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Abstract

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) 

are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. 

Here we evaluate recent studies that characterized microbial populations in human fetuses from 

the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical 

microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact 

with microorganisms. Our analysis indicates that the detected microbial signals are likely the 

result of contamination during the clinical procedures to obtain fetal samples or during DNA 

extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial 

populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, 

clinical microbiology and the derivation of germ-free mammals. These conclusions are important 

to our understanding of human immune development and illustrate common pitfalls in the 

microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome 

serves as a cautionary example of the challenges of sequence-based microbiome studies when 

biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes 

beyond contamination controls by also incorporating biological, ecological and mechanistic 

concepts.

Fetal immune development prepares the neonate for life in a microbial world and underpins 

lifelong health1-4. Neonates born at term are not immunologically naive and are specifically 

adapted to cope with abrupt exposure to microbial, dietary and environmental stimuli5,6. 

Several research groups have characterized immune cell development in human fetal 

tissues7-9. However, our mechanistic understanding of how and when immune priming by 

microorganisms occurs, and the factors that drive it, is incomplete. The long-held view 

that the prenatal intrauterine environment (placenta, amniotic fluid and fetus) is protected 

from live microorganisms10 has been recently challenged11-15, leading to the hypothesis 
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that fetal immune development may be driven by the presence of live microorganisms 

at intrauterine sites16-20. Some groups have reported the presence of a microbiota13, 

defined as a community of microorganisms in a defined habitat, or a microbiome15, 

referring to a microbiota as well as their constituent genes and metabolites, which form 

a dynamic and interactive micro-ecosystem that is integrated within environments including 

eukaryotic hosts21. However, these interpretations have been debated22-28 because several 

concurrent studies29-35 suggest that contaminating microbial DNA in sequencing data from 

sites of low microbial biomass36-38 is likely to be the only source of microbial DNA 

detected in the intrauterine environment. Since 2020, four studies have characterized the 

microbiology of the human fetus directly, and these studies have come to opposing and 

irreconcilable conclusions. Two reports described viable low-density microbial populations 

in human fetal intestines39 and organs40, and linked these microorganisms to fetal immune 

development. By contrast, two other research groups, which include several of the authors 

of this perspective, reported no detectable microorganisms in the fetal meconium and 

intestines30,41.

Such disagreement over a fundamental aspect of human biology poses a challenge for 

scientific progress. The notion of a fetal microbiome, if proven correct, has implications 

for clinical medicine and would call for a comprehensive reappraisal of previous concepts 

and research. It would require a radical revision of our understanding of the development of 

the immune system and other systems in early life and the anatomical and immunological 

mechanisms that mediate host–microbe interactions within fetal tissues. Failure to resolve 

this issue risks diverting finite resources into research that results in no advancement 

for fetal and maternal health, and misguided attempts to therapeutically modify a non-

existent fetal microbiome. The dilemma has further relevance for the characterization of 

the microbiota in other low-biomass samples, such as those derived from blood, the brain, 

other internal organs and cancer tissues. Therefore, we assembled a trans-disciplinary group 

of scientists and clinician scientists to examine experimental evidence relating to how and 

when the fetus becomes prepared for life with microorganisms, to identify research pitfalls 

and mitigation strategies, and to propose specific directions for future research.

Claims and counterclaims

Although disagreement over the presence of microorganisms in prenatal intrauterine 

locations (placenta and amniotic fluid) spans dozens of studies with contradictory 

findings12,14,15,23,29,31-34,37,42-44, we focused our analysis on four recent studies, because 

they provide a direct assessment of the fetus itself30,39-41. Collecting human fetal samples 

is difficult and can only occur after the termination of a pregnancy, or immediately before 

birth by C-section. Three of the studies used samples collected after vaginally delivered, 

elective, second-trimester pregnancy terminations39-41, and one collected samples from 

breech C-section deliveries immediately at birth30.

Rackaityte et al.39 reported that 18 bacterial taxa were enriched in the intestinal contents 

of vaginally delivered fetuses from second-trimester terminations compared to negative 

controls using 16S rRNA gene amplicon sequencing (V4 region). To account for 

contamination, the authors removed operational taxonomic units (OTUs) that were detected 
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in more than 50% of procedural controls, and then identified remaining contaminants 

in silico (using the decontam R package). They found that most fetal samples were 

microbiologically similar to negative controls (labelled as ‘other meconium’; n = 25), but 

that some samples, dominated by Lactobacillus (six samples) or Micrococcaceae (nine 

samples), had distinct bacterial profiles. The authors also detected low amounts of total 

bacteria by quantitative PCR (qPCR), fluorescent in situ hybridization (FISH), scanning 

electron microscopy (SEM) and culture (as discussed below).

Several of the study’s conclusions have been challenged by de Goffau et al.45, who 

reanalysed the publicly available data and found no evidence for a distinct bacterial profile 

in the subset of samples with matched procedural controls, and concluded that the positive 

findings were caused by a sequencing batch effect (indicative of contamination) and further 

contamination during culture45. In addition, the suggestion that particles detected in SEM 

micrographs constitute micrococci39 was disputed, as their size exceeded that of known 

Micrococcaceae45. Furthermore, the 16S rRNA gene sequence of the Micrococcus luteus 
cultured from the fetal samples differed from that detected by sequencing, further supporting 

contamination during culture (M. luteus is a common contaminant of clean rooms and 

surgical instruments46,47).

Mishra et al.40 detected a low but consistent microbial signal across tissues of 

vaginally delivered fetuses from second-trimester terminations by 16S rRNA gene 

amplicon sequencing (V4–V5 region), with seven genera enriched in fetal samples 

(Lactobacillus, Staphylococcus, Pseudomonas, Flavobacterium, Afipia, Bradyrhizobium 
and Brevundimonas). The 16S rRNA gene-sequencing data were accompanied by SEM, 

RNA-in situ hybridization (RNA-ISH) and culture. In recognition of the high risk of 

contamination, all samples were processed in isolation with negative controls collected 

during sample processing. In contrast to Rackaityte et al., Mishra et al. found that 

Micrococcus was enriched in phosphate-buffered saline (PBS) reagent controls, and reported 

it as a contaminant, with the M. luteus cells detected by culture being consistent with the 

size and morphology of the coccoid structures that were found by SEM40.

Both Rackaityte et al. and Mishra et al. included assays of fetal immune development 

and concluded that the microorganisms detected could contribute to immune maturation. 

In Rackaityte et al.39, this conclusion was based on differences in T cell composition and 

epithelial transcription between fetal intestines in which Micrococcaceae were observed 

to be dominant and those in which this taxon was absent, leading to the suggestion that 

bacterial antigens contribute to T cell activation and immunological memory in utero. 

Mishra et al.40 used flow cytometry to expand on previous findings of effector (TNF- 

and IFNγ-producing) memory (CD45RO+) T cells in fetal tissues, including gut tissue 

and mesenteric lymph nodes. Bacterial isolates cultured from the fetal samples, including 

Staphylococcus and Lactobacillus strains, induced in vitro activation of memory T cells 

isolated from fetal mesenteric lymph nodes.

In contrast to these reports, Li et al.41, who also investigated fetal intestinal tissue from 

second-trimester terminations, did not detect bacterial DNA by PCR (V4 region of the 16S 

rRNA gene, 35 cycles) on the basis of a visual inspection of agarose gels in any of the 

Kennedy et al. Page 6

Nature. Author manuscript; available in PMC 2024 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



101 samples tested. The authors detected a diverse set of microbially derived metabolites 

that were present and enriched in the fetal intestinal samples, and hypothesized that these 

microbiota-derived metabolites are passed via the mother’s blood through the placenta 

to ‘educate’ the fetal immune system. This conclusion is supported by research in mice 

that showed that fetal immune education can be driven in the absence of direct microbial 

exposure by trans-placental passage of microbial metabolites originating from the maternal 

gut48,49.

Kennedy et al.30 used a different approach and collected samples using rectal swabs 

during elective C-section for breech presentation at term gestation30. Comparisons with 

environmental and reagentnegative controls from two independent sequencing runs were 

included to account for contamination and stochastic noise. No microbial signal distinct 

from negative controls was detected, and aerobic and anaerobic bacteria (Staphylococcus 
epidermidis and Cutibacterium acnes (formerly Propionibacterium acnes)) detected by 

culture of fetal samples were identified by the authors as skin contaminants.

To compare these reports, we reanalysed the publicly available unfiltered microbial profiling 

data associated with the three publications that reported sequence data and determined 

the relative abundance of each detected genus. Although there was good agreement 

between the two studies using second-trimester vaginally delivered fetuses39,40, the bacterial 

taxa that were detected in fetuses from C-sections30 were significantly different (Fig. 

1). The number of genera was much lower in C-section-derived fetuses, and entire 

groups of microorganisms–especially those usually found in the vagina–were absent. Most 

importantly, in the studies that claimed fetal microbial colonization39,40, every genus 

detected in fetal samples was also detected in most of the control samples.

Reproductive biology and obstetrics perspectives

The embryo and fetus develop within the uterus but not in the uterine cavity per se. 

The early embryo invades the maternal decidua and is completely embedded by ten days 

after fertilization. The fetus grows within the amniotic cavity, which originates between 

the trophoblast and inner cell mass in the second week after fertilization, surrounded 

by two layers of reproductive membranes and bathed in amniotic fluid. Hence, even if 

microorganisms were present in the uterine cavity50, they would have to pass through to 

the amniotic cavity and enter the amniotic fluid to colonize the fetus. Amniotic fluid has 

antimicrobial properties, being enriched for example in lysozyme51, human β-defensin 2 

(ref. 52) and GP340 (DMBT1)53, which binds and agglutinates diverse Gram-negative and 

Gram-positive bacteria.

The placenta mediates communication between the fetus and the mother and is a potent 

immune organ that protects the fetus. Historically, the placenta has been considered 

sterile (defined here as free from living microorganisms), but in 2014 a complex but low-

biomass placental microbiome was detected by DNA sequencing. The proposed placental 

microbiome showed some similarity with sequencing data of microbial communities 

of the oral cavity15. Contamination controls were not included in this study, and 

subsequent evaluation of the work found that most of the genera detected were also 
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common contaminants26,36,38,54. Several detected taxa, such as Gloeobacter, a genus of 

photosynthetic cyanobacteria, appeared biologically implausible as a component of a 

putative placental microbiome24,55. Since this early report, dozens of studies have conducted 

sequence-based microbial analyses of placental tissues, with opposing conclusions (as 

reviewed by Bolte et al.20).

Regardless of whether placental samples are collected by biopsy via the vagina, clinically 

by chorionic villus sampling or after delivery, it is always necessary to control for 

contamination, particularly from the tissues through which a placenta must pass before 

sampling. Accordingly, de Goffau et al.29 performed a comprehensive study of the possible 

placental microbiome, using samples from uncomplicated and complicated (pre-eclampsia 

and small for gestational age) pregnancies that were delivered both at term and preterm 

either vaginally or by C-section. Sampling was confined to the placental terminal villi (fetal 

tissue), as this represents the site of exchange (across the vasculosyncytial membrane) 

between the fetus and the mother’s blood and tissues. The authors detected a range 

of species that are known to dominate the vaginal microbiota56, such as Lactobacillus 
iners, Lactobacillus jensenii, Lactobacillus crispatus, Lactobacillus gasseri and Gardnerella 
vaginalis. When the presence of vaginal microorganisms and those in the laboratory reagents 

(the ‘kitome’) were accounted for, there was no evidence for a placental microbiome, which 

is in agreement with several additional recent studies23,29,31-34,37.

Pathogenic infection of the placenta by viral or bacterial pathogens is a well-recognized 

clinical phenomenon that contributes to preterm birth and neonatal sepsis57. de Goffau 

et al. detected Streptococcus agalactiae in around 5% of cases as the only verifiable 

bacterial signal in placentas obtained by C-section deliveries that were conducted before 

the rupture of the fetal membranes and the onset of labour29. The presence of this species 

is plausible as it colonizes the genital tract of about 20% of women and has invasive 

potential, being an important cause of maternal and neonatal sepsis58. However, the ability 

of specific pathogens to colonize and/or infect the placenta is distinct from the presence of 

an indigenous microbiota–that is, a prevalently stable, non-pathogenic, complex microbial 

community that is metabolically active21.

Research claiming that viable low-density microbial communities are present in the fetal 

intestine39 and fetal organs40 likewise calls for an evaluation of the sampling process. 

Mishra et al. obtained fetal tissues after medical termination of pregnancy in the second 

trimester with prostaglandins40. This procedure typically involves the individual going 

through hours of labour and often leads to the rupture of the fetal membranes hours 

before vaginal delivery. Even with a standardized approach, labour may be prolonged and 

may be accompanied by infection and fever, which are common with second-trimester 

terminations59,60. Both Li et al.41 and Rackaityte et al.39 also used second-trimester 

terminations but obtained the fetal tissues from core facilities. The tissues used by Li et 

al. were from surgical terminations (14–23 weeks) performed with mechanical dilation. 

Rackaityte et al.61 did not provide sufficient information to determine whether fetuses were 

obtained through surgical procedures or medical inductions. Although the latter increases the 

risk of the fetus being exposed to vaginal microorganisms during labour, both procedures 

involve vaginal delivery of the fetus. As outlined below, the reported microbiology of these 
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fetuses mainly reflects the sources of microorganisms to which they were exposed during 

these procedures.

Microbial ecology perspectives

Host–microbe relationships range from mutualism (a prolonged symbiotic association from 

which both benefit), to commensalism (the host is unaffected), to pathogenesis, in which 

the microorganism harms the host. Although claims for fetal microbial exposure39,40 have 

not established the nature of the host–microbe interaction, and the duration of exposure or 

colonization, they have suggested that live organisms have a beneficial role in fetal immune 

development, thereby implying a symbiosis. The microbiological approaches applied by 

Rackaityte et al.39 and Mishra et al.40 are, in large part, robust, and well suited to 

studying symbiotic microbial populations. The combination of 16S rRNA gene sequencing, 

qPCR, microscopy, FISH and culture is laudable, as the approaches are complementary. 

Next-generation sequencing of 16S rRNA gene amplicons provides a broad community 

overview and can detect microorganisms that escape cultivation, whereas qPCR, microscopy 

and bacterial cultures have a high dynamic range, low detection limits and reasonable 

specificity. The DNA-sequence-based microbiota composition data in both studies are quite 

consistent (Fig. 1), which suggests that several of the bacterial taxa detected were present 

in the samples and not artefacts derived from laboratory reagents or DNA-isolation-kit 

contamination. However, although the microbiological analyses of samples were sound, the 

sampling procedures allowed the introduction of contaminant species, and critical controls to 

determine whether contamination occurred were missing.

In agreement with the unavoidable vaginal exposure of fetuses obtained by second-trimester 

abortions (see above), both Rackaityte et al.39 and Mishra et al.40 found that the genera 

Lactobacillus and Gardnerella, which dominate the vaginal microbiota56, were among their 

most consistent findings (Fig. 1). The species cultured by Mishra et al.–G. vaginalis, L. iners 
and L.jensenii–are largely restricted to the human vagina62. Other microorganisms detected, 

such as Staphylococcus species and Cutibacterium acnes, are skin commensals. As shown 

in Fig. 1, the abundances of Lactobacillus, Gardnerella and Staphylococcus that were found 

by Mishra et al. showed gradients with high population levels in fetal samples exposed 

to sources of contaminants (placenta and skin) and lower levels in internal samples (gut, 

lung, spleen and thymus). The omission of vaginal controls by both Rackaityte et al. and 

Mishra et al. to determine the microbiota of vaginally delivered fetuses is a considerable 

limitation that casts doubt on the authors’ conclusion that the microorganisms originate from 

the womb. Indeed, Li et al.41 obtained samples from second-trimester surgical terminations 

using mechanical dilatation, which reduces the risk of bacterial exposure to the fetus during 

sampling. In this study, positive bacterial PCR results were not reported, which raises the 

possibility that sampling contamination may be a serious confounder in both of the other 

studies that claimed the presence of microorganisms at these sites.

Although vaginal controls were not included by Rackaityte et al.39 and Mishra et al.40, 

direct comparisons of their findings with those of Kennedy et al.30 also provide evidence for 

vaginal contamination of terminated fetuses (Fig. 1). The C-section-derived fetal samples 

in Kennedy et al., which were not exposed to the vagina, carried no Gardnerella or 
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Lactobacillus, but instead contained skin and reagent contaminants30,54. Despite attempts to 

reduce contamination, C-section-derived fetal meconium had at least one positive culture30. 

Kennedy et al. did not consider these microorganisms to be of fetal origin, as they were 

skin commensals, and half of the samples, as well as many culture replicates, did not show 

growth. The authors concluded that such inconsistencies point to stochastic contamination 

and not colonization by a stable functional microbial community.

In addition to the potential detection of contaminants, the bacterial load found in terminated 

fetuses was extremely low39,40. Signals derived from qPCR experiments were only 

marginally higher than those of controls, with Mishra et al. reporting cycle thresholds (Ct) 

of more than 30 cycles, with Ct values for negative controls being around 31–32 cycles. 

Cell counts as detected by both microscopy and culture were also low. Mishra et al. reported 

fewer than 100 colonies on average per entire fetus, with high inconsistencies among 

individual fetuses and tissues (see Table S6 in the original publication40). Such findings are 

more likely to be a result of contamination than colonization.

Neonatal meconium samples have been studied for a century by culture-based methods, and, 

more recently, by DNA sequencing. Evaluations of such samples are also associated with 

contradictory findings11,43,44,63, probably owing to contamination64 and because postnatal 

colonization may occur before the first passage of meconium26. However, when meconium 

is passed soon after birth, culturable bacteria are seldom detected (as reviewed by Perez-

Muñoz et al.26). In agreement with this, an analysis of meconium samples collected from 

extremely premature infants65 showed that taxa regularly identified as contaminants36,38 

make up a large proportion of sequences that are collected within the first three days 

after delivery and which drop to levels below 1% of the total microbiota profile in most 

samples at days 4–6 (Fig. 2). This indicated that bacterial sequences that cannot be assigned 

to contamination are initially rare in early meconium, which is consistent with a recent 

study that applied strict controls for sequencing and culture and did not detect a meconium 

microbiota64.

Members of an authentic fetal microbiota should be, in theory, detectable in early-life 

faecal samples independent of birth mode. There is, indeed, some overlap between the 

reported fetal microbial taxa39,40, for example, staphylococci, enterococci, lactobacilli and 

enterobacteria, and the microbiota detected in infant faecal samples in the first week of 

life66-68. However, there have been few attempts to track species and strains to confirm fetal 

origin. One study investigated gastric aspirates of newborn infants immediately after birth69; 

this should in theory detect in utero bacterial exposure as the fetus swallows amniotic fluid 

(as demonstrated by the detection of pathogenic Ureaplasma species70). However, aspirates 

from vaginally born infants contained the specific Lactobacillus species (L. iners and L. 
crispatus) that also dominate the microbiota of the vagina, whereas most samples from 

C-section deliveries contained low microbial loads near the detection limit and clustered 

with negative controls69. This finding is consistent with vaginal transfer of microorganisms 

to a sterile fetus during delivery. In addition, many of the genuine bacterial signals that were 

detected in early meconium65 were typical maternal skin representatives (Staphylococcus 
spp. and Corynebacterium spp.) and were strongly associated with C-section, or in the case 

of vaginal deliveries, species that are common in the maternal faecal microbiota (Escherichia 
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coli and Bacteroides fragilis) (Fig. 2), indicating that these genuine signals were derived 

from microorganisms acquired ex utero.

Research is beginning to determine the origin of post-partum neonatal microbial colonizers 

and has shown a delay in the appearance of bacterial species that are presumed to originate 

from the mother’s gut (for example, Bifidobacterium and Bacteroides species) in early 

faecal samples of infants born by C-section66,67,71-73. A substantial proportion of strains 

acquired by infants postnatally can be traced back to their mother’s faecal samples73-75, 

and faecal microbiota transplant from the mother restores the microbiome in infants 

delivered by C-section76. Thus, the published evidence, although incomplete, suggests that 

the early-life microbiota in humans is acquired through the vertical and horizontal transfer 

of microorganisms whose origin is faecal or environmental (from outside) rather than fetal 

(from inside).

Bioinformatic and data science perspectives

Characterizing low-biomass samples by 16S rRNA gene amplicon sequencing is challenging 

as DNA contamination can occur from the microbial DNA present in reagents, labware, 

tools, instruments and DNA-isolation kits36-38, and through cross-contamination between 

PCR tubes or wells, sequencing runs or sequencing lanes37. A common misconception in 

the field of low-microbial-biomass samples is that the use of negative controls is sufficient 

to account for all kinds of contaminants. Commonly, imperfect negative controls are used 

that account for only a limited number of the sample-processing steps or are not spread 

evenly amongst all batches (thus not accounting for processing days, reagent batches and 

different sequencing runs), leading to batch effects that may be mistaken for genuine 

signals45. Overreliance on or under-analysis of such negative controls, in combination with 

the misapplication of contamination-removal programs like decontam77, specifically by not 

having negative controls in all batches, frequently results in false positive signals owing to 

the detection of contaminants45. Even with appropriate controls, it is challenging to separate 

genuine signals from low abundance contaminants as signals may appear sporadically in 

samples and negative controls78. Thus, suboptimal processing of sequencing control samples 

may not reveal the full spectrum of contaminants because only the most abundant species 

of contaminants are consistently detected. On the other hand, potentially genuine sample-

associated signals sometimes also erroneously appear in negative-control samples through 

cross-contamination during the PCR or sequencing steps (machine contamination)37.

In the case of both Rackaityte et al.39. and Mishra et al.40, many of the taxa reported are 

common contaminants (Fig. 1). The most obvious case is Bradyrhizobium, which is one of 

the most dominant and consistent contaminants found in sequencing studies38,79. Rackaityte 

et al. interpreted the presence of Micrococcus and Lactobacillus as genuine fetal inhabitants, 

but a reanalysis of the data suggested that these findings were a result of batch effects 

(indicative of contamination45). Although the authors rejected this interpretation61, this 

batch effect is clearly visible if the findings of the different batches are plotted together(Fig. 

3). Furthermore, in the study by Mishra et al., the authors concluded that Micrococus was 

likely to be a contaminant40, whereas the genera Afipia, Flavobacterium, Pseudomonas and 
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Brevundimonas were reported as part of the fetal microbiota40, although these taxa are also 

commonly detected as kit or laboratory reagent contaminants36,38.

Mishra et al. and Rackaityte et al. also reported a marginally higher total bacterial load 

in fetal samples, as compared to controls, using qPCR39,40. However, nucleic acids (DNA, 

RNA and tRNA) in tissue samples (which are absent in negative controls) might have 

a DNA carrier effect80, leading to a more efficient DNA precipitation of prokaryotic 

material. In addition, bacterial PCR primers that target the 16S rRNA gene can also amplify 

mitochondrial DNA81, which is evolutionarily of bacterial origin. Together, these factors 

offer alternative explanations for a higher microbial burden in samples from low-biomass 

sites compared to controls. Rackaityte et al. removed human mitochondrial DNA (mtDNA) 

from their 16S rRNA gene-sequence-based results that co-amplified in the PCR, but neither 

study accounted for mtDNA in their qPCR analysis, although their qPCR primers targeted 

the 16S rRNA gene and were therefore potentially susceptible to cross-reactivity39,40.

Immunological perspective

The enteric microbiota is a potent driver of adaptive mucosal immune maturation and 

priming in the adult host82-85. Besides their intrinsic immunogenic nature, microorganisms 

also generate metabolites that promote and shape immune maturation and priming86-88. 

Although the early fetal immune system is immature, recent research shows the migration of 

fetal dendritic cells (DCs) to the mesenteric lymph nodes; somatic hypermutation in fetal B 

cells; and an expansion of T cell receptor repertoire diversity, evenness and activation during 

late fetal development7,89,90.

The existence of metabolically active microorganisms in the fetus could, in principle, 

provide one possible explanation for these findings. Mishra et al.40 used an autologous 

T cell expansion assay to show that fetal DCs loaded with antigen from bacteria that had 

been isolated from fetal tissues stimulated the proliferation of CD45RO+ and CD69+ T cells. 

T cell proliferation was reduced but still detectable in the absence of DC-derived cytokine 

release, suggesting an activated memory response40. Evidence that the fetal T cell memory 

response is specific for the bacteria present in one individual fetus would be necessary to 

strengthen the interpretation that specific immune responses are routinely driven by fetal 

bacterial colonization.

There are alternative explanations for fetal immune responses apart from bona fide microbial 

colonization. Maternal antigen–IgG complexes have been detected in cord blood, and 

trans-placental immune priming of the fetal immune system in early gestation has been 

demonstrated91,92 Cross-reactivity, as observed for microbiota reactive enteric secretory 

immunoglobulin A, would support fetal priming by maternal microbial antigens87. Similarly, 

maternal-microbiota-derived molecules partly bound to IgG stimulated innate immune 

maturation of the fetal gut in mice48, and maternal intestinal carriage of Prevotella has 

been reported to protect the offspring from food allergy in humans93. Thus, antigens and 

metabolites derived from the maternal microbiota can pass the placental filter directly 

or bound to IgG, and offer an alternative explanation for the observed fetal immune 

responses94.
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The hypothesis of a low-biomass fetal microbiome requires the identification of host 

mechanisms that control and tolerate bacterial populations and prevent overt inflammation 

and tissue destruction in the presence of viable microorganisms, many of which are 

opportunistic pathogens (see below). Alongside this, mechanisms by which the commensal 

or symbiotic microorganisms survive the immune response and antimicrobial effector 

molecules would also have to be identified, and it is unclear how the fetal immune 

system would differentiate between pathogens and symbionts once protective barriers 

are breached57. Given that such immunological and anatomical mechanisms have not 

been identified or even proposed28, the observed immune maturation and priming during 

fetal development is probably not induced through colonization of the fetus with live 

microorganisms. Instead, fetal immune development might be driven through maternal 

immune components or microbial fragments and metabolites crossing the placenta, which 

protects the sterile fetus from live microorganisms through multiple layers of immunological 

defence57.

Clinical microbiology perspective

No part of the human body is impregnable to bacterial invasion. Transient bloodstream 

bacteraemia can result from innocuous activities such as brushing the teeth95, and most 

host tissues can tolerate occasional ingress by microorganisms. However, to avoid serious 

pathology, bacteraemia must be rapidly cleared by innate immune mechanisms and 

inflammation. Some pathogens establish persistent infections that may be asymptomatic 

either by evading the immune system or by forming persister cells in response to 

antibiotic treatment96. The claims for non-pathogenic fetal microbial exposure39,40 

have not established whether host–microbe interactions reflect small-scale translocation, 

asymptomatic infection, persistent symbiosis or mutualism.

The ‘fetal-enriched taxa’ reported include Micrococcus, Lactobacillus, Flavobacterium, 
Staphylococcus, Escherichia, Enterococcus, Afipia, Pseudomonas,Bradyrhizobium and 

Brevundimonas39,40. Mishra et al. also report successful culturing of lactobacilli and 

staphylococci from fetal tissue40, but the lack of unambiguous species-level taxonomic 

identification of the cultured organisms is a major technical limitation. Bacteria such 

as Micrococcus, which were detected in fetal intestines by Rackaityte et al.61, rarely 

cause invasive infection in humans. Their prolonged presence within healthy tissues and 

transmission through the placenta would require bacterial mechanisms of resistance against 

antimicrobial effector molecules of the host innate immune system57. Such mechanisms 

have not been described for the genus Micrococcus, which is an environmental organism 

found in water, dust and soil, and is also a common contaminant46,47. Lactobacilli are 

usually of low pathogenic potential; they inhabit external mucosal surfaces of healthy 

humans, including the nose97 and the vagina56, and are often used as probiotics98. However, 

some strains and species of lactobacilli do express potential virulence factors99-101, resist 

oxidative stress102 and grow in the absence of iron103, which allows them to cause 

serious infections such as endocarditis when provided with the opportunity to access the 

bloodstream104,105. This raises potential problems with the interpretation of lactobacilli as 

asymptomatic colonizers of fetal tissue rather than contaminants that are picked up during 

vaginal delivery.
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An even greater challenge arises when species of the genus Staphylococcus are considered, 

particularly strains that were cultured from fetal tissue and that exhibit high-level 16S rRNA 

gene-sequence identity (99–100%) to Staphylococcus aureus and several closely related 

coagulase-negative Staphylococcus species (CoNS)40. These organisms can be long-term 

colonizers of external mucosal surfaces of humans106,107 and do not typically cause disease 

unless the mucosal barrier is breached. However, once they bypass mucosal barriers, they 

can deploy a more extensive repertoire of virulence factors to invade tissues by degrading 

connective tissues and, in the case of S. aureus, a repertoire of over a dozen cytolytic 

toxins that kill human cells108,109. CoNS, on the other hand, are ubiquitous skin colonizers. 

Their detection in clinical diagnostic laboratories is so common that it is considered a 

major diagnostic challenge110,111 and is usually assumed to reflect contamination from the 

patient and occasionally the healthcare worker, in the absence of other reasons to suspect a 

CoNS infection77-79. There are, however, distinct clinical scenarios in which the presence 

of CoNS and their pathogenic capacity are considered critical: for example, in patients with 

indwelling medical devices and in preterm neonates; they are the most common cause of 

late-onset neonatal sepsis112. Therefore, given that they are either contaminants or overt 

pathogens, the detection of staphylococci, no matter whether S. aureus or CoNS, is difficult 

to reconcile with in utero colonization of a healthy fetus.

Other bacteria identified as part of a notional ‘fetal microbiome’, such as Enterococcus 
faecalis and Klebsiella pneumoniae, are equally problematic. These belong to a group 

known as ‘ESKAPE pathogens’, which include Enterococcus faecium, S. aureus, K. 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species. 

The lethality of tissue colonization with ESKAPE pathogens is well documented, and 

these microorganisms are leading causes of healthcare-acquired infections worldwide, 

with considerable mortality and morbidity, even when treated with antibiotics113. Several 

ESKAPE pathogens readily survive in adverse conditions outside of vertebrate hosts, 

including drying, oxidative stress and exposure to heat or sanitation chemicals114. They are 

likely to persist on inanimate surfaces including utensils or clinical fabrics115,116, thereby 

increasing their likelihood of being contaminants. Although these microorganisms were not 

reported at the species level40, it is noteworthy that closely related organisms can also cause 

neonatal sepsis117-119, which makes them unlikely to be colonizers of a healthy fetus.

A consideration prompted by a notional fetal microbiome is the possibility that the fetus 

might cope better with nosocomial pathogens than neonates or even adults. However, 

there is ample evidence to show that amniotic fluid, the placenta and fetal tissues are 

highly susceptible to bacterial infection, and the outcomes of infections with S. agalactiae 
or Listeria monocytogenes are often catastrophic120,121. Notably, in L. monocytogenes 
infections that occur during the third trimester of pregnancy, fetal infection progresses, 

whereas the mother’s infection can be cleared, indicating that the fetus does not have greater 

resistance to infection than an adult human. Therefore, from a clinical perspective, most 

interpretations brought forward in recent publications39,40 with regard to the presence of 

microorganisms in fetuses seem to be biologically difficult to reconcile, as it is highly 

plausible that they would result in harm to or death of the fetus. In agreement with this 

conclusion, in a series of well-controlled studies in various clinical settings, DiGiulio and 
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co-workers found no evidence for microorganisms in amniotic fluid except when associated 

with neonatal morbidity and mortality122-125.

Gnotobiology perspective

The traditional assumption that the human fetus is free from other life forms in utero is 

based mainly on the observation that, with few exceptions, bacterial and viral pathogens that 

infect the mother are incapable of crossing the placental barrier to infect the fetus126-128. 

In addition, the amnio-chorionic membranes that enclose the fetus in the uterine cavity, as 

well as the cervical mucus plug, protect the fetus from external microorganisms. Sterility 

of the fetus is the basis for the derivation by hysterectomy of germ-free mammals (mainly 

mice and rats, but also pigs and other species26), which have long been used to study 

the biochemical, metabolic and immunological influences of microorganisms on their 

mammalian hosts129-131. The primary consideration is whether germ-free animals are truly 

‘free of all demonstrable forms of microbial life’132. If they lack microbial associates, there 

cannot be a fetal microbiome. Testing germ-free animals for contaminating microorganisms 

uses microscopic observation of stained faecal smears, culture of faeces in nutrient media 

under various conditions of temperature and gaseous atmosphere127,132-134, PCR using 

‘universal bacterial’ primers133,135, and serological assays for viral infections136. These 

tests consistently demonstrate an absence of microbial associates. Therefore, gnotobiology 

provides strong evidence that the fetus in utero is sterile.

A healthy human fetus is sterile

Through multiple angles of explanatory considerations, we conclude that the evidence is 

strongly in favour of the ‘sterile womb’ hypothesis. Although it is impossible to disprove the 

occasional presence of live microorganisms in a healthy human fetus, the available data do 

not support stable, abundant colonizers under normal, non-pathogenic circumstances. We are 

aware that our position conflicts with dozens of publications that claim evidence for in utero 

microbial populations20, but we are confident in the validity of our multi-layered approach.

The processes by which the fetus matures and becomes immunologically equipped for life 

in a microbial world have lifelong implications. Aside from the caution and safeguards 

recommended in this perspective article (Box 1), our aim here is not to dissuade 

scientists from investigating the microbial drivers of fetal immune development. We agree 

with proposals that there is a need to better understand microbial interactions at the 

maternal–fetal interface20, but do not think that symbiotic microbial populations in the 

placenta or fetus play a role in this. Paradoxically, we contend that sterile tissues are 

both immunologically and microbiologically fascinating, but require an adjustment of the 

methodological approaches used. How does the fetus mature and become immunologically 

equipped for life in a microbial world in the absence of direct exposure to live 

microorganisms? Are maternal-derived microbial metabolites sufficient for fetal immune 

education? Future research could include explorations of how maternal microbial-derived 

metabolites and small molecules, as well as maternal immune components, prepare the fetus 

for the microbial challenges of postnatal life94.
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Lessons for low-biomass research

Contamination is always a potential confounder in microbiology but is of particular concern 

for those studying low- or no-biomass samples36,38. The issue has been highlighted by 

recent reports of human tissues, such as blood, brain and cancers (Box 1), which were 

previously thought to contain no, or very little, bacterial biomass, but apparently contain 

diverse microbial communities. As with the intrauterine studies described above, these 

microbial populations are often discussed considering their perceived importance for human 

diseases and health.

In studies on low-biomass samples, it is challenging to identify relevant signals from 

among contaminating noise. In instances of contamination, a tissue may be misjudged 

as non-sterile, whereas in others, a real microbiological signal may be obfuscated by 

contamination. The removal of all sequences present in negative-control samples, or that 

have been previously identified as contaminants in the literature, may result in a loss of 

authentic signals. Post-sequencing contamination removal using software packages such as 

decontam77 or other statistical approaches36,137 have been developed to remove the more 

abundant contaminants, leading to microbiome profiles that are more likely to reflect the real 

community. Practical examples of contamination removal in 16S rRNA gene-sequence data 

are provided by Heida et al.65, Saffarian et al.138, and Jorissen et al.139, and we expand on 

these examples in Box 1.

We draw attention to the distinction between ‘low biomass’ and ‘no (zero) biomass’ 

samples. This has practical significance; true ‘low (microbial) biomass’ samples are 

amenable to contamination-removal approaches but ‘no (microbial) biomass’ samples 

require a different approach (Box 1). For credible assertions of the presence of 

microorganisms, multiple layers of evidence are required. Potentially genuine signals 

found with contamination-sensitive sequencing approaches, even with strict controls 

included, should be verified using a quantitative, sensitive (lower detection limit), and 

less contamination-prone approach such as a species-specific qPCR. Because contamination 

removal will provide data regardless of whether microorganisms are present or absent, the 

starting proposition should be the null hypothesis to avoid confirmation bias28, particularly 

when results are inconsistent and at the outer technical limits for detection, or if results defy 

mechanistic plausibility.

Given the limitation of sequencing approaches, confirmation by alternative methods, such 

as FISH and culture, is required. However, as shown by recent studies of fetal samples, 

even a combination of approaches has the potential to produce false findings, because 

contamination during sampling is a considerable challenge. We posit that studies on all 

low-biomass samples could benefit from a similar trans-disciplinary assessment to that 

applied above for fetal samples, to interpret findings considering biological and mechanistic 

explanations28. When obligately photosynthetic, psychrophilic, thermophilic, halophilic or 

chemolithoautotrophic bacteria are found in human tissues that do not provide the growth 

conditions for such organisms24,140, or if the detected genera are known contaminants of 

laboratory kits or reagents (such as readily culturable Proteobacteria like Pseudomonas and 

E. coli, for example)141-143, the authenticity of such signals should be questioned.
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Box 1

Experimental considerations for low-biomass research

High-biomass samples

Examples:

Faeces, dental plaque, wastewater, soil.

Impact of contamination:

Very low:  The high microbial biomass derived from the sample dominates the signal 

from background contamination, meaning that most observations are robust.

Mitigations:

Experimental design seldom needs to be substantially adjusted to account for 

contamination. Inclusion of ‘blank’ negative sequencing controls and removing samples 

with substantial levels of contamination using basic post-sequencing analysis is 

nevertheless prudent.

Low-biomass samples

Examples:

Skin swabs, nasal tract swabs, breast milk, most respiratory tract samples, tissue biopsies 

and mucosal samples, including intestinal crypts.

Impact of contamination:

Low to high:  Contaminated samples are progressively affected with reducing input 

microbial biomass38.

Mitigations:

Inclusion of multiple controls for recognition of contamination. Ideally, samples should 

be concentrated before processing to increase input biomass. Consideration of potential 

sources of contamination during the sample acquisition stage is always recommended. 

After sample collection, processing should be carried out in a clean-room environment, 

preferably with all surfaces bleached and UV-treated. DNA extraction may benefit from 

the use of non-kit-based methods (for example, phenol-chloroform extractions) in which 

plastic-ware and reagents can be UV-treated before use. Contamination from DNA-

isolation and PCR kits is usually identifiable, particularly if well-defined batches are 

created64 and controlled using different lot numbers of kits. Regardless of the method of 

DNA extraction, the presence of contaminants should be monitored by including ‘blank’ 

negative controls. Inclusion of controls generated by serial dilution of DNA of known 

composition (for example, mock community) will indicate the biomass level at which 

contamination becomes a dominant feature of sequencing results. Contamination may 

also be estimated before sequencing by qPCR using serially diluted known quantities 

of spiked input DNA. Post-sequencing analyses, using programs like decontam, and 

analysis steps described by de Goffau et al.36 and used by Heida et al.65, will usually 

identify contaminants.
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Samples in which the existence of microorganisms is not established (potential ‘no 
(zero) biomass’ samples)

Examples:

Placental and fetal tissues, amniotic fluid, meconium, brain tissue and cerebrospinal 

fluid, blood, bone and internal cancer tissues, healthy middle ear samples.

Impact of contamination:

High and potentially up to 100% unless infection or injury is present.

Mitigations:

Experimental design should be directed specifically against contamination. Initial 

assessment using quantitative methods (for example, qPCR) with low detection limit and 

microscopic visualization (for example, Gram staining or labelling by FISH) is required 

to determine whether microorganisms are present, before embarking on sequencing 

approaches. Such techniques are still susceptible to sample contamination and other 

artefacts (for example, non-specific staining or auto-fluorescence from mucins can 

sometimes appear ‘microbe-like’ in size and shape)45,144. All mitigations outlined for 

‘low biomass’ samples above should be adopted. Repeating sample processing with 

different DNA extraction kits or methods32 and/or at different days can be informative145. 

These will track the presence of species in sequencing profiles associated with specific 

kits, reagents or environment. Species that are repeatedly detected regardless of the 

technical approach are more likely to be genuine signals, unless they were introduced 

during sample collection. Binary statistics (absence–presence) are recommended. The 

presence of microorganisms identified by sequencing should be verified with a different 

technique such as cultivation, another sequencing technique with sufficient taxonomic 

resolution, and/or species-specific qPCR or FISH using high magnification to visualize 

the size and morphology of individual microbial cells.
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Fig. 1 |. Relative abundance of bacterial taxa from three recent fetal studies.
Distribution and mean relative abundance (%) of taxa present In fetal samples from three 

recent studies30,39,40 investigating the fetal microbiome, and their corresponding abundance 

in control samples. Taxa were selected on the basis of the following criteria: genera 

that were cultured from or detected as enriched in fetal samples as described by Mishra 

et al.40 (indicated by ^) or by Rackaityte et al.39 (indicated by *, including the family 

Micrococcaceae); all genera detected in fetal samples from Kennedy et al.30 and the PBS-

enriched genus Ralstonia40. Taxa were grouped by potential source of contamination in 

agreement with the likely origin of genera (for skin microorganisms) and previous studies 

that characterized sources of contamination36-38. Publicly available unfiltered relative 

abundance microbiota profiling data associated with each publication were merged into 

a single phyloseq object (RRID:SCR_01380). Amplicon sequence variants (ASVs) were 

grouped at the genus or family level (for Micrococcaceae). The mean relative abundance 

of each taxon was calculated for each sample type within each study and plotted in 

R (tidyverse, ggplot2; RRID:SCR_014601). Dot size corresponds to the mean relative 

abundance by sample type and study (mean relative abundances of less than 0.0001% were 

excluded). Dots are coloured by sample type: reagent controls in grey (Mishra: PBS n = 42, 

reagent n = 23; Rackaityte: buffer n = 11; Kennedy: reagent n = 2), sampling negatives in 

aqua (Kennedy: swab n = 1; Rackaityte: air swab n = 19; procedural swab n = 16; moistened 

swab n = 17) and environmental negatives in sky blue (Mishra: environment n = 47, operator 

n = 12), internal controls in indigo (Mishra: thymus n = 27, spleen n = 12; Rackaityte: 

kidney n = 16), fetal lung in pink (Mishra: n = 25), fetal gut in purple (Kennedy: n = 20; 
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Mishra: n = 44; Rackaityte: proximal n = 41, mid n = 45, distal n = 42), and external tissues 

in red (Mishra: skin n = 35, placenta n = 16).
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Fig. 2 |. Reagent contamination in meconium samples from extremely premature infants.
a, Representation of the percentage of reagent contamination (% of total sequence reads) 

in the first meconium of extremely premature infants collected in a previous study65 in 

relation to the day of procurement of said samples (day 1–3 or day 4–6) or in regard to the 

mode of delivery (C-section or vaginal). Colours indicate the percentage of sequence reads 

assigned to reagent contamination (legend on top). The day of procurement is significantly 

correlated with the percentage of reagent contamination reads (P = 0.005 by Mann–Whitney 

U test or P = 0.01 by Spearman rho test) and the mode of delivery shows a trend (P = 

0.07 by Mann–Whitney U test). The number of samples (n) is noted below each category. 

b, Top, list of reagent contaminants shown together in a. Bottom, list of the most abundant 

sample-associated-signals and their association (or lack thereof owing to limited size of 

cohort) with vaginal (V) or C-section (C) delivery.
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Fig. 3 |. Relative abundance of bacterial taxa in samples from Rackaityte et al.
Distribution and mean relative abundance (%) of taxa present In fetal and control samples 

from Rackaityte et al.39 by batch as defined by Rackaityte et al.61. Dominant taxa 

were selected as described in Fig. 1. Publicly available unfiltered relative abundance 

microbiota data associated with each publication were merged into a single phyloseq object 

(RRID:SCR_01380). ASVs were grouped at the genus or family (for Micrococcaceae) level. 

The mean relative abundance of each taxon was calculated for each sample type within each 

batch and plotted in R (tidyverse, ggplot2; RRID:SCR_014601). Dot size corresponds to 

the mean relative abundance by sample type and batch. Dots are coloured by sample type: 

reagent controls in grey (buffer), sampling negative controls in aqua, internal controls in 

indigo (kidney) and fetal gut samples in purple.
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