eliminate batch effects between 
different patients, as they reflect differences between distinct tumors. Secondly, datasets with a median entropy 
lower than 0.7 underwent batch effect correction using Seurat v3.1.258. Median entropies shifted towards higher 
values post-batch effect removal, indicating significant correction of potential batch effects. Thirdly, datasets 
with a median entropy higher than 0.7 were considered less affected by batch effects.

Single-cell clustering and differential gene analysis
For each dataset, the MAESTRO workflow identified the top 2000 variable features and conducted PCA for 
dimension reduction, followed by employing the KNN and Louvain algorithm for cluster  identification52,53. To 
better capture cellular differences and variabilities across datasets with varying cell numbers, adjustments were 
made to the number of principal components and the resolution for graph-based clustering. Both parameters 
were increased with increasing cell numbers. The uniform manifold approximation and projection (UMAP) were 
utilized for further dimension reduction and visualization of clustering  results59. The Wilcoxon test was applied 
to identify differentially expressed (DE) genes for each cluster compared to all other cells, based on criteria such 
as log-transformed fold change (|logFC|≥ 0.25) and false discovery rate (FDR < 1e−05). Clusters of cells were 
identified using a combination of three approaches. Firstly, cell-type annotations provided by the original stud-
ies were utilized. Secondly, the expression distribution of malignant cell markers from the initial research was 
assessed, including epithelial markers and EMT genes where available. Thirdly, we applied InferCNV (https:// 
github. com/ broad insti tute/ infer cnv) to predict cell malignancy based on predicted copy number variations was 
employed, segregating cells into malignant and non-malignant clusters. For the remaining normal clusters, an 
automated marker-based annotation method within MAESTRO was applied using the differentially expressed 
genes between clusters. Subsequently, the cell-type annotations based on the annotations provided by the original 
studies were manually verified and corrected.

Bulk data differential expression analysis
Differentially expressed genes (DEGs) between subtypes were identified using the Limma package with a cut-
off fold change of 1.3 and a P-value of 0.05. DEGs are genes whose expression levels vary significantly between 
different groups. In this study, the goal is to identify genes that are differentially expressed between different 
subtypes. Limma (Linear Models for Microarray Data, https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ 
limma. html) is a statistical package in R used for analyzing gene expression data. It employs linear models and 
empirical Bayes methods to identify DEGs with high sensitivity and specificity.

Bulk data enrichment analysis
For the GO biological and KEGG pathway enrichment analyses, the ClusterProfiler package (version: 3.18.0, 
https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ clust erPro filer. html) in R was employed. The False dis-
covery rate (FDR) and p.adjust were set at 0.25 and 0.05, respectively. Gene Ontology (GO, https:// geneo ntolo 
gy. org/) is a standardized system for annotating genes and their products with terms representing biological 
processes, molecular functions, and cellular components. GO biological pathway enrichment analysis involves 
taking a list of genes, often derived from experimental data such as gene expression studies or genome-wide 
association studies, and determining whether any particular biological processes represented by GO terms are 
significantly enriched in that gene list compared to what would be expected by chance. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG, https:// www. genome. jp/ kegg/) is a collection of databases that contain informa-
tion about biological pathways, diseases, drugs, and other biological entities. KEGG pathway enrichment analysis 
involves mapping a list of genes to known biological pathways in the KEGG database and determining whether 
any pathways are significantly enriched in the gene list.

Analysis of the survival
The univariate Cox regression analysis, Kaplan–Meier (KM) plot, and log-rank analysis were used to assess the 
survival association and display the survival curves of genes. Univariate Cox regression analysis examines the 
association between a single predictor variable (such as a gene expression level or a clinical characteristic) and 
survival time. It calculates the hazard ratio, which represents the relative risk of experiencing the event of inter-
est (such as death) between two groups defined by the predictor variable. The Cox proportional hazards model 
is commonly used for this analysis, allowing for the estimation of hazard ratios while accounting for censoring 
and other covariates. The Kaplan–Meier plot is a graphical method used to estimate the survival function (prob-
ability of survival) over time. It is particularly useful for visualizing survival differences between groups defined 
by categorical variables (such as sub-groups or biomarker expression levels). The plot displays the proportion 
of individuals surviving at each time point, along with confidence intervals. The log-rank test is a statistical test 
used to compare the survival curves of two or more groups. It assesses whether there are significant differences 
in survival times between the groups, taking into account censoring. The test evaluates whether the observed 
differences in survival are greater than would be expected by chance. If the p-value from the log-rank test is below 
a predetermined significance level (0.05), it indicates that there is a statistically significant difference in survival 
between the groups. All analyses were carried out using R (foundation for statistical computing 2020) version 
4.0.3 (https:// cran.r- proje ct. org/ bin/ windo ws/ base/ old/4. 0.3/). Statistical significance was defined as p < 0.05.

https://github.com/broadinstitute/infercnv
https://github.com/broadinstitute/infercnv
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://geneontology.org/
https://geneontology.org/
https://www.genome.jp/kegg/
https://cran.r-project.org/bin/windows/base/old/4.0.3/
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Consensus clustering analysis
Subtyping of the samples was carried out using the ConsensusClusterPlus package(https:// bioco nduct or. org/ 
packa ges/ relea se/ bioc/ html/ Conse nsusC luste rPlus. html). The number of clusters was set at 1–6 for consistency 
analysis to optimize the best clustering number. Unsupervised class discovery involves identifying potential 
groups within a dataset based solely on inherent features without external guidance. Researchers using this tech-
nique typically aim to address two key questions: the number of groups present in the data and the confidence 
level associated with both the group quantity and their memberships. Consensus  clustering60 serves as a valu-
able method for tackling these inquiries, particularly prominent in fields such as cancer  research36,61. Consensus 
clustering offers both quantitative and visual indicators of “stability”, obtained through iterative subsampling and 
clustering. By synthesizing outcomes from multiple repetitions, consensus clustering generates a consensus that 
demonstrates resilience against sampling variations. While initially available within the GenePattern  software62, 
the consensus clustering technique has been further developed into ConsensusClusterPlus, a package in the R 
language offering enhanced functionalities and visualizations. In this study, this method is suitable for distin-
guishing subsets of samples of breast cancer patients based on certain genes and comparing the overall effect of 
these genes on clinical phenotypes.

Immune analysis
The immune cell infiltration level was calculated using different algorithms, including  TIMER63,  XCELL64, 
 CIBERSORT65,  MCPCOUNTER66,  QUANTISEQ67, and  EPIC68. TIMER is a web server for the comprehensive 
analysis of tumor-infiltrating immune cells. It provides immune cell infiltration levels in various cancer types 
and their associations with clinical outcomes. TIMER (http:// timer. cistr ome. org/) utilizes gene expression data 
to estimate the abundance of immune cell subtypes within tumor samples. XCELL (https:// github. com/ dvira 
ran/ xCell) is another computational tool used for cell type enrichment analysis in gene expression data. It 
estimates the relative abundance of different cell types within a heterogeneous sample, including immune cells. 
XCELL utilizes gene expression signatures specific to various cell types to infer their proportions in the sample. 
CIBERSORT (Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts, https:// ciber sortx. 
stanf ord. edu/) is a computational method used to characterize cell composition in complex tissues based on 
gene expression data. It deconvolutes bulk tissue gene expression profiles to estimate the relative proportions of 
different cell types present. CIBERSORT is particularly useful for studying immune cell populations in tumor 
microenvironments. MCPCOUNTER (Microenvironment Cell Populations-counter, https:// github. com/ ebecht/ 
MCPco unter) is a gene expression-based method for quantifying the abundance of specific immune and stromal 
cell populations in tumor samples. It uses predefined gene signatures associated with different cell types to esti-
mate their relative proportions in the sample. QUANTISEQ (https:// icbi.i- med. ac. at/ softw are/ quant iseq/ doc/) 
is a computational tool for the deconvolution of gene expression profiles to estimate the proportions of immune 
cell subsets within a sample. It utilizes gene expression signatures specific to different immune cell types to infer 
their relative abundances. EPIC (Evaluating the Presence of Immune Cells, https:// github. com/ Gfell erLab/ EPIC) 
is a computational tool for quantifying immune cell infiltration in tumor samples based on DNA methylation 
data. It uses DNA methylation profiles to estimate the proportions of immune cell subsets present in the tumor 
microenvironment. Immune checkpoint blockade (ICB) responses of subtypes were predicted using the Tumor 
Immune Dysfunction and Exclusion (TIDE, http:// tide. dfci. harva rd. edu/)  algorithm69 using the TIDE online 
analysis platform. TIDE represents a computational framework designed to assess the likelihood of immune 
evasion by tumors. It achieves this by analyzing the gene expression patterns present in cancer samples. The 
immune therapy sub-cohorts were accessed and analyzed with TIDE  tool69 (http:// tide. dfci. harva rd. edu/ setqu 
ery/). The TIDE score was designed to predict response to immune checkpoint blockade, including anti-PD1 and 
anti-CTLA4, for melanoma and NSCLC. The use of TIDE in this study is based on the assumption that breast 
cancer has a similar immune system as melanoma and NSCLC.

Prognostic model for identification of critical genes
The model was constructed using the glmnet (https:// glmnet. stanf ord. edu/ artic les/ glmnet. html) R package, 
which implemented the least absolute shrinkage and selection operator (LASSO) regression  algorithm70 with 
tenfold cross-validation for gene signature selection. LASSO is a regression analysis method used for variable 
selection and regularization. It aims to find the subset of predictor variables that are most relevant for predicting 
the response variable while simultaneously performing variable selection and regularization to prevent overfit-
ting. In LASSO regression, the ordinary least squares (OLS) objective function is augmented with a penalty term 
that is the sum of the absolute values of the coefficients multiplied by a regularization parameter (lambda). This 
penalty term encourages the coefficients of less important variables to be exactly zero, effectively performing 
variable selection by shrinking some coefficients to zero. In this study, LASSO was used to construct the prog-
nostic model. A validation cohort from Xena-hubs Breast Cancer (Caldas)71 was used for validation of the model.

Protein–protein interaction network and hub gene
The protein–protein interaction network was constructed with STRING (https:// string- db. org/), where interac-
tions with a score greater than 0.4 were considered. The top 10 hub nodes in the network were identified using 
the  Hubba72 (https:// apps. cytos cape. org/ apps/ cytoh ubba) in  Cytoscape73 (https:// cytos cape. org/). The algo-
rithm used included Maximum Clique Cardinality (MCC), Density of Maximum Neighborhood Component 
(DMNC), Maximum Neighborhood Component (MNC), and Degree Centrality (Degree). The combination of 
these algorithms offers a comprehensive approach to unsupervised class discovery. Each algorithm provides a 
unique perspective on the dataset. MCC focuses on identifying densely connected subgraphs (cliques), DMNC 
evaluates the density of the neighborhood around each node, MNC finds the largest connected component, 

https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
http://timer.cistrome.org/
https://github.com/dviraran/xCell
https://github.com/dviraran/xCell
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://github.com/ebecht/MCPcounter
https://github.com/ebecht/MCPcounter
https://icbi.i-med.ac.at/software/quantiseq/doc/
https://github.com/GfellerLab/EPIC
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/setquery/
http://tide.dfci.harvard.edu/setquery/
https://glmnet.stanford.edu/articles/glmnet.html
https://string-db.org/
https://apps.cytoscape.org/apps/cytohubba
https://cytoscape.org/
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and Degree Centrality measures the importance of nodes based on their connections. By incorporating these 
diverse perspectives, the combined approach can capture different aspects of the underlying structure of the 
data. The algorithms complement each other’s strengths and weaknesses. For example, while MCC is effective 
at identifying densely connected subgroups, Degree Centrality can highlight nodes that serve as central hubs 
within the network. This complementary nature ensures that a wider range of structural features within the data 
are considered, leading to a more comprehensive analysis.

Spatial sequencing analysis
The expression differences in invasive ductal cancer and ductal cancer in situ were analyzed using spatial sequenc-
ing data with SpatialDB (http:// www. spati alomi cs. org/ Spati alDB/ index. php). Spatial sequencing, also known 
as spatial transcriptomics or spatially resolved transcriptomics, is a technology that allows researchers to study 
gene expression patterns within tissues while preserving spatial information. Spatial sequencing methods inte-
grate high-throughput sequencing techniques with spatially resolved imaging approaches to generate spatially 
resolved gene expression profiles. These methods enable us to analyze gene expression patterns within intact 
breast cancer tissue sections, providing insights into the spatial organization of cells and tissues and their func-
tional implications. The spatial sequencing data used in this study were published in a previous  paper74. The 
invasive ductal cancer and ductal cancer in situ were labeled by a licensed clinical pathologist Dr Jielin Weng in 
the Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University. The data were 
visualized using the SpatialDB  tools75.

Results
CD8Tex marker gene identification based on single immune cell sequencing
The UMAP plots were conducted for each single-cell sequence data set respectively (Fig. 1A). These cells were 
annotated and sorted into 17 cell types as shown in Table 2. Marker genes of CD8Tex cells were identified for 
each data set respectively, and the marker genes were cross-validated by intersection analysis of the marker gene 
sets obtained from different data sets (Fig. 1B left panel). The Jaccard index was calculated as shown in different 
colors in Fig. 1B right panel. Eventually, we obtained 145 marker genes for CD8Tex (Fig. 1B).

Clustering of CD8Tex-based subtypes
To further study the CD8Tex cells in breast cancer, we collected TCGA cohort to join-analyze the CD8Tex marker 
genes. The basic clinical information was provided in the Supplementary Table. All of these marker genes indeed 
have potential value for clinical application, however, the survival association of these genes revealed their prac-
tical value as a molecule that remarkably affects the progress of the tumor, hence, we believe that those genes 
that significantly impact patient survival are more likely to make a clinical difference when used as biomarkers 
or therapeutic targets. First, we excluded genes that do not affect the survival of breast cancer by conducting an 
overall survival comparison between high and low-gene expression groups (divided by expression medium). 
The univariate analysis was performed and the hazard ratio of significant genes was shown in Fig. 2A. Only four 
genes were risk factors for breast cancer patients, while the others were protective factors.

We admitted that not all markers are highly specific for exhausted T-cells, the criteria to collect them is 
because their expression is significantly different from other cell types, thus, the expression of these marker genes 
can help define the distinctive expression patterns of cell infiltration features in bulk sequencing data. We aimed 
to investigate breast cancer with different CD8Tex infiltration levels, thus, consensus clustering was used to cluster 
TCGA BRCA patients into CD8Tex-based subtypes using the identified marker genes. Based on the consensus 
cumulative distribution function (CDF) plotting, the number of clusters (K) = 4 was the optimum cluster number 
for all of these clustering (Fig. 2B1, 2). The subtyping approach has been applied to help understand the role of 
a gene  set76,77. By the NMF method, which is an effective dimension reduction method for cancer subtype iden-
tification, patients were clustered into four distinct subtypes (Fig. 2B3). The heatmap in Fig. 2B4 illustrates the 
differential expression patterns of marker genes across the breast cancer subtypes (C1, C2, C3, and C4), while 
the PCA plot in Fig. 2B5 demonstrates the clustering of patients based on their gene expression profiles within 
each subtype. (C1, C2, C3, and C4) (Fig. 2B4, 5). The heatmap and PCA plots in Fig. 2B4, B5 visually depict the 
distinct expression patterns among the identified breast cancer subtypes. The heatmap color scale ranges from 
low expression (blue) to high expression (red), facilitating the interpretation of differential expression patterns 
across subtypes. In Fig. 2B4, the heatmap visually represents the relative expression levels of marker genes across 
the identified breast cancer subtypes (C1, C2, C3, and C4). Each row in the heatmap corresponds to a gene, and 
each column represents a patient sample, with color intensity indicating the expression level of each gene. This 
visualization allows us to observe patterns of differential expression among the subtypes, highlighting potential 
molecular distinctions. In contrast, Fig. 2B5 utilizes PCA (Principal Component Analysis) to explore the overall 
variation in gene expression profiles among patients within each subtype. PCA is a dimensionality reduction 
technique that identifies patterns in data and visualizes these patterns by projecting patients onto a reduced-
dimensional space defined by principal components. The PCA plot helps to visualize how patients cluster based 
on their gene expression profiles, providing insights into the similarities and differences among subtypes beyond 
individual gene expression levels. We analyzed the overall survival and progress-free interval of the subtypes and 
found that the subtyping failed to distinguish different survival patients except for the progress-free interval of 
C3 versus C2 (Fig. 2C1,2).

Immune difference of CD8Tex-based subtypes
In addition, we also display the association between molecular subtypes and CD8Tex-based subtypes with a 
Sankey diagram (Fig. 3A). Generally, CD8Tex-based subtypes were not associated with the molecular subtypes. 

http://www.spatialomics.org/SpatialDB/index.php
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In addition, we also calculated the immune cell infiltration levels of the CD8Tex-based subtypes using multiple 
algorithms as provided in the supplementary materials. The XCELL algorithms suggested that the CD8Tex-based 
subtypes separated samples with different immune profiles. The immune score and microenvironment score were 
remarkably different among CD8Tex-based subtypes. The stroma scores were also significantly different among 
CD8Tex-based subtypes. The C2 subtypes had a very high immune score and microenvironment score. (Fig. 3B).

To demonstrate the potential clinical value of these subtyping systems, we calculated the TIDE score to predict 
the response of the samples for ICB therapy. Results revealed that the C2 subtype had a significantly higher TIDE 
score compared to the other subtypes (Fig. 3C). This indicates that C2 subtypes had low T cell response. Based 
on the TIDE score, we predicted the response of each sample for ICB and calculated the response ratio for each 
subtype. Results showed that C1 had a 70% response rate, C3 had a 63% response rate, and C4 had a 65% response 
rate, yet, C2 had an 84% response rate (Fig. 3D). It is not surprising that C2 with the highest immune score and 
microenvironment score also has highest response rate. We believe that this is because, although the results are 
derived from two distinct algorithms, there are common parameter genes utilized in their calculation. These 
results suggested that the subtyping systems performed well in the separation of patients with different immune 
relevance, especially identified C2 subtypes as the responder subtype for ICB, indicating that these marker-gene 
sets potentially provided clinical value for breast cancer immune therapies.

Figure 1.  CD8Tex marker genes identification based on single immune cell sequencing. (A) UMAP plot of 
breast cancer single immune cell sequencing data sets. (B) Intersection of marker genes identified by single 
immune cell sequencing data sets. Left panel: the Venn diagram. Right panel: pairwise intersections analysis.
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Expression difference of CD8Tex-based subtypes
To further investigate the features of patients in C2 subtypes compared to the other patients, we conducted a dif-
ferential expression gene analysis comparing C2 and the other subtypes. The analysis revealed 1552 up-regulated 
genes and 980 down-regulated genes in the C2 subtype as shown in the volcano plot (Fig. 4A) and heatmap with 
clustering (Fig. 4B). Figure 4B depicts a heatmap with hierarchical clustering illustrating the differential expres-
sion patterns of genes between the C2 subtype and other subtypes. The rows represent genes, while the columns 
represent patient samples. The color scale in the legend indicates gene expression levels, ranging from low (blue) 
to high (red), facilitating the interpretation of the heatmap. This visualization highlights distinct gene expression 
clusters associated with the C2 subtype, suggesting potential biomarkers or pathways specific to this subgroup.

Subsequently, we enriched these genes in the GO database and KEGG pathways database. Results showed that 
the up-regulated genes were enriched in multiple terms that are related to the T cell activity. The KEGG pathway 
enrichment analysis revealed that the up-regulated genes were associated with cytokine interaction and Th1/
Th2 differentiation. On the other hand, the down-regulated genes were associated with protein secretion and 
hormone secretion as well as the PI3K-Akt signaling pathway. (Fig. 4C) Although these DEGs and enrichment 
might related to the previously identified 145 biomarkers, the objective of this enrichment analysis is to broadly 
investigate the disparities within the C2 cluster and discern which pathways might underlie the diverse clinical 
phenotypes observed. Rather than pinpointing specific markers, this analysis aims to offer general insights into 
the biological mechanisms driving these clinical differences.

Construction of a CD8Tex-based survival model
To further explore the prognostic value of the CD8Tex marker gene set and obtain critical genes for breast cancer 
patients, we trained a machine-learning prognostic model using the LASSO algorithm and TCGA BRCA cohort. 
The model suggested that the minimum lambda was 0.0048. When lambda was 0.0048, the model achieved the 
best performance. The risk score formula and the included genes are presented in Fig. 5A–C. The model includes 
risky genes (CLEC2D, CRTAM, EZR, HLA-DRB1, NKG7, SLA2, SLC7A5, and SYTL3) and protective genes 
(CTSW, GBP2, IFNG, KLRB1, MT-ND1, PSME2, SH2D2A, and TOX) which are discussed later. The KM plot 
suggested that the high-risk group had a significantly worse survival than the low-risk group (Fig. 5D). This 
model helped us narrow down the critical genes for CD8Tex in breast cancer. The time-dependent ROC analysis 
also revealed that the AUC of the ROC was over 7 for different years of prediction, indicating a good accuracy of 
the model for survival prediction (Fig. 5E, F). The model is validated with another independent cohort (Fig. 5G). 
The validation cohort results are consistent with those of the training cohort, demonstrating that the model can 
distinguish between patients with long survival and those with short survival.

Identification of the hub genes for the CD8Tex regulation network
The genes in the LASSO model were critical CD8Tex marker genes for breast cancer patients. We constructed 
a protein–protein interaction network using these genes and calculated the top three hub genes using MCC, 
DMNC, MNC, and Degree algorithms. The protein–protein interaction network presented 31 edges and the 
average node degree was 3.88 (Fig. 5H). The MCC, DMNC, MNC, and Degree of each gene were calculated 
as presented in Supplementary Table. We then ranked the scores and obtained the average rank of each gene. 
Eventually, CRTAM, CLEC2D, and KLRB1 stood out as the top three hub genes in critical CD8Tex marker genes 
for breast cancer patients.

Table 2.  Cell type abbreviation in single-cell data.

Cell type Abbreviation Full name

Immune cells

B B Cells

CD4T CD4 T Cells

CD4Tconv Conventional CD4 T Cells

CD8T CD8 T Cells

CD8Tex Exhausted CD8 T Cells

DC Dendritic Cells

Mono/Macro Monocytes or Macrophages

Mast Mast Cells

Neutrophils Neutrophils

NK Natural Killer Cells

Tprolif Proliferating T Cells

Treg Regulatory T Cells

Stromal cells

Endothelial Endothelial CELLS

Fibroblasts Fibroblasts

Myofibroblasts Myofibroblasts

Cancer cells Malignant Malignant cells

Other cells Oligodendrocyte Oligodendrocytes
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CD8 T cell infiltration relevant to CD8Tex hub genes
To evaluate the clinical value of the hub genes identified, CRTAM, CLEC2D, and KLRB1, for clinical evaluation 
of CD8 + T-cell infiltration levels in breast cancer, we calculated the different CD8 + T-cell infiltration levels and 
analyzed their correlation with CRTAM, CLEC2D, and KLRB1 in breast cancer and molecular subtypes. To avoid 

Figure 2.  CD8Tex-based subtype clustering. (A) Survival screening of the CD8Tex marker genes. The forest 
plot shows the hazard ratio (HR). (B1) Consensus Cumulative Distribution Function (CDF) plot of subtype 
numbers (k = 2–6). (B2) Delta area plot of the consensus CDF plot. (B3) Consensus matrix and cluster trees of 
subtypes. (B4) Gene expression heatmap of the subtypes. (B5) Principal Component Analysis (PCA) plot of the 
consensus clustering. (C1) Overall survival Kaplan–Meier plot (KM plot) of the subtypes. (C2) Progression-free 
interval KM plot of the subtypes.
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bias in some immune cell scores, we have employed multiple algorithms. Results showed that CRTAM, CLEC2D, 
and KLRB1 were positively correlated with T cell CD8 + in MCPCOUNTER, CIBERSORT, CIBERSORT-ABS, 
EPIC, and QUANTISEQ, but not in TIMER. (Fig. 6A).

CD8Tex hub genes expression and survival analysis
Data also suggested that CLEC2D expression slightly decreased in tumors compared to normal breast tissue, 
while CRTAM expression increased in tumor tissue and KLRB1 expression had no difference in tumors compared 
to normal tissues (Fig. 6B). However, in the cancer-noncancer paired samples, the comparison suggested that 
CRTAM expression increased in tumor tissue while KLRB1 expression decreased in the tumor (Fig. 6C). Given 
the expression analysis results for CRTAM and KLRB1 are not consistent, we cannot determine the cancer-
non-cancer expression pattern of these two genes definitively. However, based on consistent findings, we can 
conclude that tumors exhibit elevated expression of CRTAM. This suggests that tumors may possess a distinct 
CD8 + T-cell infiltration feature compared to normal tissues. Moreover, the expression levels of CRTAM and 

Figure 3.  Immune association of the CD8Tex-based subtypes. (A) Sankey diagram showing the association 
between breast cancer molecular subtypes and CD8Tex-based subtypes. (B) The XCELL scores in CD8Tex-
based subtypes. (C) Tumor Immune Dysfunction and Exclusion (TIDE) scores in CD8Tex-based subtypes. (D) 
Predicted immune checkpoint blockade (ICB) response of the subtypes based on the TIDE score.
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KLRB1 in normal breast tissue are comparable to those in breast cancer tissue. This suggests a potentially similar 
infiltration pattern of exhausted CD8 + T-cells in both cancer and non-cancer tissues. This similarity in pattern 
could hinder the development of cancer-specific targets for treatment.

KM survival analysis revealed that CRTAM, CLEC2D, and KLRB1 were all significantly associated with better 
overall survival of breast cancer patients. For disease-free survival, CRTAM was not associated, while CLEC2D 
and KLRB1 were associated with better disease-free survival. As for the progress-free interval, all three genes 
were associated. (Fig. 6D) Survival association of CD8Tex hub marker genes for breast cancer subtypes was 
also analyzed. Results showed that CRTAM was a good prognostic biomarker for Luminal B, HER-enriched, 
and basal-like breast cancer, but not for Luminal A breast cancer. CLEC2D was associated with overall survival 
and progress-free interval in all subtypes of breast cancer. Similar to CRTAM, KLRB1 was a good prognostic 

Figure 4.  Differential expression gene enrichment. (A) Volcano plot of the differential genes in CD8Tex-based 
subtypes C2. TCGA BRCA cohorts were analyzed. C2 samples were compared with the other samples to identify 
C2 differential genes. (B) Heat map and clustering of the differential genes in CD8Tex-based subtypes C2. (C) 
GO and KEGG enrichment  analysis78–80 of the differential genes in CD8Tex-based subtypes C2.
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biomarker for Luminal B, HER-enriched, and basal-like breast cancer, but not for Luminal A breast cancer. 
However, KLRB1 was not significant in the overall survival analysis of basal-like breast cancer. (Fig. 7).

Clinical association of the CD8Tex hub genes in breast cancers
The expression of CD8Tex hub genes has been demonstrated to be critical markers for CD8 + T cells in breast 
cancer. While CD8 + T cells are critical for breast cancer development, we proposed that CLEC2D, CRTAM, and 
KLRB1 are associated with clinical characteristics. The comparison of clinical information between high and 

Figure 5.  Machine learning prognostic models based on CD8Tex marker genes and hub genes identification. 
(A-C) The λ and coefficients of the model. (D) Overall survival KM plots of high- and low-risk groups in 
TCGA-BRAC. (E) Representative time-dependent receiver operating characteristic (ROC) curve of the risk 
model. (F) Area Under Curve (AUC) of the time-dependent ROC curve of the risk model. (G) Overall survival 
KM plots of high- and low-risk groups in a validation cohort from Xena-hubs Breast Cancer (Caldas 2007). (H) 
The protein–protein interaction network with hub genes identified.
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low-expression groups suggested that CLEC2D was associated with T stage, age, and radiation therapy of breast 
cancer patients. CRTAM was associated with the N stage, race, age, PAM50 (molecular subtype), and radiation 

Figure 6.  CD8Tex hub marker genes for breast cancer. (A) Correlation analysis between CD8Tex hub marker 
genes and CD8 + T cell infiltration scores. (B) Expression of CD8Tex hub marker genes in breast cancer and 
normal breast tissues. TCGA and GTEx data were analyzed. (C) Expression of CD8Tex hub marker genes in 
breast cancer and normal breast tissues. TCGA-paired samples were analyzed. (D) KM plot of the CD8Tex hub 
marker genes in breast cancer. Rolls 1–3 display overall survival, disease-free survival, and progress-free interval 
respectively. Columns 1–3 display CLEC2D, CRTAM, and KLRB1 respectively.
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therapy of breast cancer patients. KLRB1 was associated with the M stage, race, age, PAM50, menopause status, 
and radiation therapy of breast cancer patients (Supplementary Table). In the high-expression group of CLEC2D, 
CRTAM, and KLRB1, more patients underwent radiation therapy. In general, radiation therapy is often recom-
mended for patients who are in relatively good condition and able to tolerate treatment. However, it can also be 
administered to patients with more advanced disease or compromised health status, particularly if the potential 
benefits of treatment outweigh the risks. Therefore, the association inferred from our data suggests that high 
expression of CLEC2D, CRTAM, and KLRB1 may be associated with less severe cases where radiation therapy is 

Figure 7.  Survival association of CD8Tex hub marker genes for breast cancer subtypes.
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recommended, possibly because patients are resistant to other types of treatment such as chemotherapy. CLEC2D 
was associated with the T stage indicating that it results in smaller tumors, which might reflect the impact of T 
cells on tumor growth. Tumor-infiltrating T cells have been associated with smaller tumor  size81. CRTAM was 
associated with a slightly higher lymph node metastasis (N stage), which might reflect the impact of T cells on 
lymph node metastasis. Tumor-infiltrating lymphocytes, including cytotoxic CD8 + T cells, can recognize and 
eliminate cancer cells within lymph nodes, thereby inhibiting the spread of metastatic  disease82. The association 
of KLRB1 with decreased tumor metastasis (M stage) suggests a potential role for CD8Tex cells in limiting breast 
cancer metastasis. Taken together, these results suggest that patients with CD8Tex may have smaller tumors with 
locoregional metastases, a clinical scenario commonly addressed with post-surgical radiotherapy. The association 
of CD8Tex hub genes with clinical characteristics, particularly the link with radiotherapy, raises intriguing ques-
tions about the immune activity status in breast cancer patients. The observed associations between CLEC2D, 
CRTAM, and KLRB1 expression levels and various clinical parameters, including tumor stage, lymph node 
involvement, molecular subtype, menopause status, and receipt of radiotherapy, suggest potential implications 
for patient management and treatment outcomes. However, it is important to note that the observed differences 
were slight and may not have significant clinical implications.

These findings underscore the importance of considering the immune context of tumors in clinical decision-
making and the potential implications for personalized treatment approaches. However, further investigation, 
including validation in independent cohorts and functional studies, is needed to fully elucidate the role of 
exhausted T-cells and their associated biomarkers in breast cancer progression and response to therapy.

CD8Tex hub genes and breast cancer heterogeneity
To investigate the CD8Tex hub genes and breast cancer extra-tumour heterogeneity, we plotted the expres-
sion level of CLEC2D, CRTAM, and KLRB1 in PAM50 breast cancer subtypes. Results revealed that CLEC2D 
and CRTAM do not have differences among PAM50 breast cancer subtypes, KLRB1 expression in Luminal B 
was significantly lower than the other subtypes. (Fig. 8A) To explore the CD8Tex hub genes and breast cancer 
intro-tumour heterogeneity, we also compared the levels of CLEC2D, CRTAM, and KLRB1 in invasive ductal 
cancer and ductal cancer in situ using spatial sequencing data. The invasive ductal cancer and ductal cancer 
in situ of breast cancer tissue were delineated by an experienced clinical pathologist and the expression of 
CLEC2D, CRTAM, and KLRB1 in invasive ductal cancer and ductal cancer in situ of breast cancer tissue were 
measured at 4 separate layers. We summed the results of 4 layers for analysis and results showed that CRTAM 
and KLRB1 expression was not significantly different between invasive ductal cancer and ductal cancer in situ, 
while CLEC2D expression was significantly higher in invasive ductal cancer over ductal cancer in situ(Fig. 8B). 
Images of the spatial sequencing slide were shown in Fig. 8C. These data suggested that KLRB1 could mark the 
difference between cancer types while CLEC2D could mark the difference between breast cancer tissue types 
within a sample. As CLEC2D and KLRB1 are two critical T cell genes, these data also reflect the potential role 
of T cell infiltration in breast cancer.

Pan‑cancer expression and survival analysis of CD8Tex hub genes
To further expand the application of the CD8Tex hub genes for pan-cancer use, we systematically explored the 
expression of CLEC2D, CRTAM, and KLRB1 across cancer types, which is provided in the Supplementary results.

Discussion
Tumor-associated immune cells may promote or inhibit cancer cells depending on their function and 
role in immunity. Many previous studies have suggested the impact of the immune environment on 
 cancers30,32,34,36–38,61,83–86. The novelty of this study lies in our approach to identifying marker genes for CD8Tex 
using multiple immune single-cell sequencing datasets. By conducting intersection analysis across multiple 
independent single-cell datasets, we aimed to ensure the stability and reproducibility of the identified biomarker 
gene sets. Furthermore, we identified hub genes for these biomarkers, namely CLEC2D, CRTAM, and KLRB1, 
which have been less explored in the context of breast cancer. Of significant importance is our discovery of the 
association between these hub genes and various aspects of breast cancer immunity, clinical features, and tumor 
heterogeneity. This comprehensive analysis sheds light on previously overlooked molecular players in breast 
cancer and highlights their potential relevance for understanding disease progression and treatment response. 
Overall, our study offers valuable insights into the immune landscape of breast cancer and uncovers potential 
targets for further investigation and therapeutic intervention.

In the CD8Tex-based survival model we constructed, the risky genes include CLEC2D, CRTAM, EZR, HLA-
DRB1, NKG7, SLA2, SLC7A5, and SYTL3, while the protective genes include CTSW, GBP2, IFNG, KLRB1, 
MT-ND1, PSME2, SH2D2A, and TOX. Most of these genes are reported for the first time as prognostic biomark-
ers in breast cancer, although some have been previously associated with breast cancer treatment or the breast 
cancer microenvironment. CRTAM enhances the immune response against tumors in triple-negative breast 
cancer by increasing the infiltration of CD8 + T  cells87. An integrative multi-omics analysis identifies a gene 
signature related to metastasis, highlighting the potential oncogenic role of EZR in breast  cancer88. Breast cancer 
is associated with increased allele frequencies of HLA-DRB1*11:01 and HLA-DRB1*10:01 in a population of 
patients from Central  Italy89; however, this pertains to genetic mutation rather than gene expression. Targeting 
the glutamine metabolic reprogramming mediated by SLC7A5 enhances the effectiveness of anti-PD-1 therapy 
in triple-negative breast  cancer90. GBP2 serves as a prognostic biomarker and is linked to immunotherapeutic 
responses in gastric  cancer91; however, its association with breast cancer has not been reported. As a single-cell 
signature, low expression of KLRB1 predicts poor survival outcomes and is associated with immune infiltra-
tion in breast  cancer92. It is also reported that inhibiting KLRB1 expression is associated with impaired cancer 
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immunity, leading to cancer progression and poor prognosis in patients with breast invasive  carcinoma93. Data 
suggested that PSME2 was associated with immune-hot tumors in breast cancer and with a favorable therapeutic 
response to  immunotherapy94. Overall, our results align with previous studies regarding some of these genes. 
However, we emphasize their prognostic value and have included additional novel biomarker genes to enhance 
the overall prognostic accuracy of our model.

The cell types identified with biomarker gene sets all play important roles in the immunity of cancers. Tumor-
infiltrating B cells are an essential part of the antitumor action of T  cells95. CD8 + T cells (CD8T) and CD4 + T 
cells have a similar differentiation process but once differentiated, the CD4 + cells or the CD8 + cells are fixed and 
function  differently96. Conventional CD4 + T cells (CD4Tconv) lack phenotypic markers that distinguish these 
cells from FoxP3 + T regulatory cells (Treg)95. CD8T includes cytotoxic T cells, which directly target cancer cells 
and induce apoptosis of cancer  cells97. During cancer progression, cancer-associated fibroblasts, M2 macrophage, 
and Treg might negatively regulate anti-cancer immune responses mediated by CD8 + T  cells98. Macrophages are 
monocytes that have migrated from the bloodstream into tumor tissues, which serve as scavengers, maintaining 
homeostasis in tumors 99. The effect of myofibroblast on cancer immunity has been less reported. A study has 
shown that myofibroblast regulated type I collagen thereby impacting cancer  immunity100. It was reported that 
the tumor-infiltrating T cells directly in contact with the cancer cells proliferate more frequently compared with 
T cells in the  stroma101, hence, proliferating T cells (Tprolif) were thought to be a subline of T cells. Exhausted 

Figure 8.  Tumour heterogeneity association of CD8Tex hub marker genes. (A) Expression of CD8Tex hub 
marker genes in breast cancer subtypes. (B) Expression comparison of CD8Tex hub marker genes in invasive 
ductal cancer and ductal cancer in situ by spatial sequencing. C. Immages of the spatial expression of CD8Tex 
hub marker genes in invasive ductal cancer and ductal cancer in situ.
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CD8 T Cells (CD8Tex) is a set of sub-cell lines of CD8 T Cells that persist in cancer but are unsuccessful in killing 
cancer  cells102. The presence and the type of CD8Tex have been thought to be critical for the response of cancer 
to some immune checkpoint  blockades103. Therefore, the abundance of these immune-related cells in tumors is 
a critical factor for tumorigenesis as well as cancer immune therapy.

The analysis of the immune association of subtypes based on marker genes for different cell types suggested 
that the subtyping systems performed well in the separation of patients with different immune relevance. The 
subtyping identified C2 as standing out from the other patients. Interestingly, the subtypes also performed well 
in the separation between ICB responders and ICB non-responders. These ICB predictions were based on TIDE 
scores. However, the TIDE score was designed to predict response to immune checkpoint blockade, including 
anti-PD1 and anti-CTLA4, for melanoma and NSCLC. The use of TIDE in this study is based on the assumption 
that breast cancer has a similar immune system as melanoma and NSCLC. Hence, one should be cautious in 
interpreting these results. Further study to define a prediction model specific to breast cancer is required when 
more breast cancer immune therapy cohort data are available for model training. In the comparison of survival 
models, we concluded that the Tprolif model was the best overall. However, the other model also provided a 
rather comparative prognostic power. Nevertheless, the main purpose of this analysis is to narrow down the 
critical genes for the subsequent study. Another critical limitation is the observations in special sequencing data 
might be subjected to bias. Firstly, it’s essential to note that the resolution of the spatial sequencing results is 
relatively low, and some identified blocks may encompass both invasive ductal carcinoma and ductal carcinoma 
in situ within breast cancer tissue. Secondly, the classification of invasive ductal carcinoma and ductal carcinoma 
in situ is determined by a licensed clinical pathologist using her clinical expertise and knowledge, rather than 
relying on a standard computational pipeline for detection. Additionally, drawing conclusions solely based on 
these biomarkers for T cell infiltration levels may carry significant risk. Hence, our data offer only initial insights 
into the biomarkers, and further investigation into the association of CD8Tex heterogeneity is warranted.

In this study, three critical hub genes were identified, including CLEC2D, CRTAM, and KLRB1. NK cells play 
a central role in the immune system, particularly in the recognition and elimination of malignant and infected 
cells. 2B4 (CD244, SLAMF4) and CS1 (CD319, SLAMF7) are NK cell receptors that control their cytotoxic func-
tion. Lectin-like transcript 1 (LLT1), a member of the C-type lectin-like domain family 2 (CLEC2D), induces 
IFN-g production but does not directly regulate cytolysis. LLT1, which is expressed in other cells, acts as a 
ligand for the NK cell inhibitory receptor NKRP1A (CD161) and suppresses NK cytolytic activity. Research has 
been conducted on novel therapies that target these receptors to enhance NK cell effector  functions104. Hence, 
CLEC2D is associated with the NK-CD8 + cell regulation. On the other hand, CD4( +)T cells possessing CRTAM 
can differentiate into CD4( +)CTLs. A study found that after activation, CRTAM( +) CD4( +) T cells secrete 
IFN-γ and express CTL-related genes such as eomesodermin, Granzyme B, and perforin, which suggest that 
CRTAM( +) T cells are the precursor of CD4( +)CTLs105. Additionally, ectopic expression of CRTAM in T cells 
induces IFN-γ production, expression of CTL-related genes, and cytotoxic activity. This is further supported by 
the fact that CRTAM-mediated intracellular signaling is required for the induction of both CD4( +)CTLs and 
IFN-γ  production105. Furthermore, these CRTAM( +) T cells traffic to mucosal tissues and inflammatory sites 
and develop into CD4( +)CTLs, which can either mediate protection against infection or induce inflammatory 
response depending on the situation. These results demonstrate that CRTAM is a key factor in the differentia-
tion of CD4( +)CTLs through the induction of Eomes and CTL-related  genes105. As for KLRB1, this is a gene 
that encodes CD161 protein. CD161 has been proposed as a pan-cancer immune  checkpoint106. Therefore, it is 
not surprising that, in this study, we demonstrated that these two genes were closely associated with the cancer 
immune environment and can be used to predict the immune therapy response.

The mining and analysis of multi-omic profiling data enable bioinformatic study with a rather comprehensive 
understanding of genes in cancers. In this study, combining single-cell RNA sequencing (scRNA-seq), bulk RNA 
sequencing (bulk RNA-seq), and spatial transcriptomics data would indeed constitute a multi-omic approach, 
provided that all of these datasets are derived from RNA sequencing (RNA-seq) technologies. While each type 
of RNA-seq data captures gene expression information at different scales and resolutions, integrating them 
allows for a more comprehensive understanding of biological systems. Integrating scRNA-seq, bulk RNA-seq, 
and spatial transcriptomics data allows researchers to analyze gene expression dynamics at multiple scales, from 
individual cells to tissue-level spatial organization. This multi-omic approach enables the identification of cell 
types, subpopulations, and spatially defined gene expression patterns, facilitating a deeper understanding of 
complex biological processes and disease mechanisms.

The perspective of this work is to deepen our understanding of the role of CD8Tex in breast cancer. While 
immune therapy is not yet widely utilized in breast cancer treatment, there is promise in using T cell-based 
immune therapy for some refractory breast cancer cases. CD8 + Tex cells might also be developed as a drug 
target, as numerous studies have reported interactions involving genes,  drugs107, diseases, cells, and even the 
 microbiome108–112. Whether CD8 + Tex cells play a role in these interactions can be explored in future research. 
A recent study found an association between breast cancer and  menopause113. Further investigation is needed to 
determine whether menopause affects CD8 + T cells in breast cancer. One of the biggest issues in breast cancer 
is drug  resistance114. Addressing the challenges in this field necessitates exploration. Our identification of hub 
genes for these biomarkers, such as CLEC2D, CRTAM, and KLRB1, and their potential association with known 
biomarkers of breast cancer cells, such as  CHEK2115 and  TP53116, lays the groundwork for potential clinical 
applications in breast cancer management. Further research is needed to explore how these biomarkers can 
be effectively incorporated into clinical practice to improve patient outcomes. Additionally, non-invasive early 
detection of breast cancer has recently shown promising  advancements117. The biomarkers discovered may have 
the potential to contribute to the non-invasive detection of this cancer type.
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