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Wheat is the most widely grown crop in the world, and its yield is closely related to global food security. 
The number of ears is important for wheat breeding and yield estimation. Therefore, automated wheat 
ear counting techniques are essential for breeding high-yield varieties and increasing grain yield. However, 
all existing methods require position-level annotation for training, implying that a large amount of labor 
is required for annotation, limiting the application and development of deep learning technology in the 
agricultural field. To address this problem, we propose a count-supervised multiscale perceptive wheat 
counting network (CSNet, count-supervised network), which aims to achieve accurate counting of wheat 
ears using quantity information. In particular, in the absence of location information, CSNet adopts MLP-
Mixer to construct a multiscale perception module with a global receptive field that implements the 
learning of small target attention maps between wheat ear features. We conduct comparative experiments 
on a publicly available global wheat head detection dataset, showing that the proposed count-supervised 
strategy outperforms existing position-supervised methods in terms of mean absolute error (MAE) and 
root mean square error (RMSE). This superior performance indicates that the proposed approach has a 
positive impact on improving ear counts and reducing labeling costs, demonstrating its great potential 
for agricultural counting tasks. The code is available at http://csnet.samlab.cn.

Introduction

Automated technology is vital for wheat food security, because 
it enhances breeding efficiency and food production. Wheat is 
one of the most important food crops, providing approximately 
20% of the world’s protein and carbohydrate intake and bearing 
the burden of global food security [1]. In addition, wheat has 
various uses, including industrial raw material, biofuel, and 
animal feed. However, as the global population continues to 
grow and the world develops, the growth in wheat production 
has not matched that of demand. An in-depth analysis reveals 
that the annual growth rate of wheat demand is 1.7%, juxta-
posed with a modest average annual rate of genetic increase of 
only 1% [2]. Therefore, automation technology has been fully 
utilized to improve breeding efficiency and cope with the global 
food crisis. More specifically, automation technology can use 
modern computers to replace manual statistical analysis of crop 
phenotypes (including height, color, number of ears, and other 
relevant phenotypes) [3], thus reducing labor and time costs 
and achieving efficient breeding.

Selecting varieties with desirable traits through high-quality 
automated counting is an essential process in breeding. Wheat 
yield, one of the most important traits, is determined by 3 ele-
ments: the number of wheat ears per unit ground area, number 

of grains, and weight of 1,000 grains [4]. Conventional breeding 
methods rely on manual counting to ascertain the number of 
wheat ears, a process that is prone to low efficiency, high time 
and cost, and high error [5]. Consequently, the implementation 
of automated counting is indispensable for enhancing breed-
ing efficiency and conserving human resources. To achieve high-
quality and automated counting, researchers have begun to 
explore the potential of image-processing techniques for 
recognizing wheat ears. For instance, Cointault et al. [6] used 
color and texture feature processing techniques to achieve 
wheat ear segmentation in images. Alharbi et al. [7] utilized a 
Gabor filter and the K-means clustering algorithm to detect 
segmented wheat ear regions and perform wheat ear counting. 
Fernandez et al. [8] proposed a high-throughput and low-cost 
method for wheat ear counting by utilizing Laplace frequency 
and median filters to obtain low-noise wheat ear features. However, 
the aforementioned methods have mediocre generalization 
ability and are easily affected by interference factors, such as 
illumination and environment, limiting their suitability for wheat 
ear images with rich backgrounds and diverse morphologies.

With the rapid development of deep learning, position-super-
vised methods, including box-supervised and point-supervised 
wheat counting approaches, have garnered substantial attention. 
On the one hand, bounding boxes are employed to select and 
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quantify the number of wheat ears in terms of box-supervised 
wheat ear counting methods. For instance, Li et al. [9] utilized a 
Faster R-CNN trained on a self-constructed dataset to achieve fast 
recognition of wheat ears. Gong et al. [10] proposed a 2-space 
pyramid pooling network to improve YOLOv4, which further 
enhanced the detection accuracy of wheat ears. Zang et al. [11] 
improved the YOLOv5s model for detecting small-scale wheat 
ear counts. On the other hand, predicting the density map of 
wheat ears can achieve counting in the case of point-supervised 
wheat ear counting methods. Lu et al. [12] proposed a local count-
ing regression network known as TasselNet to address the problem 
of counting maize tassels in the wild. Xiong et al. [13] improved 
the accuracy and efficiency of wheat ear counting by adding con-
textual information to TasselNet. Khaki et al. [14] designed a 
lightweight wheat ear counting model with MobileNetV2 as the 
backbone, relying on a density map for the counting and localiza-
tion of wheat ears. Ma et al. [15] selected filtered pyramid blocks 
and dilated convolutions to construct EarDensityNet, which pre-
dicts wheat ear density maps to obtain the number of ears. Wu 
et al. [16] constructed and optimized a density graph regression 
network for wheat ear counting in unmanned aerial vehicle (UAV) 
images. The aforementioned methods address the problems of 
mediocre generalization and susceptibility to noise and have 
achieved excellent results in wheat ear counting; however, they 
require training on high-cost position-level images.

Both box-supervised and density map-based point-supervised 
wheat ear counting models are locally perceptive convolutional 

neural networks (CNNs) [17] that can use location information 
(boxes or density maps) to obtain wheat ear features, as shown in 
Fig. 1. However, the dense and varied location information of 
wheat ears is not only costly to label but also introduces inevitable 
noise that may distract the attention of the model to the wheat 
ears, resulting in a limitation of model performance. In particular, 
box-supervised wheat ear counting methods use several target 
boxes to locate wheat ears and remove duplicate boxes using a non-
maximum suppression technique [18]; however, this is not suf-
ficiently accurate for overlapping wheat ears. In point-supervised 
methods focusing on dense targets that use Gaussian kernels of 
the same size to achieve wheat ear localization, adaptation to 
wheat ears of varying lengths is difficult [19]. Furthermore, the 
application of the Gaussian kernel to generate density maps inevi-
tably results in the labeling of the surrounding backgrounds of 
wheat ears with densities, thereby introducing background noise. 
Therefore, a low labeling cost and location-independent method 
for counting wheat ears is crucial for increasing wheat yield.

In the field of crowd counting, researchers have recently 
explored count-supervised methods to reduce annotation costs 
and enhance counting accuracy. For instance, Yang et al. [20] 
proposed a soft-label sorting and counting networks that achieves 
count-supervised crowd counting. Liang et al. [21] presented 
TransCrowd, a crowd-counting network based on a transformer 
[22] architecture, that effectively extracts semantic crowd infor-
mation through a self-attention mechanism. Wang et al. [23] 
presented a multi-granularity multilayer perceptron (MLP) to 
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Fig. 1. (A) Box-supervised CNN-based methods, which can predict the target box to locate the wheat ear, but are costly to label and are poor at dealing with the overlapping 
wheat ear. (B) Point-supervised CNN-based methods, which predict the density map to obtain the number of wheat ears, are costly to label and are poorly suited to wheat 
ears of varying lengths. (C) The proposed CSNet is a multiscale global perception method based on count-supervised, which is easy to label, low cost, and highly accurate.
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mine global information and overcome the lack of spatial cues 
through a proxy task known as split counting. The aforemen-
tioned methods are primarily designed to address the challenges 
posed by considerable density variations within crowds, making 
them less suitable for wheat ear scenarios characterized by 
smaller density variations. To address the challenges encountered 
in wheat ear scenarios within count-supervised, we propose a 
novel count-supervised wheat counting network known as 
CSNet, which is a multiscale global perception model for achiev-
ing accurate and efficient wheat ear counting with count informa-
tion only. Specifically, we design a multiscale perception module 
(MPM) based on the MLP-Mixer network [24] with a global 
perception capability to learn wheat ear features from different 
spatial dimensions. For dense or differently sized wheat ears, the 
MLP-Mixer constructs global feature relationships to obtain the 
attention map of wheat ears without complex labeling informa-
tion. Furthermore, we introduce a convolutional block attention 
module (CBAM) [25] to reduce the effects of background infor-
mation. In the experiments, we validate the proposed CSNet 
on a global wheat head detection (GWHD) [26,27] dataset, 
achieving state-of-the-art results compared with the location-
supervised advanced approach. Regarding dataset usage, the 
proposed CSNet uses labeled data at a much lower cost than 
location-supervised methods, exhibiting considerable potential 
for agricultural counting. In summary, the main contributions 
of this paper are as follows:

• To the best of our knowledge, this is the first study to 
propose a count-supervised wheat counting method that 
yields high-precision results at low labeling costs.

• We design an MPM that obtains attention maps of wheat 
ears in different spatial dimensions by constructing global feature 
relations, enabling the model to effectively handle diverse wheat 
ear sizes while relying solely on count information.

• We conduct quantitative and qualitative experiments on 
the GWHD dataset, manifesting the effectiveness of the CSNet 
and generalizability of similar agricultural counting tasks.

Materials and Methods
In this section, we introduce the multiscale count-supervised 
network (CSNet). The “Dataset” section describes the dataset 
required for the experiment. In the “Methods” section, we 
describe the framework of CSNet. The “Evaluation metrics” 
section introduces the evaluation metrics used in the counting 
model.

Dataset
The range of wheat cultivation is unrivaled, and it is grown in 
almost every country [28]. Wheat varieties vary across different 
regions because of different natural conditions such as climate, 
soil, and light. Consequently, creating a universal wheat ear 
dataset remains challenging. To address this issue, David et al. 
[26] proposed the GWHD_2020 dataset, which is the first pub-
licly available dataset of wheat crops from multiple countries. 
In particular, the GWHD_2020 dataset contains wheat varieties 
at different growth stages and a wide range of genotypes from 
Europe, North America, Australia, and Asia, totaling 4,700 RGB 
images containing 193,634 labeled wheat ears. Among them, 
the image data in the GWHD_2020 dataset were collected at 
heights ranging from 1.8 to 3 m above the ground, and data 
harmonization was performed after collection to ensure that all 
images in the dataset were clearly visible [26]. As shown in Fig. 2, 
the GWHD_2020 dataset contains a wide range of growth stages 
and varieties of wheat that vary in color, shape, size, and tilt angle. 
In 2021, the GWHD_2020 dataset was expanded and updated 
with the addition of 1,722 images and 81,553 labeled wheat ears 
from 5 additional countries, making it a larger, more diverse, 
and less noisy dataset [27], which we refer to as GWHD_2021 
dataset. They have a substantial impact on wheat counting and 
provide invaluable resources for innovative research and advance-
ment in wheat-related studies.

We selected the aforementioned dataset for the experiments 
to verify the validity of the proposed model. As summarized 

Fig. 2. Image diversity examples in GWHD_2021 dataset.

https://doi.org/10.34133/plantphenomics.0236


Li et al. 2024 | https://doi.org/10.34133/plantphenomics.0236 4

in Table 1, we used 3,422 images from the GWHD_2020 dataset 
for the experiments, where the maximum number of wheat 
ears in a single image was 112, minimum value was 0, and 
average value was 42.49, totaling 145,411 wheat ears. In terms 
of the GWHD_2021 dataset, we exploited 6,509 images for 
experiments, with a range of wheat ear counts per image of 0 to 
190, averaging 42.29 ears per image and totaling 275,260 ears 
in the dataset. Based on the common method of dataset divi-
sion, we randomly selected 80% of the dataset as training data, 
10% as validation data, and 10% as test data.

In addition, we constructed a self-contained wheat grain 
dataset containing 510 images as an extended test. In particular, 
the number of wheat grains in the images ranged from 0 to 68, 
with an average of 38.9 grains per image and 19,839 grains. 
Similarly, we randomly divided 80% of the data into training 
data and the remainder into test data.

Methods
In this study, we propose a novel count-supervised wheat ear 
counting network known as CSNet, which comprises a back-
bone, CBAM, MPM, and a counting module (CM), as shown 
in Fig. 3. In particular, the backbone extracts image features, 
whereas the CBAM focuses on wheat region features. To further 
adapt to the diversity of wheat ears, we design an MPM to 
obtain the features of wheat ears in multiple spatial dimensions, 
which improves the ability of the model to recognize wheat 
ears. Finally, the CM uses a fully connected layer and an average 
pooling layer to directly regress the final counting results. In 
the following subsections, we elaborate on the implementation 
principles for each part.

Backbone
The backbone is an important component of the neural net-
work because it is responsible for feature extraction and has a 
substantial impact on the generalization ability, robustness, and 
overall efficiency of the model [29]. To optimize the balance of 
the model between accuracy and resource overhead, we selected 
the first 10 layers of VGG16 [30], including the first ten 3 × 3 
convolutional layers and 3 max-pooling layers, as the backbone 
of CSNet [31]. This backbone is pretrained on ImageNet and 

initially has the ability to extract the underlying features, which 
results in notable advantages such as saving computational 
resources, increasing computational efficiency, and improving 
the generalization ability of the model.

Convolutional block attention module
In the context of a complex environment with weeds that are 
overgrown and wheat that is obscured from each other, the 
model needs to focus its limited attention on the area with wheat 
ears to be able to count the ears effectively. To address this prob-
lem, we introduce an efficient and lightweight CBAM [25] that 
combines channel and spatial attention. In particular, channel 
attention can adjust the attention degree of the model between 
each feature to focus on essential features (e.g., shape, size, and 
texture of the wheat ears) and ignore irrelevant features (e.g., 
light variations and debris on the wheat ears). Spatial attention 
adjusts the extent to which the model focuses on each region of 
the image, thereby enhancing attention to the wheat region and 
reducing the influence of background regions (e.g., weeds).

As shown in Fig. 3, the backbone layer outputs feature map 
Mb, which is further optimized using the CBAM module to 
obtain feature map Mf. Compared with feature map Mb, feature 
map Mf focuses more on wheat ears in both the channel and 
space. Initially, the spatial average and max pooling operations 
are executed on Mb to derive the maximum and average values 
for each channel, respectively. Subsequently, the maximum and 
average of each channel are weighted through the fully connected 
layer to obtain the channel attention weight, expressed as Ms, 
reflecting the degree of attention assigned to a single channel. In 
addition, the channel attention feature map, denoted by Mcb, is 
obtained by performing a point similarity operation on the chan-
nel attention weight Mc and feature map Mb. Subsequently, chan-
nel average and max pooling are performed on Mcb, and the 
results are passed through a convolutional layer to obtain atten-
tion weight Ms, which contains the spatial location information. 
Ultimately, the dot multiplication of each spatial location in Mcb 
with attention weights Ms produces a feature map, denoted as Mf, 
which is augmented with attention to the wheat ears in both the 
channel and space. This process enhances the perceptual focus 
on the wheat region and emphasizes the crucial features of the 
wheat ear. The CBAM process is formally expressed as follows:

where σ denotes a sigmoid function, FC represents a fully con-
nected layer, poolcmax denotes the spatial max pooling, and 
poolsavg denotes the average channel pooling.

Multiscale perception module
Both box-supervised [9–11] and point-superved [14–16] rely 
on positional information to recognize diverse and dense wheat 
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Table 1. The statistics of the dataset used in this study. Min, Max, 
Avg, and Total denote the minimum, maximum, average, and to-
tal number of annotated wheat ears, respectively.

Dataset Subset
Number 

of images Min Max Avg Total

GWHD 
(2020) 
[26]

Train 2,738 0 112 42.49 116,350

Val 342 0 88 44.58 15,245

Test 342 0 94 40.40 13,816

GWHD 
(2021) 
[27]

Train 5,206 0 190 42.41 220,796

Val 651 0 146 41.13 26,779

Test 652 0 159 42.46 27,685
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ears; however, annotating and overlapping wheat ears is costly 
[32], and the subjectivity of the labeler can lead to ambiguity. 
There fore, we believe that location information may not be 
essential for wheat ear counting, leading to the design of the 
MPM to perceive diverse and dense wheat ears using only 
quantity information.

To perceive wheat ears in the absence of positional informa-
tion, we adopt the mixer layer of the MLP-Mixer [24] network, 
which is based on MLP, to learn the relationship between each 
patch and all other patches, thus sensing the connection between 
wheat ears and counting. However, the phenotypes (size, color, 
and shape) of wheat ears are so diverse that perceiving all wheat 
ears on a single scale is impossible. To address this problem, we 
propose a multiscale method that captures wheat ear features 
in multiple spaces for accurate recognition. As shown in Fig. 3, 
the feature maps are sliced into patches of different sizes, with 
smaller patches capturing more subtle features. By perceiving 
features at different scales, the MPM can distinguish features 
from multiple spatial dimensions to identify diverse wheat ears.

In detail, the MPM mainly slices and projects the wheat ear 
feature map Mf onto multiple feature matrices, which are cre-
ated to obtain comprehensive global attention information 
using the mixer layer for information interaction, as shown in 
Fig. 3. First, the wheat ear feature map Mf output from CBAM 
is sliced into feature patches of n1 × 512 × 16 × 16, n2 × 512 × 
8 × 8, and n3 × 512 × 4 × 4 sizes, n1, n2, and n3 corresponding 
to the values of 16, 64, and 256, respectively. The smaller the 
slice size, the larger the number of patches. Each feature patch 
is then mapped as a feature vector, thus constituting a feature 
matrix in which the same rows in the feature matrix represent 
different channels in the same space, and the same columns 
represent the same channels in different spaces. Furthermore, 
the feature matrix is fed into the mixer layer for information 
interaction, which comprises Layer Norm and an MLP, and 
each row of the feature matrix is normalized by Layer Norm 
and then communicated through multi-MLPs. In addition, 
the rows of feature matrices, representing different spatial or 
channel information, undergo reciprocal transformations via 

A C

B

Fig. 3. The overall architecture of CSNet, including Backbone, convolutional block attention module (CBAM), multiscale perception module (MPM), and counting module 
(CM). (A) The detailed structure of CBAM is used to improve the attention to the wheat region. (B) The flow of the MPM utilizes the wheat ear features at multiple scales to 
improve the generalization performance of the network. (C) The detailed operation of the mixer layer in the MPM achieves sensing wheat ears without location information 
by fusing global features.
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transposition and engage in MLPs to obtain comprehensive 
global attention information. Finally, the MPM concatenates 
the 3 feature matrices with different scale information and 
interacts with them again through the mixer layer, producing 
a wheat ear feature matrix that incorporates global attention 
into 3 dimensions. The mixer layer fuses and optimizes features 
from multiple scales, eliminating discrepancies and promoting 
a consistent feature representation. The described feature matri-
ces are denoted by T1, T2, T3, and Tall, and the entire process 
can be defined as follows:

where S denotes the slice operations, 16 × 16 denotes the size 
of the sliced patch, and Fi denotes a linear projection. In addi-
tion, MixN

i
 indicates that N mixer layers exist on the ith scale.

Counting module
The CM is designed to convert features into quantities without 
the need to generate bounding boxes or density maps, but 
rather to generate regression counts directly. In particular, the 
proposed CM uses the information-rich wheat ear feature 
matrix output from the MPM input to the fully connected layer 
for dimensionality reduction and generates counts. To mitigate 
the potential for considerable discrepancies owing to inherent 
variability in individual counts, the CM concurrently predicts 
a set of counts and subsequently aggregates the final predicted 
number of wheat ears via average pooling. The detailed process 
is as follows:

where σ denotes the ReLU function and Ĉ denotes the final 
predicted count.

Evaluation metrics
To investigate the counting performance of the model, we uti-
lize the mean absolute error (MAE), root mean square error 
(RMSE), and R-squared metrics to evaluate the performance 
in the counting task. MAE is the difference between the pre-
dicted and actual values, and it is used to assess the accuracy 
of the model. The RMSE is the deviation between the predicted 

and true values, which is used to measure the stability of the 
model. R2 is a statistic used to measure the extent to which the 
regression model fits the data and can take a range of values 
from 0 to 1; the closer it is to 1, the better the regression model 
fits the data. The formulas for the above evaluation metrics are 
expressed as follows:

where Ĉi denotes the estimated total number of wheat ears in 
the ith image, Ci denotes the real number in the ith image, C 
denotes the average real number, and N denotes the number 
of predicted images.

Results

Experimental details
CSNet is optimized using the stochastic gradient descent (SGD) 
algorithm, and the training batches are set to 16. We use the 
MultiStepLR scheduler to adjust the learning rate with an initial 
learning rate of 1 × 10−4 and employ the L1 loss function as the 
loss criterion. Compared with the L2 loss function, the L1 loss 
function is less affected by challenging scenarios and prevents 
the model from being overly influenced by outliers. To accom-
modate multiscale slicing, all images are uniformly scaled to a 
size of 512 ×512. In addition, the number N of the mixer layers 
is fixed at 4. All experiments are implemented in the PyTorch 
framework and uniformly trained on NVIDIA A40 GPU for 
approximately 40 h using the original configuration, and the 
weights of the experiment that worked best on the validation 
dataset are taken for testing. Besides, we evaluate the perfor-
mance of the proposed method: 4 methods based on box-
supervised, 5 based on point-supervised, and 1 based on 
count-supervised on 2 datasets.

Performance comparison
To validate the effectiveness of the proposed CSNet, we com-
pare the proposed method with box-supervised and point-
supervised methods commonly used for wheat counting and 
count-supervised methods used for crowds on the GWHD_2020 
and GWHD_2021 datasets, as summarized in Table 2. Among 
them, box-supervised methods include single-stage target 
detection methods SSD [33] and YOLOv8 [34], a 2-stage target 
detection method Faster R-CNN [35], and a transform-based 
target detection method DETR [36]. For the point-supervised 
methods, we conduct experiments using MCNN [37], CSRNet 
[31], ASD [38], SPN [39], and WheatNet [14]. Furthermore, 
we compare the proposed method with the count-supervised 
method used for crowds known as TransCrowd [21].
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As summarized in Table 2, the proposed CSNet outperforms 
both the box-supervised and point-supervised methods in 
terms of MAE and RMSE. In the GWHD_2020 dataset, the MAE 
of CSNet is 10.1% lower than that of the best box-supervised 
model (Faster R-CNN) and 23.6% lower than that of the best 
point-supervised model (CSRNet), which shows that the pro-
posed count-supervised model can achieve better performance 
in the absence of location information. Comparing the 2 location-
supervised methods, the box-supervised model outperforms 
the point-supervised model on average, exhibiting the best MAE 
of 3.27 and 3.85, and the worst MAE of 4.39 and 5.91, respectively. 
The MAE of the best model in the box-supervised approach is 
reduced by 25.5% compared to that of the worst model, whereas 
it is reduced by 34.8% in the point-supervised approach, dem-
onstrating that a considerable difference exists between the 
models using the same methods.

Notably, the inclusion of dense images in the GWHD_2021 
dataset resulted in a decrease in the performance of all models. 
Compared with the GWHD_2020 dataset, the MAE of CSNet 
improves by 31.6%, that of Faster R-CNN improves by 66.9%, 
and that of CSRNet improves by 51.9%. CSNet continues to 
exhibit excellent performance on the GWHD_2021 dataset, 

which may depend on the fact that it is not limited by location 
information, thereby maximizing its perceptual ability. The 
substantial increase in the RMSE evaluation metrics of the box-
supervised methods (e.g., that of DETR is as high as 16.2) 
reveals their disappointing prediction of dense images, which 
is the main reason for the considerable increase in their MAE. 
The overlapping target boxes in dense scenes considerably affect 
the performance of the box-supervised method.

TransCrowd [21] is a count-supervised model with excellent 
crowd-counting performance that can be classified into 2 
modes, token and GAP, depending on the final output type. 
However, it exhibits a less satisfactory performance in the wheat 
counting task because the wheat scene was notably different 
from the crowd scene. As summarized in Table 2, although the 
GAP mode of TransCrowd outperforms that of the Token 
mode, it still falls short compared to all the methods we experi-
mented with. We attribute this underperformance to the sub-
stantial differences between the wheat and crowd scenes, 
making them unsuitable for wheat ear counting.

To further explore the performance of the models, we use 
the R2 metric to determine the degree of linear regression 
straight line fit of each model on the GWHD_2020 dataset. 
As shown in Fig. 4, the R2 metric of CSNet reaches 0.95, 
which is higher than that of the other models, proving that 
CSNet can effectively fit the number of ears without relying 
on location information. Clearly, the proposed method can 
obtain excellent results with reduced labeling, which is of 
great importance for decreasing the application cost of count-
ing models and promoting the development of counting tasks 
in agriculture.

Impact of different backbones
Classical networks are selected as the backbone of CSNet, includ-
ing VGG16 [30], ResNet34 [40], ResNet50 [40], MobileNetV2 
[41], DarkNet53 [42], and ViT [43], to further evaluate the 
impact of the backbone on the model performance. All models 
are pretrained on ImageNet to learn the generic raw features. As 
summarized in Table 3, using VGG16 as the backbone enables 
the proposed model to achieve the best counting accuracy on the 
GWHD_2020 and GWHD_2021 datasets, which may be attrib-
uted to the fact that only the features of a single object (wheat 
ear) need to be captured in the wheat ear counting task without 
the need to use a more complex network structure. The counting 
accuracies of ResNet50 and DartNet53, which have more param-
eters than VGG16, do not increase but decrease. This may be 
because the wheat counting task is simple and only needs to focus 
on the features of wheat ears; therefore, the backbone with a large 
number of parameters appears to be overfitted. However, the 
transform-based model ViT does not perform well as a backbone, 
most likely because it requires a large amount of data to exploit 
its performance. Furthermore, when employing the lightweight 
MobileNetV2 backbone, CSNet exhibits commendable per-
formance on the GWHD_2020 dataset, but achieves subopti-
mal results on the GWHD_2021 dataset. This suggests that 
MobileNetV2 is better suited for simpler scenarios, providing an 
ideal solution for environments in which inference speed is a 
priority in uncomplicated settings. CSNet also exhibits good per-
formance when using lightweight Mobilenetv2 as the backbone, 
which provides a well-suited solution for environments where 
the speed of inference is sought. In conclusion, we observe that 
the backbone network has a considerable impact on model per-
formance, and selecting the appropriate network for the task can 

Table 2. Performance comparison of competing methods using 
different supervision on the 2020 version of the GWHD dataset 
and the latest 2021 version

Method 
(years) Supervision GWHD_2020 GWHD_2021

MAE RMSE MAE RMSE

Faster R-CNN 
(2015) [35]

Box 3.27 4.49 5.46 9.76

SSD  
(2016) [33]

Box 3.97 5.44 7.19 12.08

DETR  
(2022) [36]

Box 3.76 4.91 8.41 16.20

YOLOv8 
(2023) [34]

Box 4.39 6.17 8.96 13.43

MCNN (2016) 
[37]

Point 5.05 6.47 7.59 10.17

CSRNet 
(2018) [31]

Point 3.87 5.01 5.88 8.13

ASD  
(2019) [38]

Point 5.86 7.55 / /

SPN  
(2019) [39]

Point 5.91 7.73 / /

WheatNet 
(2022) [14]

Point 3.85 5.19 / /

TransCrowd-
Token  
(2022) [21]

Count 15.87 19.02 11.29 14.39

TransCrowd-
GAP  
(2022) [21]

Count 12.23 15.02 10.09 12.85

CSNet (ours) Count 2.94 3.88 3.87 5.60
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notably affect the counting accuracy and generalization ability 
of the model.

Impact of the CBAM
To explore the effects of CBAM on the attentional mechanisms 
of the model, we conduct a series of experiments to compare 
the model performance with and without CBAM. As summa-
rized in Table 4, we not only compare their overall performance 
on the entire set of test data but also perform a detailed exami-
nation of their counting capabilities in more densely populated 
scenes with counts greater than 40 and less dense scenarios 
with counts less than 40. When CBAM is utilized, a noticeable 
reduction in both the MAE and RMSE is present compared to 

the variant without CBAM in denser scenarios. More specifi-
cally, in the GWHD_2020 dataset, although the MAE of the 
model with CBAM is slightly higher than that of the model 
without CBAM in less dense scenarios, its lower RMSE indi-
cates that the CBAM-enhanced model has better attention 
generalization and accuracy. This suggests that CBAM plays a 
crucial role in refining the attention mechanism of the model, 
allowing it to adapt and excel in challenging and dense wheat 
ear configurations.

To further illustrate the efficacy of CBAM in addressing the 
challenges posed by dense and complex wheat images, we select 
images from the test set of the GWHD_2021 dataset with larger 
error margins for comparison. Specifically, we use a model 
without CBAM to predict the absolute error (AE) of each 
image, and select images with AEs greater than 5. A total of 
189 images, numbered from 1 to 189, are selected for this pur-
pose. As shown in Fig. 5, the utilization of CBAM leads to a 
notable enhancement in the performance of the model on these 
challenging images, accompanied by a reduction in the MAE 
value from 8.92 to 6.98.

MPM study
To confirm the effectiveness of the MPM, we vary the number 
of multiscale layers and size of the slices in the experiments. 
The smaller the slice size, the finer the features, and the more 
layers there are, the more spatial feature dimensions the model 
perceives. More specifically, we construct 1, 2, and 3 layers, in 
which different slice sizes are used to segment feature informa-
tion in different layers, including 16 × 16, 8 × 8, and 4 × 4, 
resulting in 7 different structures, as summarized in Table 5. In 
addition, we add a finer layer to the 3-layer structure to explore 
the effects of additional spatial scales.
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Fig. 4. Coefficient of determination of the model on the GWHD_2020 dataset. (A), (B), (C), (D), (E), (F), and (G) represent CSNet, Faster R-CNN, CSRNet, DETR, SSD, YOLOv8, 
and MCNN models, respectively.

Table 3. Counting performance of our proposed method under 
different backbones on the GWHD dataset

Backbone GWHD_2020 GWHD_2021 Number of 
parameters 

(M)MAE RMSE MAE RMSE

VGG16 2.94 3.88 3.87 5.60 7.6

MobileNetV2 3.47 4.55 7.52 10.24 0.6

ResNet34 4.02 5.22 5.94 8.22 21.3

ResNet50 4.62 6.05 6.33 9.2 25.5

DartNet53 3.83 5.09 4.97 7.68 40.6

ViT 9.36 12.24 14.51 18.95 21.7
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As summarized in Table 5, the MAE of slice size 4 × 4 is 
8.8% lower than that of slice size 8 × 8, and 22% lower than 
that of slice size 16 × 16, indicating that the fineness of the 
features has a considerable impact on the perceptual ability of 
the model in the single-layer structure. In terms of the 2-layer 
structure, the combination of slice sizes 16 × 16 and 4 × 4 per-
forms the best, which may be because they have a larger differ-
ence in feature sizes and thus more favorable for acquiring more 
different feature information. The addition of any layer with 
different slice sizes to the single-layer structure improves the 
performance. For the 3-layer structure, the MAE is reduced 
by 7.8% compared to the best 2-layer structure and by 10.6% 
compared to the best one-layer structure, confirming that 
multi-scaling has a positive effect on improving model perfor-
mance and generalization. We also conduct ablation experi-
ments on the merging layers after the 3 branches. First, the 
results demonstrate that this layer enhances the fusion of mul-
tiscale information, thereby improving the performance of the 
model with only a slight increase in the number of parameters. 
However, the 4-layer structure consumes several parameters 
and the performance is not improved, indicating that the limit 

of multiscale fusion is in the 3-layer structure. Furthermore, 
the 3-layer structure exhibits satisfactory speed in the infer-
ence speed test, effectively meeting the demands of real-time 
detection.

As summarized in Table 6, we conduct experiments on the 
number of layers N in the MPM to explore its impact on model 
performance. Notably, the performance considerably improves 
as the number of layers increases, with the best results achieved 
when N = 4. In particular, for the GWHD_2020 dataset, the 
MAE decreases from 3.08 to 2.94, whereas the RMSE decreases 
from 4.05 to 3.88 as N increases from 2 to 4. Similarly, on the 
GWHD_2021 dataset, the MAE decreases from 3.98 to 3.87, 
whereas the RMSE decreases from 5.75 to 5.60 for the same 
transition. However, when the number of layers is increased to 
6, the performance of the model exhibits a decreasing trend 
and is worse than that with 2 layers. This suggests that excess 
layers may introduce excessive model complexity, which nega-
tively affects the model performance in counting tasks. Hence, 
striking a balance in the complexity of the model when select-
ing layers is imperative to fully harness their accuracy in wheat 
ear counting.

Table 4. Counting performance with and without CBAM on the GWHD_2020 and GWHD_2021 datasets

Dataset CBAM MAE RMSE MAE ≤40 RMSE ≤40 MAE >40 RMSE >40

2020 3.20 4.36 2.59 3.47 3.89 5.17

✓ 2.94 3.88 2.63 3.37 3.31 4.38

2021 4.13 5.94 3.11 4.10 5.24 7.45

✓ 3.87 5.60 2.90 3.76 4.93 7.10

Fig. 5. Compare the performance with and without CBAM on the images with large counting errors in the test set of the GWHD_2021 dataset.
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Visualization analysis
To demonstrate the superiority of the proposed method, we 
conduct visualization experiments using Grad-CAM [44]. 
Grad-CAM propagates gradients through the predicted values 
to obtain the gradient information for each layer. Gradient 
information reflects the contribution of each element to the 
predicted value, with larger contributions indicating that the 
network focuses more on them. Finally, the attention regions 
of the network are obtained by determining the positions of 
the elements with high contributions. In this section, we visual-
ize CSNet, CSRNet [31], and MCNN [37], respectively, as 
shown in Fig. 6.

In specific experiments, we explore the regions of interest 
in the last convolutional layer of VGG16 and map them onto 
the original image using a heat map. In contrast, the proposed 
model can clearly understand the objects to be focused on even 
without precise location information. Compared to CSRNet 
and MCNN, the proposed model exhibits more stable and com-
prehensive attention when recognizing wheat ears of different 
colors, sizes, and growth stages, further proving the strong 
generalization and robustness of CSNet. In summary, through 
visualization experiments using the Grad-CAM technique, we 
verify the superiority of the CSNet model for wheat ear iden-
tification. We demonstrate its ability to stabilize attention to 
wheat ears at different characteristics and growth stages, pro-
viding important ideas for a deeper understanding and opti-
mization of the model.

To validate the distinctions between the MPM in CSNet and 
the multi-granularity MLP module in CrowdMLP [23], we 
conduct a visualization study on both the crowd and wheat ear 
datasets. In particular, because of the absence of access to the 
source code of the CrowdMLP model, we utilize Grad-CAM 
technology to generate attention heatmaps for various layers 
of the MPM module and the backbone layer in the wheat ear 
and crowd images. As shown in Fig. 7, the MPM exhibits attention 
features across 3 different size ranges in the wheat ear images, 
with larger segmentation sizes corresponding to broader attention 
ranges. CSNet relies on the multi-range attention mechanism 
in the MPM to comprehensively understand wheat ear scenes, 
minimize background interference, and thereby optimize its 
performance in wheat ear counting tasks. Because the wheat 
ear counting task does not pose the challenge of abrupt density 

variations observed in crowd counting, the design of the MPM 
is not specifically optimized for such challenges. Consequently, 
the attention of the MPM may diffuse and fail to accurately 
capture rapid density changes in crowd images. In contrast, 
CrowdMLP adopts a multi-granularity MLP module design 
that aims to address the rapid density variations inherent in 
crowd counting. The results of the visualization unequivocally 
demonstrate a distinct disparity in design philosophy between 
the MPM in CSNet and the multi-granularity MLP module in 
CrowdMLP. Moreover, the results demonstrate that different 
scales focus on different regions. Fusing them allows the model 
to more accurately capture a wide range of detailed and global 
information in the input data, thereby increasing the perceptual 
capabilities.

Discussion
Counting tasks are crucial in agriculture, as counting crops 
(e.g., wheat, maize, and rice) can estimate growth, predict 
yields, and contribute to the efficiency of agricultural pro-
duction. However, location-supervised methods incur high 
labeling costs, particularly for dense crops. To reduce the label-
ing cost, we propose a count-supervised model with multi-
scale global awareness, which achieves the best results among 
advanced methods. By reducing the cost and complexity of 
dataset creation, the proposed approach provides a more practi-
cal and cost-effective solution for automated counting in agri-
culture. We discuss the various aspects of CSNet in different 
subsections.

Table 5. The impact of different numbers of layers and slice sizes in the multiscale module on the GWHD_2020 dataset

16 × 16 8 × 8 4 × 4 2 × 2 Merging MAE RMSE Number of parameters (M) FPS

✓ ✓ 4.22 5.61 45.6 77.37

✓ ✓ 3.61 4.66 26.9 110.81

✓ ✓ 3.29 4.33 48.0 118.29

✓ ✓ ✓ 3.36 4.51 62.8 68.31

✓ ✓ ✓ 3.20 4.30 83.9 71.09

✓ ✓ ✓ 3.23 4.37 65.3 98.45

✓ ✓ ✓ ✓ 2.94 3.88 101.3 63.28

✓ ✓ ✓ 3.09 4.04 98.8 64.89

✓ ✓ ✓ ✓ ✓ 2.95 4.02 276.8 52.80

Table 6. Impact of the number of layers N in MPM on model per-
formance on the GWHD_2020 and GWHD_2021 datasets

Dataset N = 2 N = 4 N = 6

MAE RMSE MAE RMSE MAE RMSE

2020 3.08 4.05 2.94 3.88 3.19 4.16

2021 3.98 5.75 3.87 5.60 4.13 5.81
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Self-constructed wheat grain dataset
Wheat grain count is a critical determinant of wheat yield and a 
key metric for evaluating crop growth and predicting produc-
tion. Therefore, we employ a self-constructed wheat grain dataset 
to perform an extended test to illustrate the low cost and high 
accuracy of the proposed method. To increase the diversity and 
robustness of the dataset, images are captured from 2 distinct 
backgrounds: white and gray stripes. This deliberate variation 
helps train the model to adapt to a range of backgrounds and 
lighting conditions, thereby improving its generalization capa-
bilities [45]. Subsequently, a predetermined number of wheat 
grains are randomly scattered and photographed against any 
given background to populate the dataset. Finally, we randomly 
increase or decrease the number of grains in the last shot to 
obtain a new image, as shown in Fig. 8, where each image is 
unique. In summary, because the grain count is meticulously 
documented during each capture, the need for extensive annota-
tion efforts is no longer present, resulting in a low-cost dataset.

In particular, we establish a wheat grain dataset with 510 
images. All images contain wheat grains, except for 10 back-
ground images, which are used as negative samples. The num-
ber of grains in the image follows a Gaussian distribution, 
with a mean value of 40, minimum of 11, and maximum of 
68. The specific distribution of the number of grains is shown 

in Fig. 9. We randomly select 80% of the datasets as training 
data and use the remainder as test data. To match the size of 
the wheat grains, the size of the input image is changed to 256. 
CSNet achieves excellent results in the experiments, with an 
MAE of 2.79 and an RMSE of 4.49, confirming that it can be 
used to predict more crops. Moreover, we conduct experiments 
by training on white background images and fine-tuning a small 
set of gray-striped background images. Test results on other gray-
striped backgrounds demonstrate that fine-tuning considerably 
enhances the model performance, where the MAE improved 
from 8.30 to 3.98. The results of this experiment indicate that 
appropriate fine-tuning can enhance the model performance 
under various background conditions, thereby increasing its 
usefulness and robustness in real-world applications.

Exploration of MPM
Multiscale techniques have been widely adopted and proven 
to be effective in computer vision for capturing different fea-
tures in images, thereby enhancing the understanding and 
generalization capabilities of a model across different objects 
or scenes [46–48]. Given the potential variations in wheat 
fields, including different growth stages, varieties, and wheat 
ear densities, we introduce multiscale techniques to improve 
the adaptability of the proposed counting model to complex 

Fig. 6. Feature visualization of the last layer from models’ backbone.
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scenes. Initially, we adopt a pyramid structure commonly used 
in the visual domain to generate multiple feature maps of dif-
ferent sizes. We attempt to slice each feature map into equally 
sized slices to capture information at different spatial scales. 
Nevertheless, the experiments in this study reveal that this 
structure impedes the ability of the network to perceive wheat 
ear features, possibly because of the misalignment of semantic 
information across multiple feature maps. To ensure consistent 
semantic information, we slice a single feature map into seg-
ments of different sizes to capture the information at multiple 
spatial scales.

Furthermore, to address the challenge of perceiving objects 
without location information, selecting a structure with a global 
receptive field is crucial. In contrast to Transformers, the struc-
ture of the MLP-Mixer does not rely on self-attention mecha-
nisms. This characteristic enables the MLP-Mixer to train and 
generalize more effectively with limited data. Considering the 

relatively straightforward nature of the wheat ear counting task 
and the relatively small dataset, which does not require complex 
context understanding or long-range dependency modeling, 
the concise structure of the MLP-Mixer proves to be more 
appropriate. The absence of self-attention mechanisms makes 
the model easier to train, and it exhibits superior performance 
in resource-constrained scenarios, making it a more appropri-
ate choice. However, if the MLP-Mixer is used directly for 
counting, it will achieve unsatisfactory results in wheat count-
ing, and its experimental result on the GWHD_2020 dataset 
exhibits an MAE of 12.83.

In crowd images, individuals at varying distances exhibit 
substantial differences in size, resulting in notable density 
variations across different positions in the image. The multi-
granularity MLP module in CrowdMLP is specifically designed 
to address rapid density changes in crowd-counting challenges. 
This module effectively captures and integrates the semantic 

Fig. 7. Feature visualization of 16 × 16, 8 × 8, and 4 × 4 layers in MPM and backbone layers on crowd and wheat ears.
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information from different granularities, thereby improving 
the adaptability of the model to variations in crowd density. 
Compared to the proposed MPM, the design focus of the 
CrowdMLP module is on density changes within crowds. 
Conversely, the proposed module addresses different growth 
stages and varieties in wheat scenes by extracting information 
at different spatial scales. The distinct design philosophies of 
the 2 modules enable each to excel in their respective scenarios, 
exhibiting optimal performance.

Application prospects
Counting is a crucial task in the field of agriculture that pro-
vides accurate data support to farmers and aids scientific agri-
cultural management and production decisions [49]. With 
the advancements in computer vision, agricultural counting 
has gradually become more automated and intelligent [50]. 
However, the high cost of creating datasets has emerged as a 
bottleneck, hindering the widespread adoption of this technol-
ogy and the struggle to meet the diverse counting require-
ments of agriculture. Therefore, the proposed method aims to 
reduce the cost of dataset creation, thereby enabling low-cost 
automated counting. In contrast, several agricultural quan-
tity assessments are currently performed manually, and a small 
count-supervised dataset can be obtained by additionally 
taking images. Capturing images from various angles in a 
single region allows label reuse and reduces annotation costs. 
Furthermore, for plants grown in regional settings (e.g., grapes 
and tomatoes), a camera can be used to capture panning shots. 
In such instances, fruits of the same cluster appearing in dif-
ferent images must be counted only once, thereby reducing 
the occurrence of double counting. For neatly planted crops, 
quantitative information can be quickly obtained by manually 
recording the number of rows and columns. However, for 
densely planted or widely planted crops, manually counting 
the number of rows and columns can be tedious. CSNet is an 
effective solution for automating the counting process while 
minimizing the cost of labeling.

Ground truth: 26
Predict: 25.75

Ground truth: 56
Predict: 54.59

Ground truth: 40
Predict: 39.32

Ground truth: 62
Predict: 60.43

Ground truth: 42
Predict: 43.92

Ground truth: 25
Predict: 25.34

Fig. 8. Part of the images in the self-built wheat grain dataset. This dataset contains different backgrounds and distributions.
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Fig. 9. Statistical distribution of the wheat grain dataset.
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Conclusion
In this study, we propose a novel method for the accurate and 
efficient counting of wheat ears using count-supervised meth-
ods. First, we design a multiscale model with global perception 
to utilize counting information to learn the attention graph 
between the wheat ear features, which includes a backbone, 
CBAM [25], MPM, and CM. The backbone and CBAM are 
primarily used to extract wheat ear features and reduce interfer-
ence from complex backgrounds. The MPM learns the relation-
ship graph between wheat ear features from a multidimensional 
space, which is conducive to identifying the intrinsic connec-
tion between wheat ear features and counting information. To 
validate the proposed approach, experiments are conducted 
using the global wheat ear head detection dataset [26,27]. 
In comparative experiments, we compare box-supervised 
and point-supervised approaches and achieve superior results. 
The effectiveness of the MPM is validated in ablation experi-
ments and demonstrated through a visual analysis of the atten-
tion maps of CSNet. Finally, we establish a wheat grain dataset 
for experiments, which is applied to evaluate the time cost 
required for count- and position-level annotations, and to 
verify the robustness and generality of the proposed method. 
The results demonstrate that the proposed method not only 
reduces the cost of creating datasets but also exhibits excellent 
counting performance.
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