Table 1.
Goodness of Fit Criteria | Average Posterior Probability | Relative Entropy | Percent in Each Class | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Order | n | LL | LMR-LR | LMR-LR P | AIC | BIC | Δ BIC | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | |
1 | Linear | 5 976 | −114 754.4 | — | — | −114 756.4 | −114 766.48 | — | 100.00 | — | — | — | — | — | — | 100.00 | — | — | — | — | — |
2 | Quadratic | 5 976 | −79 992.71 | 66 956.056 | p < .001 | −79 999.708 | −80 035.013 | 34 731.5 | 0.99 | 0.98 | — | — | — | — | 0.96 | 63.52 | 36.48 | — | — | — | — |
3 | Quadratic | 5 976 | −74 435.97 | 10 703.13 | p < .001 | −74 446.97 | −74 502.449 | 5 532.6 | 0.97 | 0.94 | 0.97 | — | — | — | 0.92 | 50.57 | 26.94 | 22.49 | — | — | — |
4 | Quadratic | 5 976 | −72 938.16 | 2 885.012 | p < .001 | −72 953.155 | −73 028.808 | 1 473.6 | 0.94 | 0.88 | 0.91 | 0.95 | — | — | 0.87 | 39.90 | 24.55 | 18.48 | 17.07 | — | — |
5 | Quadratic | 5 976 | −71 613.98 | 2 550.63 | p < .001 | −71 632.977 | −71728.804 | 1 300.0 | 0.85 | 0.93 | 0.85 | 0.87 | 0.93 | — | 0.85 | 17.97 | 39.63 | 12.78 | 12.85 | 16.77 | — |
6 | Quadratic | 5 976 | −70 777.17 | 1 611.816 | p < .001 | −70 800.167 | −70 916.168 | 812.6 | 0.85 | 0.90 | 0.84 | 0.86 | 0.90 | 0.82 | 0.83 | 10.44 | 35.57 | 11.67 | 10.90 | 13.57 | 17.85 |
Notes: Change in the Bayesian Information Criterion (BIC) measures the weight of evidence against the previous, less complex model. The best-fit model is related to the smallest negative value. AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; ΔBIC: Change in BIC from the previous model; LL = Log-likelihood; LMR-LR = Lo-Mendell-Rubin likelihood ratio test statistic; LMR-LR P = p-value for the Lo-Mendell-Rubin test; n = Sample size.
Average posterior probability is a measure of the internal reliability for each trajectory class (values closer to 1.0 are ideal).
Entropy is the ability of the model to provide well-separated classes (closer to 1.0 is ideal). A value greater than 0.80 indicates less classification uncertainty.
Bold indicates chosen 5-class solution.