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Abstract

Nanotechnology is the process of modulating shape and size at the nanoscale to design and
manufacture structures, devices, and systems. Nanotechnology’s prospective breakthroughs are
incredible, and some cannot even be comprehended right now. The blood-brain barrier, which is a
prominent physiological barrier in the brain, limits the adequate elimination of malignant cells by
changing the concentration of therapeutic agents at the target tissue. Nanotechnology has sparked
interest in recent years as a way to solve these issues and improve drug delivery. Inorganic and
organic nanomaterials have been found to be beneficial for bioimaging approaches and controlled
drug delivery systems. Brain cancer (BC) and Alzheimer’s disease (AD) are two of the prominent
disorders of the brain. Even though the pathophysiology and pathways for both disorders are
different, nanotechnology with common features can deliver drugs over the BBB, advancing the
treatment of both disorders. This innovative technology could provide a foundation for combining
diagnostics, treatments, and delivery of targeted drugs to the tumour site, further supervising the
response and designing and delivering materials by employing atomic and molecular elements.
There is currently limited treatment for Alzheimer’s disease, and reversing further progression

is difficult. Recently, various nanocarriers have been investigated to improve the bioavailability
and efficacy of many AD treatment drugs. Nanotechnology-assisted drugs can penetrate the BBB
and reach the target tissue. However, further research is required in this field to ensure the safety
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and efficacy of drug-loaded nanoparticles. The application of nanotechnology in the diagnosis and
treatment of brain tumours and Alzheimer’s disease is briefly discussed in this review.
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delivery

1. INTRODUCTION

Nanotechnology is the branch of science and engineering, which involves the design,
characterization, development, and utilization of structures or devices that have the smallest
functional organization, at least one dimension of which is of nanometer scale. Both
interacting groups of molecules and individual molecules with bulk macroscopic materials
or devices are significant at this scale because they influence the basic molecular structure,
enabling them to monitor macroscopic chemical and physical properties. Nanotechnology
has sparked interest recently as a way to solve challenges in gene and therapeutic drug
delivery [1].

Brain cancer (BC) is the most challenging tumour to diagnose and treat, as it is complicated
to get imaging and targeted drugs pass the blood-brain barrier (BBB) and enter the brain.
Antineoplastic agents, like loperamide and doxorubicin, coupled with nanomaterials have
proven to pass through the BBB and get delivered to the target site at the desired therapeutic
concentration. The application of nanomaterials to attack the vascular endothelial growth
factor (VEGF) receptor and cell adhesive molecules, such as cadherins, selectins, and
integrins, is a novel strategy to limit the condition from further worsening [2].

Nanomaterials have been used to successfully design anti-cancer agents, such as
doxorubicin, paclitaxel, dexamethasone, and 5-fluorouracil. /n vitro delivery of RNAI has
also been achieved with quantum dots, chitosan, Polylactic/glycolic acid (PLGA), as well as
PLGA-based nanoparticles [2].

Alzheimer’s disease (AD), a serious neurodegenerative disorder, is by far the most common
type of dementia in people above 65 years of age. It is associated with progressive loss of
memory and has two significant characteristics in the brain. This comprises extracellular
amyloid-(A) peptide deposition (amyloid plagues) and intracellular hyperphosphorylated
protein neurofibrillary tangles of < protein [3]. The BBB is one of the most significant
impediments to the development of new therapeutic agents and biological products for the
central nervous system (CNS). Therapeutic agents, even most small compounds, do not
usually pass through the BBB. Nanotechnology-based techniques have grown in prominence
because some of them have the potential to overcome the obstacles to the BBB passage.
Diverse forms of polymeric, lipidic, inorganic, as well as other nanoparticles (NPs) for
controlled drug delivery and liberation in several CNS disorders, are some of the examples
of such techniques [4].
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AD and BC are two major diseases of the brain. Though these two diseases affect millions
of people every year, truly effective drug treatments are not available. Although both have
different pathologies and pathways, nanotechnology with common elements can be used for
drugs delivery through the BBB, and thus can help in the development of treatment therapies
for both diseases [5]. Hence, the present review focuses on the utilization of nanotechnology
for diagnosing and treating brain cancer and Alzheimer’s disease.

2. DRUGS AND BRAIN TUMOR TREATMENT BARRIERS

2.1.

Blood-Brain Barrier

Most chemical compounds and circulating cells are prevented from passing the BBB,
which is built by a complex combination of pericytes, endothelial cells, perivascular mast
cells, and astrocytes. The endothelial cells of the brain capillary, which are interlinked

by intact junctions, are primarily responsible for the BBB’s tightness. The BBB is not
simply a mechanical barrier but a biological entity that includes active metabolism and
carrier-mediated transports [6].

The uptake of most drugs and pharmaceuticals by the brain is impeded by the BBB, except
for small hydrophilic molecules with a mass less than 150 Da and highly hydrophobic
elements with a mass less than 400-600 Da that can permeate through the membrane

by passive diffusion [7]. Opiates, SSRIs, anxiolytics, and antipsychotics are among the
drugs that are permeable to the BBB, however, most antibiotics and antitumoral agents are
impermeable. A variety of techniques have been utilized to make the drugs pass through
the BBB. These strategies include chemical alterations of drugs to utilize physiological
carrier-mediated transports, invasive techniques, and the use of the so-called “Trojan horse
technique, which pairs impermeable drugs to molecules that can pass through the barrier
using transport systems mediated by receptors [8].

New routes of drug administration that can bypass the BBB and reach the brain (e.g.,
intranasal) have been intensively researched, but they are restricted by the olfactory
bulb’s limited surface of adsorption, which is small in comparison with the BBB, thereby
minimizing the possibility of entering the brain with relevant quantities of drugs [8].

2.2. Other Brain Tumor Treatment Barriers

The brain tumour-cell barrier (BTB, a barrier developed due to the efflux activity of

tumour cells) is the extra barrier that curtails the entrance of systemically administered
drugs into the brain. Other issues related to the effective treatment of brain tumours

include myelosuppression resulting from dose-limiting toxicity and the development of drug
resistance by tumour cells [9].

3. DIFFERENT TYPES OF NANOPARTICLES FOR BRAIN DRUG DELIVERY

3.1.

Lipid-Based Nanoparticles

3.1.1. Liposomes—Liposomes are composed of one or more vesicular bilayers
(lamellae) made up of amphiphilic lipids, which delimit an internal aqueous compartment.
This lipid bilayer is typically made up of lipids, which are biocompatible as well as
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biodegradable, found in biological membranes. Sphingomyelin, glycerophospholipids, and
phosphatidylcholine are common liposome components.

Cholesterol, a key component of the cellular membrane, is widely used in liposome
formulations because it reduces bilayer permeability and improves liposome stability /in
vivo. Liposomes have been widely used to deliver drugs to the brain, treat cerebral ischemia,
for opioid peptides delivery, and to treat brain cancers [8].

3.1.2. Solid Lipid Nanoparticles—Solid lipid nanoparticles (SLN) are a type of lipid-
based nanocarrier having a solid hydrophobic lipid core that can disintegrate or distribute the
drug. Biocompatible lipids, such as fatty acids, triglycerides, or waxes, are used to produce
them. Their small size (around 40-200 nm) allows them to pass through the BBB’s tight
endothelial cells and escape the reticuloendothelial system (RES). SLN can enhance a drug’s
ability to cross the BBB, and it is a potential drug targeting system for treating CNS-related
disorders [10].

3.2. Polymer-Based Nanoparticles

3.2.1. Polymeric Nanoparticles—Polymeric NPs consist of a core polymer matrix
wherein drugs can be inserted, with sizes ranging from 60 to 200 nm [11]. A variety of
materials have been used for drugs delivery, many of which disintegrate inside the body,
including polyglycolide (PGA), poly(lactide-co-glycolides) (PLGA), polylactides (PLA),
polycyanoacrylates, polycaprolactone, and polyanhydrides [12]. Natural polymers, like
chitosan, can also be used despite the development of different synthetic and semi-synthetic
polymers [13].

3.2.2. Polymeric Micelles—Amphiphilic copolymers deposit in aqueous solutions and
form spheroidal structures called polymeric micelles, with a shell (hydrophilic) and a core
(hydrophobic), as well as a high degree of stability [14]. Adhesion among core chains or
between the shells can improve stability. The ability to make them responsive to external
stimuli (light, pH, temperature, ultrasound, efc.) is another tunable characteristic [15],
allowing for the controlled release of encapsulated drugs. The Pluronic type, a block
copolymer derived from propylene oxide and ethylene oxide, is one of the most widely
used polymers [15, 16].

3.2.3. Dendrimers—Dendrimers are tree-like structures with branched polymers. In
water, a dendrimer is usually symmetric around the core and takes on a spheroidal three-
dimensional form upon adequate expansion [17]. A central core with at least two identical
chemical functions can be identified in its structure; repetitive units of other molecules can
emerge from these groups, each with at least one branching junction. Chain and branching
repetitions provide a sequence of radially concentric layers with increasing density. As a
result, the structure is firmly packed near the edge and loosely packed in the centre, leaving
gaps that are critical for the entrapment of drugs. PAMAM or poly(amidoamine) is likely the
most well-known compound for dendrimer production [8].
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3.3. Gold and Silver Nanoparticles

Gold nanoparticles (AuNPs) are an interesting system with unique properties that can be
used in a variety of theragnostic applications. Biocompatibility, integration with diverse
functional moieties, and ease of modification into various forms and sizes are all important
features that drive researchers to focus on their applications for the diagnosis and treatment
of cancer. Covalent bonds or electrostatic attraction are used to load therapeutic compounds
onto AuNPs [18]. One of the essential qualities of AuNPs is their size variability, which
allows them to travel through the circulatory system more easily. AuUNPs can be directed to
tumour cells/surfaces through free circulation [19].

3.4. Carbon Nanotubes

Carbon nanotubes (CNTSs) are divided into two types based on their structure and diameter:
single-walled CNTs (SWNTSs) and multi-walled CNTs (MWNTS). The MWNTSs are made
up of overlapping graphene, while the SWNTs are made up of monolithic cylindrical
graphene [20]. Carbon nanotubes are a choice best suited for large-scale biomedical
applications owing to their physical and chemical properties, such as mechanical strength,
surface area, electrical and thermal conductivity, and metal properties. Carbon nanotubes
can also absorb light in the near-infrared (NIR) region, which results in the heating

up of nanotubes as a result of the thermal effect, allowing them to attack tumor cells.
Carbon nanotubes in their natural forms enhance noninvasive biofilms penetration and are
considered extremely capable carriers for the delivery of different therapeutic compounds
into living cells. Because of the adaptability of carbon nanotubes, drugs like paclitaxel are
assembled with them and delivered for treating cancer both /in7 vitro as well as in vivo [21].

3.5. Magnetic Nanoparticles (MNPSs)

The majority of MNPs are made up of ferromagnetic iron oxide (Fe304). They are typically
1-100 nm in diameter and are undetectable to the human eye [22]. MNPs can be modified to
treat cancer by adding a peptide or antibody, that is specific to cancer cells, to their surface
[23]. They can assist in delivering targeted therapy to specific bodily areas for biological
applications. MNPs can be injected directly into the bloodstream and redirected to a specific
target using an external magnetic field [18]. Particles can be designed to carry a drug that is
delivered after reaching the target site [23]. Nanoparticles used for brain drug delivery are
shown in Fig. (1).

4. HOW NANOPARTICLES CAN CROSS THE BBB

The interplay between the BBB and nanoparticles on their intracellular traffic channels
determines the efficiency of nanoparticles for various brain diseases and brain cancers. The
way through which nanoparticles can reach the brain is shown in Table 1.

4.1. Crossing Without Functionalization

Even when there is no specific functionalization, some nanoparticles, such as gold and silica
NPs, can cross the BBB and aggregate in neurons by an unknown mechanism [24, 25].
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4.2. Adsorptive-Mediated Transcytosis

4.3.

4.4,

4.5.

4.6.

This theory is driven by the fact that cationic proteins can bind as well as cross the BBB.
This method is dependent on appropriate NP surface functionalization, which facilitates
electrostatic interaction with the BBB luminal surface. Because endothelial cells have a

negative charge, imposing a positive charge on the surface of NPs can trigger this sort of
interaction [26, 27].

The lower endocytic rate of brain endothelial cells (a key feature of the high BBB
impermeability) is harnessed to boost preferential retention of protein-binding ligands on
brain’s endothelial cell surface over peripheral endothelial cells. Nanoparticles that can
successfully attach to the selectively labeled endothelium are thereby directed exclusively
to the brain microvasculature, with negligible deposition in peripheral organs. This method
creates the requisite brain specificity for nanoparticles’ administration, thus solving the
targeting problems [28].

Receptor-Mediated Transcytosis

Drugs are delivered across the endothelium of the BBB utilizing functionalized NPs in this
method. It relies on the existence of specific receptors on the cell’s luminal surface to use a
transcytosis physiological process [29].

Retrograde Transport

Some nanocarriers may be able to go from nerve terminals to the nerve cell body in the CNS
by transsynaptic retrograde transport. Although polyethyleneimine- and other polyplexes-
treated nanoparticles show active retrograde transport, when they reach the neuronal body,
they are unable to exert efficient biological activities [30].

The BBB Breakdown

In neuroinflammatory diseases, the BBB breaks down. Tight junctions on the BBB can

be opened spontaneously and temporarily by NPs, resulting in increased paracellular
permeability. This method is widely and successfully used to deliver drugs to tumour sites
[31].

Exploiting Monocyte/Macrophage Infiltration in the CNS

In different neurological disorders, infiltration of monocyte/macrophage in the CNS is
involved in brain injury, neuroinflammation, and development of the lesion. Crossing the
BBB by immune-activated macrophages indicates potential NP-based treatment methods in
the future. This can be achieved in two ways: 1. By inserting NPs into monocytes (via
phagocytosis), which can be utilized as Trojan horses to get through the BBB, or 2. by
creating NPs that resemble monocytes. Boosting the phagocytosis of NPs by monocytes
could be thought of as a novel strategy for drug delivery across the BBB, and NPs that
imitate immune cells may be beneficial in treating brain-related illnesses and will probably
be given more attention in the coming years [8].
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4.7. Carrier Mediated Transcytosis

4.8.

Many small compounds pass across the BBB by a carrier-mediated transcytosis, which is
a substrate-specific mechanism. The large neutral amino-acid transporter type 1 (LAT1),
which serves as a carrier for phenylalanine and 10 other major amino acids with a neutral
charge and a few tiny neutral amino acids with lesser affinity, is an example of carrier-
mediated transport. However, its mechanism is saturable owing to carrier necessity [7].

Tight junctions restrict the passive diffusion of hydrophilic solutes through paracellular
diffusion, which is the transfer of molecules across the BBB through intercellular spaces
between epithelial cells. Water-soluble compounds must thus penetrate the BBB actively
through transcellular diffusion involving specialised carriers [32].

The different mechanisms through which nanoparticles cross the BBB are depicted
schematically in Fig. (2).

Improving Efficiency of Nanoparticles

A question that arises while developing NPs for delivery across the BBB is if they follow a
predictable pattern to deliver the drug successfully to the target site (brain). Despite the lack
of a specific pattern, some of the features of NPs themselves, such as appropriate size and
charge, could be helpful in successful drug delivery. Applying the following strategies could
help in efficient drug delivery.

. Nanoparticles having a size less than 200 nm have a better probability of
crossing the BBB effectively (v/a clathrin-mediated endocytosis) [33].

. The endothelial cell membrane has a negative charge, and hence, NPs with a
positive charge can transverse the BBB (via adsorptive transcytosis) more easily
than those with a negative or neutral charge [34].

. Adding numerous affinity ligands on NPs’ surface can prevent endocytosis
by endothelial cells, causing the drug-loaded NPs to stay connected to the
endothelial cell membrane. This problem can be solved by using fewer ligands
that have a higher affinity for the receptor [35].

. Using cell-penetrating peptides aids in circumventing the endocytotic route and
transporting the drug-carrying NPs straight to the cytoplasm of the cell [36].

. Using ligands like PEG increases the circulation time of NPs, resulting in
increased brain absorption [34].

Nanoparticles are often evaluated in a variety of rodent strains. However, it should be noted
that when testing them on experimental animals, a variation in the BBB permeability is
possible, as it has been observed in human disorders [37]. This would result in the BBB
crossing efficiency that differs from that seen in wild-type animals. As a result, for the
nano-particles crossing the BBB, assays should be performed in the most suitable animal
models [38—-43].
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5. NANOTECHNOLOGY FOR THE DIAGNOSIS OF BRAIN CANCER AND
ALZHEIMER’S DISEASE

The accuracy of clinical diagnosis can be improved by using innovative biosensor-based
nanotechnology, which allows various abnormal tissues or organs to be diagnosed early and
more precisely. A novel form of biosensor is the DNA biosensor. When nanoparticles are
incorporated into DNA sensors, they become more sensitive and accurate. DNA sequences,
mutations, and other information can be determined with the use of these DNA nanosensors.
The chemiluminescence approach may detect a single misaligned base and a DNA molecule
with the application of magnetic nanoparticles as a carrier of DNA or template for
multiplication and amplification of DNA [44].

The identification and differentiation of distinct types of tumour cells with high specificity
and efficiency, as well as assessment of tumour cell’s drug resistance, are possible with the
application of nano-biotechnology-based cell biosensors, which can greatly enhance cancer
diagnosis and treatment. The nanotechnology-based microfluidic chip, a high-throughput
analytical technique, has several advantages, including faster detection, lower cost, reduced
energy consumption, and higher detection efficiency [45].

Early identification is critical for the efficient treatment of AD since neuronal damage and
degenerative alterations begin before the appearance of clinical manifestations. To locate and
identify amyloid plagues, most investigations use magnetic resonance imaging (MRI) using
contrast-doped NPs or tagging NPs with fluorescent probes. Magnetic iron oxide NPs have
an enormous surface area, strong magnetic characteristics, low cytotoxicity, outstanding
biocompatibility and rapid degradation, and hence have received a lot of importance.
Recently, localised surface plasmon resonance (LSPR), a technique for detecting molecular
biomarkers, was tested for AD biomarkers [46]. Target bio-labelling of the affected regions
of the brain was investigated as a potential technique for /n vivo fast fluorescence imaging of
AD. The treatment of brain areas with aqueous chloroauric acid (HAuCI4) solutions leads to
the formation of Au (gold) salts, which in turn combine to form gold nanoclusters (Au NCs)
that can be employed for fluorescence bio-imaging [47-63], Table 2.

6. NANOTECHNOLOGY FOR BRAIN TUMOR THERAPY

Nanomaterials have a unique advantage of being used as drug carriers owing to their large
specific surface area and surface and interface effect. Some surface-modified NPs can avoid
being detected by macrophages, allowing them to better target tumour tissues [64].

6.1. Passive Targeting

Therapeutics can be delivered effectively to intracranial tumors via intravenous
administration of nanoparticles, which can permeate the BBB and concentrate selectively

at tumor locations in comparison to drugs administered in solutions. These nanoparticles can
be designed for brain-specific delivery, allowing hydrophobic and metabolically inert drugs
to be delivered. Drug delivery to brain tumours by intravenously delivered nanoparticles
may take advantage of the improved permeation and retention, in which the nanoparticles
extravasate the leaky tumour vasculature, allowing them access to the tumour cells [4]. But
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even so, increased permeation and retention can only be noted when the BBB is disrupted at
the tumour site; however, because the disruption of the BBB is a characteristic of high-grade
glioma, most tumours are linked to an intact BBB, making direct nanoparticle deposition
within the brain tumour. In a C6 glioma rat model, an intravenous injection of doxorubicin,
a P-gp substrate, as poly (butyl cyanoacrylate) nanoparticles, led to improved levels of
doxorubicin in the target tissue, thereby indicating an improvement in tumoricidal action

in comparison to the drug in solution. Furthermore, the nanoparticle-containing formulation
is less cardiotoxic. On intravenous administration, cyanoacrylates have also shown tumour
tissue accumulation. For brain tumor treatment, nanomedicines can also carry several drugs
at a time. Chitosan surface-modified PLGA nanoparticles infused with carmustine and O6-
benzyl guanine reduce MGMT, improving carmustine therapeutic efficacy. As compared to
the two drugs injected separately in solution or carmustine alone infused as a nanoparticle,
the above formulation was administered intravenously and led to superior survival rat
models of glioma [4, 65].

Targeting

Carriers with various types of surface ligands are utilized in active targeting to traverse the
BBB, or cell uptake takes place following extravasation across the leaky BBB [66]. TfR
and Glut are two BBB transporters that have been explored for transferring intact drugs
across the BBB [7]. Tf-c [RGDfK] paclitaxel micelles were produced and administered
intravenously in the U87MG mouse model. Tf was incorporated to enable the BBB
transport, in which c[RGDfK] facilitated micelle uptake by tumor cells. In comparison to
Taxol (commercial formulation), the formulation of these micelles promoted drug deposition
in the brain and exhibited a superior anti-cancer activity [67]. Using 2-deoxy-D-glucose-
modified poly(ethylene glycol)-co-poly(trimethlene carbonate) nanoparticles of paclitaxel,
GLUT was used to traverse the BBB. As a comparison to Taxol and plain nanoparticles, the
2-deoxy-D-glucose moiety permits the drug to accumulate in the brain, resulting in better
survival in an RG2 animal glioma model [68].

7. NANOPARTICLES FOR ALZHEIMER’S DISEASE THERAPY

Eliminating the limitation of the BBB, as with brain tumors, could modernize several CNS
therapies, like Alzheimer’s disease. Currently, there is limited treatment available for AD
and reversing the further progress is challenging. The deposition of amyloid plaques, which
leads to the death of neurons, is a hallmark of this disease [69].

Currently, existing treatments for Alzheimer’s disease only treat the symptoms, but recent
research has focused on drugs called “neuroprotective drugs,” which could slow or even
stop the disease from progressing further by targeting the pathological process [70]. A more
speculative strategy to treating Alzheimer’s disease is to combine neuroprotective drugs with
“regenerative agents,” which can assist in tissue repair. “Disease-modifying approaches”
refer to a combination of neuroprotective and regenerative agents. Nanotechnology-

based therapeutic strategy for treating Alzheimer’s disease involves both neuroprotection
and regeneration; thus, several nanocarriers were investigated recently to improve the
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bioavailability and efficiency of several AD therapeutic drugs [71, 72]. Various types of
nanoparticles used for AD therapy are shown in Fig. (3).

7.1. Neuroprotective Potential of Nanotechnology

AP oligomers and free radicals are the major causes of neurotoxicity in the pathophysiology
of AD. Some nanotechnology-based techniques can prevent neurons from A toxicity by
suppressing amyloid oligomerization and/or aggregation of AP oligomeric species. Other
neuroprotective nanotechnology methods are those that prevent neurons from free radical
oxidative stress [71].

Antioxidants-loaded NPs have the ability to neutralise free radicals produced during
AD. Fullerene and its derivatives are the most common nanomaterials employed in
neuroprotection. Free radicals and calcium concentration in nerve cells are restricted
by fullerenol-mediated neuroprotective effects. There are ongoing advancements in the
applicability of nanotechnology in neuroprotection. The use of carbon nanotube (CNT)
is one of the examples. Nanotube electrodes reverse the neuronal damage by forming
nanoscaffolds [73].

7.1.1. Nanogels—Nanogels limit the amyloidogenesis process by controlling protein
folding and aggregation (AP anti-assembly technique) [74]. Nanogels are cholesterol-
bearing pullulan (CHP)-based hydrogel nanoparticles. Maltotriose (a trisaccharide
comprised of three glucose molecules connected by 1,4 glycosidic linkages) units constitute
pullulan, a natural water-soluble polysaccharide polymer. Because this approach avoids Ap
oligomerization, the concentration of deadly A oligomeric species is reduced [71]. In some
cell cultures, especially cortical and microglial, the use of CHP nanogels resulted in a
considerable reduction in Ap42 toxicity [75].

7.1.2. Fullerene—Neuroprotective molecules can be formed based on fullerene (C60).
Because of the molecular structure that enables it to be connected (and functionalized) in a
3-dimensional orientation, fullerene has antioxidant and free radical scavenging properties.
In cultured cortical neurons, the action of carboxy fullerenes (a malonic acid derivative

of C60, {C63[(COOH)2]3}) on Ap42 mediated oxidative stress and neurotoxicity was
observed, and it was found that it prevented apoptosis by Ap42 [76]. Fullerenols are water-
soluble derivatives of fullerene and have exhibited neuroprotective benefits against Ap42,
owing to their antioxidant properties [77]. Potential applications of functionalized fullerene
and its derivatives (caboxyfullerene, hydroxyfullerene (fullerenols), and C60HyFn) are being
investigated for the development of effective treatment for AD.

7.1.3. Nano-Ceria—Nanoceria is a cerium oxide (CeO2) nanoparticle that has been
shown to have a neuroprotective benefit in /n vitro AD model [78]. These neuroprotective
properties are mostly owing to their antioxidant properties [79]. Nanoceria also shields
neurons from A cytotoxic activity by altering an intracellular signaling pathway implicated
in both cell death as well as neuroprotection [78].

7.1.4. Dendrimers—Dendrimers provide a multifunctional anti-myeloid approach.
Dendrimers use an AP anti-assembly strategy by attaching to peptide monomers or
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inhibiting the ends of protofibrils and fibrils. Dendrimers are also involved in minimizing
AB cytotoxic effects [69]. However, due to the potential toxicity of dendrimers on cells, this
approach requires more research before being used in vivo.

7.1.5. Gold Nanoparticles—The resolubilization of fibrillar amyloid species is one of
the proposed anti-myeloid strategies. Gold nanoparticles (AuNPSs) can disintegrate amyloid
plaques in weak microwave fields. AuNPs were created to disintegrate and minimize Ap
plaques by supplying local heat energy at the molecular level. When a weak microwave
field is supplied, AUNPs connect to a target, such as AP, and release thermal energy, which
dissolves fibril binding [80].

7.1.6. Diamondoid Derivatives—In nanotechnology, diamondoids are among the
most potential molecular entities [81]. Memantine, a diamondoid-based drug, inhibits the
advancement of AD [82]. Memantine is a medication that has been licensed by the FDA for
AD treatment.

Memantine suppresses the excessive activity of NMDA receptors while leaving normal
activity unaffected [83]. Despite memantine having already been approved by the
FDA, research is currently being conducted on other derivatives that may have better
neuroprotection and probably regeneration abilities, as well as applications for treating
diseases involving glutamatergic dysfunction.

Nanocarriers

Nanomedicine involves a lot of applications, one of which is targeted drug delivery. The
BBB acts as an extra barrier to the flow of a range of chemicals into the CNS tissue,
making disorders of CNS significantly more severe [84]. The application of biocompatible
nanoparticles to help medicinal drugs cross the BBB has gained a lot of attention in the last
decade [85]. The following sections address nanocarrier systems that have been proposed
for delivering therapeutic agents for Alzheimer’s disease into the brain. Different types of
nanocarriers used for the delivery of Alzheimer’s disease have been described in Table 3
[86-102].

CONCLUSION

There is a need for further research on the diagnosis and treatment of BC and AD; several
nanoparticle formulations have proven to be potential approaches in animal models of these
diseases, and a few of them have even progressed to clinical testing. Many studies have
introduced nanotechnology in the diagnostics of BC and AD by administering drug-loaded
nanoparticles, thus allowing target cells/tissues to be imaged with this new theranostics.
Drugs administered through nanotechnology can combat the BBB and can reach the target
with good potential. There is a need for more research regarding the safety assessment of
drug-loaded nanoparticles in diagnostics and therapy of BC and AD in a complex biological
milieu.
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Fig. (1).
Types of nanoparticles for brain drug delivery. (A higher resolution / colour version of this

figure is available in the electronic copy of the article).
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Fig. (2).
Mechanisms through which nanoparticles cross the BBB. (A higher resolution / colour

version of this figure is available in the electronic copy of the article).
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Nano ceria

Dendrimers

Nanoparticles used for the treatment of AD. (A higher resolution / colour version of this

figure is available in the electronic copy of the article).
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