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Abstract

Human behaviors have non-negligible impacts on spread of contagious disease. For

instance, large-scale gathering and high mobility of population could lead to accelerated dis-

ease transmission, while public behavioral changes in response to pandemics may effec-

tively reduce contacts and suppress the peak of the outbreak. In order to understand how

spatial characteristics like population mobility and clustering interplay with epidemic out-

breaks, we formulate a stochastic-statistical environment-epidemic dynamic system

(SEEDS) via an agent-based biased random walk model on a two-dimensional lattice. The

“popularity” and “awareness” variables are taken into consideration to capture human natu-

ral and preventive behavioral factors, which are assumed to guide and bias agent move-

ment in a combined way. It is found that the presence of the spatial heterogeneity, like social

influence locality and spatial clustering induced by self-aggregation, potentially suppresses

the contacts between agents and consequently flats the epidemic curve. Surprisedly, dis-

ease responses might not necessarily reduce the susceptibility of informed individuals and

even aggravate disease outbreak if each individual responds independently upon their

awareness. The disease control is achieved effectively only if there are coordinated public-

health interventions and public compliance to these measures. Therefore, our model may

be useful for quantitative evaluations of a variety of public-health policies.

Author summary

This article investigates at multi-level the roles played by spatial heterogeneities in epi-

demic dynamics. For this purpose we propose a novel stochastic-statistical particle model

implemented on a two-dimensional lattice field, where various individual-varying spa-

tially inhomogeneous human behavioral factors are incorporated into an agent-based epi-

demic modeling framework.

With extensive simulations of our model, we are able to carry out thorough investiga-

tions on the impacts of heterogeneities at individual and spatial levels on epidemics
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trajectories during the early stage of an outbreak. It has been observed that spatial hetero-

geneity is consistently shown to be connected with suppressed and delayed epidemic

peaks. These findings add valuable knowledge on the mechanism of the form and distri-

bution of population clusters affecting an epidemic wave.

Moreover, we examine the interplay between spatial/individual heterogeneities and

public-health policies in an intensive and systematic way across various parameter

regimes, whose conclusions we believe are going to complement beneficially to both the

theoretical and practical understanding of epidemic control.

1 Introduction

The COVID-19 pandemic, dubbed as ‘once-in-a-century health crisis’ [1], has made great

impacts to the world. According to WHO Coronavirus (COVID-19) Dashboard, up to Sep-

tember 2023, there have been more than seven hundred million confirmed cases worldwide,

including nearly seven million deaths reported. At the same time, people around the world

have also learned important lessons from the pandemic which may enable us to be better pre-

pared for future epidemic outbreaks. Among them, one of the key observations is that during

the first episode of a disease outbreak, and in the absence of a remedy, early implementations

of public-health interventions, such as social distancing, traveling restriction and public aware-

ness programs, self-isolation, and quarantine, have been shown to be capable of delaying con-

tagions and thus relieving the medical overrun [2–10]. What’s more, effects of these measures

to alter progressions of pandemic spread depend heavily on the level of public compliances

[11]. To better cope with newly emerging infectious disease pandemics that may bear charac-

teristics similar to COVID-19, it is indispensable to make a clear understanding of interplays

between outbreaks of transmissible diseases and natural and preventive human behavior [12].

To this end, modeling of human-disease interactions in a quantitative and predictive manner

is urgently called for.

Despite rapid development in this area, there are still a number of open questions and

unanswered challenges concerned with this topic. One of them is how to incorporate the spa-

tial heterogeneity such as population contact structure and spatially heterogeneous interven-

tions. It is well known that risks of disease spread may be augmented by natural behaviors

such as gathering, commuting to work [13], and contacts with family, friends, co-workers,

etc. (see e.g., [14]). However, assuming spatially homogeneous agent movement alone seems

inadequate to explain aggregative characteristics of epidemic incidence, like spatial clustering

[15, 16].

Another relevant topic is how to incorporate the public awareness of risks and uncertain-

ties of an infectious disease, which may motivate individuals to change behaviors, e.g., avoid-

ing places with observable signs of disease outbreaks [12, 17]. As a result, the chances of

contacts between infectious and non-infectious individuals can be potentially reduced. Mean-

while, a large population migrating from places with a high level of prevalence, possibly

driven by pandemic phobia, may propagate the disease outbreak. All of these behavioral

changes described above play a key role in mitigating or escalating pandemic outbreaks [18].

Quantitative studies of preventive public reactions will enable us to assess effectiveness of var-

ious intervention options such as social distancing policy [2–4], and other public-health con-

trol measures [19].

To address the above issues, abundant real-life case studies of epidemic progression, includ-

ing [20–26] with an intensive application of first-hand data, have been performed, with a
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common conclusion that environmental and socio-economic factors are capable to account

for a major portion of the spatial variation in disease risk. For instance, the analysis of epi-

demic profiles in [20] attributes the spatial dependence to a combination of endogenous and

exogenous processes. The study in [21] uncovers disparate outbreak processes in the spatio-

temporal epidemic dynamics and the associated environmental factors, which exhibit a signifi-

cantly high level of spatial heterogeneity displayed by commune attack rates. Moreover, geo-

graphical data processed with geographic information system (GIS) and spatial statistical tools

have posited the importance of an interdisciplinary approach, with proactive measures, inter-

national solidarity and collaboration and a global perspective, to face with COVID-19 [24]. In

particular, the georeferenced approach in [25] discovers that the synchronization of the local

epidemic profiles is enhanced by addition of the dynamics of local commuting. [26] highlights

the necessity of formulating regional measures and strategies for disease control and preven-

tion in China, according to a geographically weighted regression model, which reflects the

impacts of social and environmental factors that differ in region.

Numerous works have also aimed at establishing the connection between host-pathogen

dynamics and environmental heterogeneity of fragmented landscapes [27, 28]. A major dis-

covery is that the spatial pattern of transmission is the consequence of the subtle interactions

between various types of social and physical heterogeneities such as exogenous and endoge-

nous contagious processes, even though it appears to be a mere reflection of the dispersal

and contact patterns among extant individuals. It is argued in [29] that social heterogeneity

drives epidemics, namely, the predictive power and sophistication of the transmission-

dynamics models will be greatly increased by the identification and measurement of hetero-

geneity of the social context, including behavior, mobility, structure, density, etc. The study

in [30] clearly indicates the epidemiology has a non-negligible sensitivity of the mobility pat-

terns of host individuals, and consequently stresses the importance of gathering information

on such patterns. The metapopulation epidemic model integrated with agents’ memory of

their traveling origin, proposed in [31], investigates the effects of self-imposed behavioral

changes of individual mobility, which confirms the role of individual response to epidemic

outbreaks in shaping epidemic spreading patterns. What’s more, in [28], the potential role

of resource hotspots and resource provisioning is highlighted by a number of results of a

spatially explicit SIR model integrated with movement ecology approaches, and the spatial

organization of resources turns out to lead to nonlinear effects on infectious disease dynam-

ics through alteration of host movement patterns as well as subsequent pathogen

transmissions.

Now narrowing our attention to quantitative mathematical modeling and simulation

studies, we find that there are mainly two classes of frameworks. Firstly, a vast number of

works focuses on incorporating human mobility over a network from the (meta)-population

level [25, 32–41]. Behavioral changes are incorporated by embedding an environment vari-

able of awareness in a social network [12], coupling it with unaware-aware cycle which

spreads awareness among nodes [10, 16, 42], or adding an “Alerted” compartment to

account for a sub-population adopting preventive behaviors [41]. For these models, it is

often assumed that the total population of the whole system or within each node in the meta-

population model is fully mixed with all the agents acting identically. But this assumption

may deviate from reality as a fully-mixed ODE model may yield a steeper and earlier first

wave [7, 43]. The second class of modeling frameworks includes continuum mean-field

PDEs from the macroscopic level and the kinetic modeling of the crowd dynamics on the

mesoscopic scale (see e.g., [44–53]). These models account for both local transportation net-

works and the heterogeneity of population, and properly reflect the multi-scale features of

epidemic dynamics [52]. Nonetheless, these continuum PDE models somehow treat the total

PLOS COMPUTATIONAL BIOLOGY Modeling on the impact of spatially heterogeneous behavioral factors on diseases spread

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012345 August 8, 2024 3 / 32

https://doi.org/10.1371/journal.pcbi.1012345


population as a continuous field which diffuses like fluids, and assume each individual is able

to contact with all others. This might not reflect the locality of individuals in a finite popula-

tion, as each person can only contact a very limited number of agents from their social net-

work. To the best of our knowledge, accurate modeling of spatial impacts on epidemic

progressions still remains a significant challenge.

In this study, we endeavor to address the above challenges by formulating a mechanistic

modeling and simulation studies of spatio-temporal geometry of human-disease interaction

incidences, termed a stochastic-statistical environment-epidemic dynamical system (SEEDS).

Specifically, an agent-based epidemic model at the individual microscopic level is proposed,

coupled with evolutions of two environmental variables “popularity’’ and “awareness’’ on a

2-D lattice. Agents are assumed to take a random walk biased by natural and social behavior

factors, such as aggregation behavioral patterns and public awareness of disease-transmission

information. This will allow us to show that the frequent movement of individuals under high

mobility rate, that reflects the strong interaction and correlation within them, indeed escalates

the epidemic spread. By contrast, reducing the spread of location popularity can evidently con-

tribute to formation of gathering events (spatial clustering), and impede the chances of con-

tacting. As a direct consequence, a much flatter epidemic curve with smaller size of the first

disease wave is observed. These provide a sound explanation of the role of spatial heterogeneity

in epidemic dynamics, as the contact rate on the individual level and spatial transmission are

highly influenced by the social influence locality [54].

More surprisingly, it is found that disease responses by more informed individual acting

might not necessarily reduce their susceptibility. In fact, an increasingly vigilant to signs of

an ongoing outbreak, like a trend of people traveling away from high-risk area, may even

lead to aggravating disease outbreaks. Fortunately, coordinated disease interventions effec-

tively control the outbreak. This coincides with our daily experience that disease control is

achieved only if the whole community takes response in a collaborative way, instead of

allowing each individual to respond independently upon their awareness. Therefore, our

findings may pave the way for a more comprehensive understanding of effects of interven-

tion options [55].

2 Models and methods

We will explore impacts of various human natural and preventive behaviors by three steps,

and carry out investigations to compare effects of these spatially heterogeneous factors upon

disease transmissions.

2.1 General setting of SEEDS

The general assumption for our SEEDS builds on agent random walks in a dynamically evolv-

ing random environment set on a 2-D spatial lattice (graph). At the first step, a preliminary

model as shown in the first panel of Fig 1 will be constructed assuming that agents take sym-

metric random walks over a 2-D lattice, while progressing among different states according to

the transmissions and course of disease. For instance, infectious contacts (between susceptible

and infected agents) could lead to disease transmissions and thus transitions between different

states.

The second step follows by introducing a natural human behavioral factor through an envi-

ronment variable defined on each lattice site (as shown in the second panel of Fig 1). Inspired

by [56], where an environment variable defined on each lattice site quantifying attractiveness

of the site, here in SEEDS we introduce a variable, denoted by P, to quantify the popularity of

location. We assume that the popularity variable gets updated according to the “crowding
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effects”, which accounts for positive emotional responses associated with being in dense

crowds [57–67]. Agent random walks are naturally assumed to be biased towards sites with a

higher level of popularity.

The final step is to incorporate a preventive behavioral factor (as shown in the third

panel of Fig 1). We introduce another environment variable, denoted by A, to reconstruct

public awareness of disease transmission threats. It is updated according to local or global

disease severity level. Particularly, prompted by alerts from public-health restriction poli-

cies, awareness should diffuse along with delivery of first-hand information about disease

cases [12]. Meanwhile, along with release of alerts, or pandemic fatigue, where more and

more people choose to lower risk perceptions [68–72], awareness may also naturally fades

away.

We assume that A increases in accordance with severity of the epidemic outbreak. Further-

more, two different types of agent behavioral changes upon a raising of public awareness are

investigated, that is, either the biasness or the rate of agent movement is assumed to be varied.

We will refer to these two scenarios as Scenario I and Scenario II, respectively. Moreover, in

Scenario II, two sub-cases are considered, assuming different ways in which the rate of agent

movement is changed.

In Scenario I, disease-responses are assumed to be completely individualized. Naturally

each agent chooses to actively avoid sites with visible signs of disease transmissions. Thus,

agent random walks are directed and biased according to not only the local popularity level

but also the local awareness level.

In Scenario II, instead of the biasness, we assume that the rate of random walks is affected

by the awareness variable. Moreover, we also assume that awareness can be prompted by both

Fig 1. The mind map of our modeling. Preliminary model with symmetric movement (left), biased random walk foraging model with

social clustering effects (middle) and the preventive behavior model with dynamics of public awareness (right).

https://doi.org/10.1371/journal.pcbi.1012345.g001
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symptomatic and non-symptomatic infectious agents. In fact, in many ways infectious popula-

tions without any visible symptoms can still provoke public awareness of disease transmis-

sions; for example, real-time monitoring on SARS-CoV-2 can be achieved by analyzing

wastewater data or public viral tests [73–75]. With the above assumptions, we study two sub-

cases, where the first sub-case assumes that awareness level increases based on prevalence level

of pre-symptomatic and asymptomatic infectious agents. Then in the second sub-case, public

awareness is assumed to be uniform over the lattice field, rather than varying from site to site.

Thus it can be modeled as a scalar function evolving over time. This assumption resembles the

real-life situation when a coordinated and centralized epidemic monitoring system is available,

leading to coordinated responses to disease transmissions.

In summary, an integrated dynamics of disease transmission events and human behavioral

factors is obtained by human-environment-interaction modeling through a combined force of

both environment variables that drives and biases agent random walks.

2.2 States and compartments

We assume that the total population is divided into the following states

S ðsusceptibleÞ;E ðexposedÞ;

P ðinfectious and pre-symptomaticÞ;A ðinfectious and asymptomaticÞ;

I ðinfectious and symptomaticÞ;

H ðhospitalizedÞ;R ðrecovered and immuneÞ;

8
>>>>>>><

>>>>>>>:

where state I is further divided into two compartments depending on the symptom:

State I

(
Ið� Þ ðmildly infectious symptomaticÞ;

IðþÞ ðseverely infectious symptomatic and need hospitalizationÞ:

Here we assume that the E state is non-infectious, as in the real-world virus shedding

does not necessarily begin right away after an exposure to the virus (see e.g. [8] for clinical

evidence). Thus a new state P is introduced to resemble the stage from the beginning of

virus shedding to onset of symptoms. Moreover, we assume that agents of states E, P, A,

I(−) and I(+) are infectious active-virus carriers. Agents of states E, S, H, and R are assumed

to be non-infectious. Furthermore, all the agents, except for the hospitalized ones, are

mobile.

Remark 1 With a little abuse of notations, S, E, P, A, I(−) and I(+), H, and R will be adopted

to represent not only the state of an individual agent, but also the total number of agents

belonging to that state on each site or even over the whole domain, that is, the corresponding

compartment size.

Remark 2 Here we choose to exclude vital dynamics, as our focus is on transmission stages of
a pandemic, and the death rate of COVID-19 is fairly low compared with the total population
albeit catastrophic in absolute number of casualties (see relevant data in e.g. [76]).

2.3 Spatially homogeneous unbiased random walk

We assume that the domain is rescaled to a unit square [0, 1] × [0, 1] with periodic boundary

conditions, and all the mobile agents take random walks over a lattice grid defined on the

domain. Without loss of generality, the deterministic total population size which is fixed over

time is set to be L2 for some integer L; by choosing the spatial scaling factor as 1/L, the
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population density per unit area is exactly one. Denoting 1/L as ℓ, then the total population

size is ℓ−2 and will be denoted as Nℓ, that is, Nℓ = ℓ−2.

2.3.1 Agent distribution over the 2D lattice. The numbers of agents of each of the eight

states over the whole domain are denoted as Sℓ(t), Eℓ(t), Pℓ(t), Aℓ(t), I(−), ℓ(t), I(+), ℓ(t), Rℓ(t), and

Hℓ(t), respectively, and the fractions of these quantities divided by Nℓ are denoted as �S‘ðtÞ,
�E‘ðtÞ, �P‘ðtÞ, �A‘ðtÞ, �I ð� Þ;‘ðtÞ, �I ðþÞ;‘ðtÞ, �H ‘ðtÞ, and �R‘ðtÞ, respectively. We note that as population

density per unit area is set as one, �S‘ðtÞ is not only the portion of compartment S within the

whole population, but also density of the agents in S compartment per unit area. The same also

applies to �E‘ðtÞ, �P‘ðtÞ, �A‘ðtÞ, �I ð� Þ;‘ðtÞ, �I ðþÞ;‘ðtÞ, �H ‘ðtÞ, and �R‘ðtÞ. The grid points of the lattice

are denoted as s = (s1, s2), s1, s2 = ℓ, 2ℓ, ���, 1. As each agent is assigned to exactly one of the

eight states mentioned above, every site s is attached with a vector recording the population of

each compartment as follows:

�
S‘sðtÞ;E

‘
sðtÞ; P

‘
sðtÞ;A

‘
sðtÞ; I

ð� Þ;‘
s ðtÞ; IðþÞ;‘s ðtÞ;H‘

sðtÞ;R
‘
sðtÞ
�
: ð1Þ

Moreover, we denote the number of mobile agents at site s at time t as M‘
sðtÞ, i.e.

M‘
sðtÞ :¼ S‘sðtÞ þ E‘sðtÞ þ P‘sðtÞ þ A‘

sðtÞ þ Ið� Þ;‘s ðtÞ þ IðþÞ;‘s ðtÞ þ R‘sðtÞ: ð2Þ

2.3.2 Individualized Poisson clocks and events which they govern. Occurrences of every

individual event in such an agent-based model are kept tracked. Specifically, here we employ

Poisson clocks to govern arrivals of events. These clocks set waiting times as independently

exponentially distributed random variables whose expectations are the inverse of their advanc-

ing rates. Nine types of Poisson clocks (Type (I)—Type (IX)) are going to be employed, all of

which are assumed to advance independently.

Hereafter sc is a temporal scaling parameter to help us explore how sociological factors

interplay with the epidemiological ones. Subsequently, all the parameters assumed will be

absolute constants independent of sc and ℓ. We note that below in the text, to better match

real-world scenarios, sc is always chosen as 3.5 (Section 3.1.1). A sensitivity analysis is carried

out in S1 Text to validate robustness with different values of sc.
Symmetric random walks. Type (I) clocks are set to govern agent movement. They

advance according to independent Poisson processes with rate sc�D. A Type (I) Poisson

clock is assigned to each mobile agent (that is, all the agents except for the H agents), and upon

an advancement the corresponding agent will immediately jump from the current site, say s,

to one of the nearest four neighboring sites with equal probability. In other words, for each

mobile agent, the expected number of sites he visits per unit time is sc�D.

Evolutions of agent states. We assume six stages of evolutions of agent states according to

the natural order of the course of disease, that is, infectious contacts, end of latent period,

symptom onset, hospitalization, recovery, and immunity waning.

Infectious contacts: There are two types of disease transmission pathways: direct person-to-

person infectious contacts, and indirect environment-to-human disease transmissions. The

latter is also called the indirect pathway, that is, transmission from the environment which

occurs via e.g. insects or by touching contaminated surfaces, etc. According to [77], for

COVID-19 the risk of surface transmission was estimated to be 1,000 times lower than air-

borne transmission during a major outbreak. As a result, we hereby only take direct disease

transmission pathways into consideration, in which case a susceptible individual can be

infected only by another infectious individual residing in the same site.
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A Type (II) Poisson clock with advancing rate λ is assigned to each pair of an S agent, and

an infectious virus-active agent (i.e. an P, A, I(−), or I(+) agent), as long as these two are on the

same lattice site. Upon a clock advancement, a contact between the two agents occurs, and the

susceptible agent will progress to state E with probability 1 if the infectious agent is I(−) or I(+),

and β if the infectious agent is P or A, where β is the reductive factor on the infectivity of

asymptomatic carriers.

Remark 3 There is an equivalent description of the events governed by Type (II) clocks as
mentioned above. On each infectious virus-active agent at site s, there is a master Poisson clock
whose rate is proportional to the number of local mobile agents, i.e., lM‘

sðtÞ. Upon an advance-
ment of a master clock, the corresponding carrier will choose one randomly among all the mobile
agents at the current site to contact; then disease transmission occurs (with the same probabilities
mentioned above) whenever the agent whom the clock-carrier contacts happens to be a suscepti-
ble (S) agent. In summary, here in our model the rate of infections contacts at a certain site is pro-
portional to the local population density, and sites with higher number of mobile agents are
assigned with a higher rate of potential disease transmission. This leads to another distinct differ-
ence between our model and classical compartment models. The latter assume a fixed contact
rate as a result of a homogeneously mixed population.

End of latent period: Transitions at this stage are all governed by Type (III) Poisson clocks

with rate η, one of which is assigned to each E agent, and advances at the end of the latent

period. Upon an advancement, the corresponding E agent will progress to state P.

Symptom onset: Transitions at this stage are all governed by Type (IV) Poisson clocks with

rate η0, the speed of symptom onset. Each P agent is assigned such a clock, which advances at

the end of the pre-symptomatic period. Upon an advancement, the corresponding agent P will

progress to state A with probability 1 − ρ. Otherwise, the P agent will become I(−) (with proba-

bility ρ(1 − pH), or I(+) (with probability ρpH), where pH implies the probability of necessity of

hospital treatment.

Hospitalization: We assume that only the I(+) agents may possibly get hospitalized. On each

I(+) agent there is a Type (V) Poisson clock with rate d
ðþÞ

I . Upon an advancement, the clock car-

rier transfers from state I(+) to H.

Recovery: Transitions at this step can be divided into three types of events: direct recovery

of asymptomatic infectious agents and of mildly symptomatic agents without hospitalizations

and recovery of hospitalized agents.

A Type (VI), (VII), and (VIII) Poisson clock with rate δA, d
ð� Þ

I , and δH is assigned to each A

agent, I(−) agent, and H agent, respectively. Upon an advancement, the corresponding agent

will progress to be an R agent.

Immunity waning: Transitions at this stage are all governed by Type (IX) Poisson clocks

with rate δR, which is assigned to each R agent. Upon an advancement, the corresponding

agent progresses to be a susceptible agent.

All different types of events and their occurrence rates in the preliminary modeling

setup are summarized in Table 1 (the superscript ℓ and the variable t are dropped for

simplicity).

2.3.3 An analogous continuum ODE model. Continuum ODE system derived from the

agent-based model with symmetric random walks described above can be used as an analo-

gous continuum model. We denote �SðtÞ, �EðtÞ, �AðtÞ, �I � ðtÞ, �IþðtÞ, �RðtÞ, and �HðtÞ as the contin-

uum versions of �S‘ðtÞ, �E‘ðtÞ, �A‘ðtÞ, �I ð� Þ;‘ðtÞ, �I ðþÞ;‘ðtÞ, �H ‘ðtÞ, and �R‘ðtÞ, respectively. Then by

conservation of mass we obtain the following continuum ODEs where for simplicity the
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variable t is dropped:

d�S
dt
¼ � lðbð�P þ �AÞ þ �I ð� Þ þ �I ðþÞÞ�S þ dR�R;

d�E
dt
¼ lðbð�P þ �AÞ þ �I ð� Þ þ �I ðþÞÞ�S � Z�E;

d�P
dt
¼ Z�E � Z0�P;

d�A
dt
¼ Z0ð1 � rÞ�P � dA �A;

d�I ð� Þ

dt
¼ Z0rð1 � pHÞ

�P � dð� ÞI
�I ð� Þ;

d�I ðþÞ

dt
¼ Z0rpH

�P � dðþÞI
�I ðþÞ;

d �H
dt
¼ d

ðþÞ

I
�I ðþÞ � dH �H ;

d�R
dt
¼ dA

�A þ dð� ÞI
�Ið� Þ þ dH �H � dR�R:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

2.4 Impacts of human natural behavior: Incorporating biased foraging

behavior

In order to investigate the impacts of natural tendency of human behavior like foraging on epi-

demic progression, we incorporate an environment variable P representing popularity of that

site perceived by nearby agents upon the agent-based symmetric random walk model

described above (Section 2.3).

Table 1. Event types, state transitions, and corresponding transition rates of the preliminary agent-based symmet-

ric random walk model.

Event types State transitions Rates

Random walks − sc�D

Infectious contacts Ss + Ps! Es + Ps λβ

Ss + As! Es + As λβ

Ss þ Ið� Þs ! Es þ Ið� Þs λ

Ss þ IðþÞs ! Es þ IðþÞs λ

End of latent period Es! Ps η

Symptom onset Ps! As η0(1 − ρ)

Ps ! Ið� Þs η0ρ(1 − pH)

Ps ! IðþÞs η0ρpH
Hospitalization IðþÞs ! Hs d

ðþÞ

I

Recovery As! Rs δA
Ið� Þs ! Rs d

ð� Þ

I

Hs! Rs δH
Immunity waning Rs! Ss δR

https://doi.org/10.1371/journal.pcbi.1012345.t001
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Specifically, P will be assigned to each site as a measurement of preference and willingness

of mobile agents to visit the corresponding location. The value of P at each site s at time t is

denoted as P‘

sðtÞ.
Moreover, we set in advance a static minimum value of P that can not be crossed over,

denoted as Pmin. This minimum value is used to resemble absolutely necessary activities such

as getting food and other essential household goods, obtaining medical care, and traveling to

perform essential work.

2.4.1 Dynamics of the popularity variable. The popularity variable is assumed to get

updated according to the crowding effects, a well-studied notion in behavioral sciences. That

is, positive emotional responses associated with being in dense crowds arise widely in social

activities ([61–67]). For instance, people tend to gain pleasure from places or events with high

human density, like shopping malls and festivals, as the crowdedness of environment is an

indicator of the presence of good reputation and service quality. In the meantime, Hotelling’s

hypothesis [78] implies that clumping in a crowded area leads to increased popularity at adja-

cent places [78, 79], e.g., due to the additional job opportunities provided in this place. In

other words, the popularity variable should be driven by its own dynamics, including spread-

ing to neighboring sites, increasing along with clustering, and gradually losing its

attractiveness.

Increment and spread of popularity. Crowded areas often enhances perceptions of food

and service quality, or contribute positively to consumer’s quality inferences ([57–60]). More-

over, because of the agglomeration of similar retailer ([78–80]), once a store becomes over-

crowded and out of capacity, people choosing to leave will very likely move to adjacent places

for the same shopping purposes. As a result, the neighbourhood of a popular location often

experience popularity increase. Therefore, it is reasonable to assume that P increases with

rates in proportion to the number of local mobile agents who have no visible symptoms; at the

same time, P spreads over nearby neighborhood.

On each mobile agent who has no visible symptoms, i.e., the group of S, E, P, A, and R

agents, there is a Type (X) Poisson clock with rate IP � ‘� 1 � sc. Upon an advancement at

time t− and site s, PsðtÞ increases by a magnitude of �dþP‘.

A Type (XI) clock with rate LP � sc is assigned to every site and upon an advancement at t−

at site s, popularity of site s is updated according to the value at t− and that of its four nearest

neighbors with a magnitude of α, α 2 (0, 1), i.e. P‘

sðt
� Þ is updated to be

P‘

sðtÞ ¼ P‘

sðt
� Þ þ

a

4
‘

2
D
‘P‘

sðt
� Þ; ð4Þ

where Δℓ is the discrete spatial Laplacian operator associated with the lattice grid, namely,

D
‘P‘

sðtÞ ¼ ‘
� 2

X

s0
s0�s

P‘

s0 ðtÞ � 4P‘

sðtÞ

0

B
@

1

C
A; ð5Þ

where s0* s indicates all of the neighboring sites of s.

Fading of popularity. For population attractions such as stores, restaurants, etc., popularity

of the site generally decreases once variety seeking of customers is triggered by boredom

induced by repeated purchases [81]. So we assume that P decreases at a constant rate indepen-

dent of number of local agents.

Let �d �P and DP be constants determining the speed of the decay. A Type (XII) clock with

rate DP � sc� ‘� 1 is assigned to every site and upon its advancement at site s and time t−,
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P‘

sðt
� Þ is immediately updated to be the larger value between Pmin and the following quantity:

P‘

sðt
� Þ 1 �

�d �P

‘
� 1

� �

: ð6Þ

2.4.2 Biased random walks guided by popularity. We now change the assumptions of

symmetric random walks (Section 2.3.2) into biased ones towards areas with higher values of

P. More precisely, upon an advancement of a Type (I) clock at time t−, the corresponding

agent will immediately jump from current site, say s, to one of the neighboring sites, say k,

with a probability q‘s!kðtÞ defined as follows:

q‘s!kðtÞ :¼
P‘

kðt
� Þ

P
s0

s0�s
P‘

s0 ðt� Þ
: ð7Þ

2.5 Impacts of human preventive behavior: Incorporating public awareness

of disease

Based on the biased random walk foraging-behavior model constructed above (Section 2.4),

we will further explore impacts of public-awareness of disease on epidemic dynamics. In par-

ticular, a second environment variable A representing public awareness of threats of disease

transmissions is introduced into the model. At the individual level, each agent may change

their moving pattern according to their assessment of severity of prevalence. In contrast, risks

and uncertainties of an infectious disease can also prompt public measures like travel restric-

tions, and area lock-down. To imitate the real-life experience, two scenarios, called Scenarios I

and II, will be considered, together with two sub-cases in Scenario II, which will be called Sce-

nario II-i and II-ii.

(1) Scenario I: We assume that A will affect the attractiveness of a site, without changing the

moving rate of mobile agents. Moreover, A is assumed to receive an increase in the pres-

ence of local symptomatic infectious agents as well as hospitalization events. This scenario

reconstructs the response of taking individualized actions to avoid places with visible high

prevalence, in the absence of effective control of population mobility.

(2) Scenario II-i: Here it is the agent movement rates that are assumed to change in a local

manner with A. Futhermore, awareness growth upon appearances of hospitalization events

and local symptomatic as well as asymptomatic infectious agents is accounted for, which

resembles an active disease monitoring system. This scenario aligns with public policies,

such as travel restrictions, aimed at reducing population mobility based on individuals’ per-

ceptions of disease transmission in their current locations.

(3) Scenario II-ii: Here A is assumed to evolve macroscopically according to the overall preva-

lence level of the whole community. This scalar value is assumed to uniformly affect the

rate of agent movement, and grow upon appearances of both symptomatic and asymptom-

atic agents (at any site in the system). This scenario corresponds to coordinated response

measures which are continuously updated according to the epidemic prevalence level in the

whole community.

2.5.1 Preliminary assumptions of the awareness variable. At each site s at time t the

value of A is denoted as A‘

sðtÞ. We assume that A‘

sðtÞ 2 ½0; 1� for every s and t. Moreover,
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when A‘

sðtÞ ¼ 0, agents are completely unaware of the disease transmission at s, and their

movement is guided by the local popularity variable alone. In contrast, when A‘

sðtÞ ¼ 1, agents

are assumed to completely avoid traveling to site s.

2.5.2 Scenario I: Integrating disease awareness into direction of agent movement pat-

terns. In this scenario, we assume that directions of random walks depend on both the popu-

larity and the awareness variables. Moreover, it is assumed that A receives an increase in the

presence of symptomatic infectious agents and also at each hospitalization event.

Biased random walk guided by awareness. Based on the biased random walk foraging

model, we make changes to the events governed by Type (I) clocks (Section 2.3.2). Upon an

advancement of a Type (I) clock at time t−, the corresponding agent will immediately jump

from current site, say s, to one of the neighboring sites, say k, with a probability q‘s!kðtÞ defined

as follows:

q‘s!kðtÞ :¼
ð1 � A‘

kðt
� ÞÞP‘

kðt
� Þ

P
s0

s0�s
ðð1 � A‘

s0 ðt� ÞÞP
‘

s0 ðt� ÞÞ
: ð8Þ

In this manner, an agent now will actively avoid sites with high visible prevalence level,

while their total moving rate remains unchanged.

Dynamics of awareness. A natural phenomenon in a prolonged public health crisis is pan-

demic fatigue due to various reasons such as implementation of invasive measures ([68–71]).

Those who have developed pandemic fatigue will decrease their effort to follow recommenda-

tions and restrictions, and insufficiently keep themselves informed about prevalence, hospital

capacity, etc. What’s more, information contained in first-hand observation and by word of

mouth tend to suffer degradation in spread, and will lead to less determined reaction [12]. To

this end, we assume that the awareness variable deceases and could also diffuse and decay

spontaneously, while increasing upon occurrences of local hospitalization events, and also at a

rate in proportion to the number of local patients with visible symptoms.

Decay and spread of the awareness variable: Let θ− and DA be constants determining the

speed of decay of A. A Type (XIII) clock with rate DA � ‘
� 1 � sc is assigned to every site, and

upon its advancement at site s and time t−, A‘

sðt
� Þ immediately receives a decrease by a pro-

portion of ℓθ−.

A Type (XIV) clock with rate LA � sc is assigned to every site. Upon its advancement at s

and time t, public awareness of the nearest four neighbouring sites spreads to s with a magni-

tude of η3 2 (0, 1), i.e. A‘

sðt
� Þ is updated to be

A‘

sðtÞ ¼ A‘

sðt
� Þ þ

Z3

4
‘

2
D
‘A‘

sðt
� Þ: ð9Þ

Increase of the awareness variable: Whenever an agent of state I(+) at site s and time t is hos-

pitalized, A‘

sðt
� Þ immediately receives an increase as follows:

A‘

sðtÞ ¼ A‘

sðt
� Þð1 � y

þ

r Þ þ y
þ

r ; ð10Þ

where y
þ

r 2 ð0; 1Þ is a constant. Meanwhile, a (XV) clock Poisson clock with rate IA � ‘� 1 � sc
is attached to each symptomatic agent (including both I(−) and I(+) agent). Upon an advance-

ment at site s and time t−,

A‘

sðtÞ ¼ A‘

sðt
� Þð1 � ‘y

þ

a Þ þ ‘y
þ

a ; ð11Þ

where y
þ

a is a constant measuring the magnitude of such an increment.
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Remark 4 We note that the dynamics described above guarantees that A‘

sðtÞ � 1 for every s
and every t.

2.5.3 Scenario II-i: Suppressing moving rate by locally-supervised disease awareness.

In Scenario II, instead of biasness we assume that it is the rate of random walks that will change

according to A. Furthermore, in Scenario II-i, we incorporate public health measures based on

a local monitoring system which can also detect the prevalence level of infectious virus carriers

without significant symptoms.

We assume that the rate of agent movement reduces upon the local awareness level. More

precisely, based on the biased random walk foraging model, we make changes to the rate of

Type (I) clock (Section 2.3.2) to be site-dependent as follows:

ð1 � A‘

sðtÞÞD� sc: ð12Þ

Meanwhile, the biasness of random walks is assumed to follow the same assumption as the

foraging biased random walk model, that is, the biasness depends only on P as in (8). In sum-

mary, an increase of disease transmission risk of local area leads to a decrease of agent

mobility.

Supervision-prompted awareness. Moreover, the assumptions of dynamics of A is differ-

ent from those in Scenario I (see Section 2.5.2). Namely, we assume that not only infectious

symptomatic agents but also the presymptomatic and asymptomatic infectious agents will

prompt awareness. This assumption resembles the situation if there is an epidemic monitoring

system which can provide an estimation on the prevalence level through Polymerase chain

reaction (PCR) sample survey or sewage monitoring.

Specifically, recall that back in Section 2.5.2 a (XV) clock is attached to each symptomatic

agent (including both I(−) and I(+) agent). Now in order to complete the setup of Scenario II-i,

we assume that not only each symptomatic agent, but also each P and each A agent is assigned

a Type (XV) Poisson clock. Upon an advancement the local awareness variable increases in the

same way as in Eq (11).

2.5.4 Scenario II-ii: Suppressing moving rate by spatially-uniform awareness. In Sce-

nario II-ii, we introduce a coordinated public health measure in this hypothetic disease control

campaign where information on different sites are shared to derive a uniform awareness fac-

tor. In contrast to the scenarios described above which adopt spatially-varying awareness, we

instead assume a scalar-valued awareness. Namely, for every s, A‘

sðtÞ � A‘
ðtÞ: We still assume

that A‘
ðtÞ is between 0 and 1.

This scenario takes place when a coordinated monitoring system is available, such that a

coordinated disease control campaign is implemented in this whole region and is updated

dynamically according to the level of prevalence. Motivated by this real-world scenario, we

assume that the rate of agent movement reduces upon increased value of A‘
ðtÞ. More specifi-

cally, changes are made to the rate of Type (I) clock (Section 2.3.2) as follows:

ð1 � A‘
ðtÞÞD� sc: ð13Þ

Dynamics of awareness. Awareness dynamics here shares similarity to that in Scenario II-i

(Section 2.5.3).

Firstly, a merged Type (XIII) clock is set to govern the decrease of the scalar-valued aware-

ness variable. The merged Type (XIII) clock advances with rate DA‘
� 2 � sc. Upon an advance-

ment at time t−, A‘
ðt� Þ immediately receives a decrease by a proportion of ℓ2θ−.
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Secondly, whenever an I(+) agent at any site and time t is hospitalized as described in Sec-

tion 2.3.2, A‘
ðt� Þ receives an increase as follows:

A‘
ðtÞ ¼ A‘

ðt� Þð1 � ‘2
y
þ

r Þ þ ‘
2
y
þ

r ; ð14Þ

where y
þ

r 2 ð0; 1Þ is a constant as in (10).

Thirdly, we adopt a similar assumption to that of supervision-prompted awareness as in

Scenario II-i (Section 2.5.3). More precisely, a merged Type (XV) clock is set to advance with

rate

sc� ðP‘ðtÞ þ A‘ðtÞ þ I‘ðtÞÞ: ð15Þ

Upon an advancement at time t−, the scalar-valued awareness variable will immediately

receive an increase as follows:

A‘
ðtÞ ¼ A‘

ðt� Þð1 � ‘2
y
þ

a Þ þ ‘
2
y
þ

a ; ð16Þ

where y
þ

a is a constant as in (11).

Remark 5 We note that in (14), it is necessary to keep the term ℓ2 in this equation. This is
because this type of update is set to happen whenever a hospitalization event occurs, at every site
in the system. Thus there are a total of order ℓ−2 competing Poisson clocks, each of which
advances at an absolute rate independent of ℓ, which yields a merged total rate of a comparable
order of magnitude to ℓ−2.

3 Results and simulations

3.1 Simulations for agent-based symmetric random walk model and

continuum ODE

In this section, we compare simulations of the agent-based unbiased random walk model (Sec-

tion 2.3) and its analogous continuum ODE model (Section 2.3.3). Simulations indicate that

with suppressed moving rate, spatial heterogeneity emerges and significantly impedes forma-

tion of disease wave peaks.

3.1.1 Parameter values. For the agent-based simulations, we use parameter values that

are set according to the features of COVID-19 pandemic, especially the omicron variant,

which are referred to literatures such as [8, 82–87]. All the parameter values are displayed in

Table 2 below.

Particularly, for choice of λ, rate of infection after infectious contacts, we resort to a compu-

tation based on values of parameters that are easier to observe. The reason is that λ, a public-

health parameter rather than physiological clinical parameter, depends not only on the trans-

mission characters of the disease itself, but also various other factors, such as social norms, liv-

ing habits, public transportations, etc. To this end, we choose to utilize the following

estimation formula of the basic reproduction number R0 depending on λ, such that a suitable

choice of R0 leads to the value of λ.

R0 ¼ l bð1 � rÞ
1

Z0
þ

1

dA

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
asymptomatic

þ r
1

Z0
þ

1

d
�

I

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mildly symptomatic

2

6
6
6
4

3

7
7
7
5
: ð17Þ

According to real world estimations of R0 of omicron variant (see e.g. [87]), here we choose

R0 to be 8.2.
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To select the value of δR (the inverse of the immunity protection waning period), we use

estimation and extrapolation by stretched exponential fitting based on the data of protective

immunity (95% confidence interval) of previous SARS-CoV-2 infection against medically

attended symptomatic omicron XBB reinfection in Singapore (see Table 3 in [84]).

Furthermore, we estimate pH by finding the weighted average of age-dependent proportion

of un-vaccinated symptomatic infections requiring hospitalization the hospitalization rate

among the symptomatic population stratified by age in China (see Supplementary Table 2 and

Table 8 in [8]), where the weights are set according to the approximated age distribution of the

total population of China. Particularly, we obtain the hospitalization rate over all infections by

multiplying the age-dependent proportion of un-vaccinated infections who developed symp-

toms with age-dependent proportion of un-vaccinated symptomatic infections requiring hos-

pitalizations (see Supplementary Table 4 and Table 8 in [8]).

3.1.2 Initial data. The initial data of agent-based and continuum simulations are set as a

small perturbation from the non-disease equilibrium with a relatively negligible fraction of

active-virus carriers, i.e., the E, P, A, I(−), and I(+) agents. The initial data of H and R agents are

set as zero (uniformly everywhere in the domain) in all simulations. Moreover, in agent-based

simulations, we always keep the total population as Nℓ at all times. Note that ℓ is hereby fixed

as 1/100 while yields the value of Nℓ to be 10000.

For S, E, P, A, I(−), and I(+) agents, we set up their initial values by first sampling a multi-val-

ley Gaussian function (19) over every point x = (x1, x2) 2 [0, 1] × [0, 1] and rounding to inte-

gers. Then we find their renormalization over the domain, and set these as the initial value for

the simulations of the continuum ODE model.

Denote by the initial value of S, E, P, A, I(−), and I(+) agents over every point x 2 [0, 1] ×
[0, 1] as S(x, 0), E(x, 0), P(x, 0), A(x, 0), I(−)(x, 0), and I(+)(x, 0), respectively. We set

Sðx; 0Þ ¼ 1 � d1ðxÞ � d2ðxÞ � d3ðxÞ � d4ðxÞ � d5ðxÞ;

Eðx; 0Þ ¼ d1ðxÞ; Pðx; 0Þ ¼ d2ðxÞ;Aðx; 0Þ ¼ d3ðxÞ;

Ið� Þðx; 0Þ ¼ d4ðxÞ; IðþÞðx; 0Þ ¼ d5ðxÞ;

ð18Þ

Table 2. Event types, parameter values, sources and references, and corresponding physical meanings in the mathematical model for the preliminary agent-based

symmetric random walk model.

Event types Parameters values Physical meanings Sources and references

Random walks ℓ = 1/100 spatial scaling factor

sc = 3.5 temporal scaling parameter

D =0.25, 0.5, 1, 2 agent moving rate

Infectious contacts R0 = 8.2 basic reproduction number Ref. [87]

λ = 1.018 rate of infection onset Calibrated by Eq (17)

β = 1 reductive factor on infectivity of asymptomatic carriers Ref. [8]

End of latent period η = 1/(1.2 days) inverse of latent period length Ref. [8]

Symptom onset η0 = 1/(1.8 days) rate of symptom onset Refs. [8] [85]

ρ = 0.745 probability of symptomatic infectious cases Ref. [83]

Hospitalization pH = 0.0272 probability of hospitalization Ref. [8]

d
þ

I ¼ 1=ð3:8daysÞ rate of hospitalization onset Ref. [82]

Recovery d
�

I ¼ 1=ð7:5daysÞ rate of virus removal Ref. [86]

δA = 1/(7.5 days) rate of virus removal Ref. [86]

δH = 1/(6 days) inverse of recovery period Ref. [8]

Immunity waning δA = 1/(268 days) inverse of immunity waning period Ref. [84]

https://doi.org/10.1371/journal.pcbi.1012345.t002
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where the perturbation δi(x) is composed of 30 independent Gaussian functions with ran-

domly chosen centre positions ðxi
1
; xi

2
Þ, heights hi and widths σi set as follows for i = 1, 2, 3, 4,

5:

diðxÞ /
X30

i¼1

XL

j¼� L

XL

k¼� L

hi exp
� ðx1 � xi

1
þ jÞ2 � ðx2 � xi

2
þ kÞ2

si

� �

ð19Þ

where hi ¼ 0:001rð1Þi ; si ¼ 0:01rð2Þi ; ðxi; yiÞ ¼ ðr
ð3Þ

i ; r
ð4Þ

i Þ and rð1Þi ; r
ð2Þ

i ; r
ð3Þ

i ; r
ð4Þ

i are samplings of

independent uniform random number in [0, 1); the periodic neighborhood are added to

ensure the periodic boundary condition of all agent and field variables (L = 20). For more

details, see the Matlab codes available online.

Remark 6 It is worth noting that with the above setup, in agent-based simulations, population
density per unit area is conserved as one as desired.

3.1.3 Daily cases and 2D portraits of agent distributions. Compared with agent-based

simulations, due to lack of spatial heterogeneity introduced by randomness, the corresponding

continuum simulations tend to display a heightened disease outbreak (Fig 2(a.1)–2(d.1)) and

thus escalated severeness of the first episode of the pandemic. What’s more, increasing the rate

of agent movement also appears to have the same effects and bring the agent based model

toward our ODE. Specifically, epidemic spread accelerates along with an increase of rate of

agent movement (Fig 2(a.1)–2(d.1) and Fig 3). What we find in spatial-temporal clustering

patterns of susceptible agents further supports our conjecture, that is, over-estimation of classi-

cal ODE compartment models of disease peaks stems from negligence of locality of agent

movements rather than the finite size effects (see Fig 2(a.5)–2(a.7), 2(b.5)–2(b.7), 2(c.5)–2(c.7)

and 2(d.5)–2(d.7)). Indeed with a fixed ℓ and Nℓ, when D is sufficiently large (see Fig 3 for the

case when D ¼ 10 (left), and D ¼ 100 (right)) we obtain a good agreement between the

Fig 2. Simulations of symmetric random walk model. Panels (a.1)-(d.1) compare �E‘ðtÞ þ �P ‘ðtÞ þ �A‘ðtÞ þ �I ð� Þ;‘ðtÞ þ �I ðþÞ;‘ðtÞ. Increasing the rate D of agent movement

from 0.25 to 0.5 to 1 to 2 leads to a heightened disease outbreak, and thus escalate severeness of the first episode of the epidemic.

https://doi.org/10.1371/journal.pcbi.1012345.g002
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agent-based and continuum ODE models. This indicates that finite size effects does not play

an substantial role in creating the difference between compartment and agent based model. In

reality, individual moving speed is always finite, and the contact range around an active-virus

carrier is limited. Such social influence locality prevents those who are susceptible to be simul-

taneously infected. As a result, ODE models predicts a much higher disease transmission rate

compared to that in reality.

At the same time, reducing the rate of agent movement can be interpreted as uniform and

universal traffic restrictions. Thus our observations provide quantifications of effects of this

type of public-health policies. Moreover, the simulation results with a dependence on agent

walk speed account for the discrepancy in outbreaks at different historical times. Namely, epi-

demic spread has been significantly accelerated as transportation tools become more

advanced, especially when long-distance and world-wide travels are increasingly more popu-

lar. As a sharp comparison, occurring in the preindustrial age, Black Death plague was boosted

into a large-scale pandemic with a much slower speed compared to COVID-19.

In Fig 2(a.1)–2(d.1), as a comparison to agent-based simulations, the associated continuum

simulations exhibit accelerated and heightened diseases peaks. These epidemic aggravation

impacts also emerge as D increases, as displayed in Fig 2(a.5)–2(a.7), 2(b.5)–2(b.7), 2(c.5)–2

(c.7) and 2(d.5)–2(d.7). The spreading of epidemic, i.e. the rate of susceptible agents transition-

ing to other states (E, P, A, I(−), I(+), H, or R), grows faster along with an increase of D. It is

worth noting that the ‘cavity’, i.e., lower density regions of susceptible agents at a certain time

point, stands for the spatial area affected by the epidemic at that time. Indeed, at day 20 (see

Fig 2(a.5)–2(d.5)), larger cavity gradually appears as D increases. The phase diagram is dis-

played till day 60, which covers the time duration of the first disease wave. Additionally, for

completeness of simulation output, two-dimensional portraits of spatial distributions of

active-virus carriers are displayed in the remaining panels in Fig 2.

Remark 7 We note that at day 60, a significantly lower spatial density of P‘sðtÞ þ A‘
sðtÞ þ

Ið� Þ;‘s ðtÞ þ IðþÞ;‘s ðtÞ emerges as D increases to 2 (Fig 2(c.4) and 2(d.4)); the reason that is that the
first wave has already passed by day 60 in this case (see also (c.1) and (d.1)). This is a situation
where the disease peak occurs considerably earlier than day 60.

Fig 3. The continuum ODE is better approximated by the corresponding agent-based unbiased random walk model when the

mobility speed D further increases. Parameters and initial data are the same as those used in Fig 2(a.1), 2(b.1), 2(c.1) and 2(d.1),

except for that D is changed to 10 (left) or 100 (right). Note that ℓ is still fixed as 1/100. The solid black line represents the average of

eighty randomly generated paths of the agent-based model, and the red dashed line represents the outcome of the continuum ODEs.

https://doi.org/10.1371/journal.pcbi.1012345.g003
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3.2 Simulations of biased foraging model: Effects of popularity-induced

aggregation

Recall that in the preliminary symmetric random walk model (Fig 2), it is always the case that

the biggest outbreaks appear along with the highest random walk speed. Moreover, our expec-

tation is that biasness of movement will lead to clustering, which prevents long-distance move-

ments and increases spatial heterogeneity and locality, and thus suppresses disease peaks.

Therefore, with the aim of investigating this suppression effect, we choose to perform simula-

tions to study effects of directed foraging behavior under D ¼ 2. It turns out that biased ran-

dom walk foraging-behavior simulations demonstrate stronger effects in deescalating the first

outbreaks (Fig 4), compared with corresponding agent-based symmetric random walk simula-

tions in Fig 2.

3.2.1 Parameter values and initial data. We use the same parameters as in Table 2, with

ℓ = 1/100, D ¼ 2, together with additional parameters concerning the popularity variable spec-

ified in Table 3 below.

The initial data for each compartment are set as the same as those for simulations of the

preliminary symmetric random walk model (Section 3.1.2). Additionally, to incorporate P, we

assume that initially P is set to be Pmin ¼ 1=30 on every site.

3.2.2 Daily cases and 2D portraits of agent spatial distributions. For agent-based sym-

metric random walk models, spatial heterogeneity emerges in the spatial spread of the

Fig 4. Simulations of biased random walk model. Panels (a.1)-(d.1) compare �E‘ðtÞ þ �P‘ðtÞ þ �A‘ðtÞ þ �I ð� Þ;‘ðtÞ þ �I ðþÞ;‘ðtÞ. Increasing the spread rate ΛP of popularity

variable from 2 to 4 to 8 to 16 suppresses the spatial heterogeneity, so that aggregation clusters of the susceptible decrease in number and size. As a consequence, the

spread of the epidemic accelerates.

https://doi.org/10.1371/journal.pcbi.1012345.g004
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epidemic (see e.g. the spatial portraits in Fig 2); however, due to the fact that individuals move

according to a symmetric random walk, the spatial distribution of agents (if we ignore the dif-

ferences of their epidemiological states) remains homogeneous in expectation. In contrast,

thanks to biased movement patterns, spatial heterogeneity is made stronger in the simulations

here (Fig 4). Moreover, decelerating spread of the popularity information also appears to have

a similar effect. Namely, spatial heterogeneity indeed becomes more evident when the spread

of information decelerates (Fig 4), as spatial clusters of the susceptible agents are visually

increased in number and decreased in size; at the same time, the spread of epidemic is also

impeded as the infectious agents can only affect fewer of these smaller settlements.

It is also worth noting that in the biased random walk foraging model, the first wave is not

only slower in speed but also smaller in its final size under a decelerated spread of P. As

observed in Fig 4, whenever there is a stronger spatial heterogeneity and less macroscopic

gatherings, locally clustered subpopulation can reach the state of herd immunity within them-

selves earlier and thus prevent the epidemic from further transmissions.

Decelerated spread of the popularity variable is associated with lower level of connectivity

of population aggregations located far away. Moreover, it is well documented that epidemic

spread is generally faster in urban area than rural area, e.g. in the USA (see e.g. [88, 89]). A pos-

sible explanation is that a municipal surrounding usually leads to fewer population clusters but

larger in size; in contrast, slower information spread about location popularity generally gives

rise to small-scale aggregations where few migrate between two settlements.

In Fig 4(a.1)–4(d.1), agent-based simulations exhibit suppressed disease peaks than simula-

tions of the average of paths of agent-based simulations of unbiased random walk model as

described in Section 2.3. Additionally, epidemic spread (till day 60) grows faster along with an

increase of LP , as displayed in Fig 4(a.5)–4(d.5), 4(a.6)–4(d.6) and 4(a.7)–4(d.7). Specifically,

at each fixed time (day 20, 40, and 60), larger cavity (i.e., lower density regions of susceptible

agents) appears as LP increases, which indicates that the first wave of the epidemic has affected

a larger fraction of the total population. This is expected since Fig 4(a.1)–4(d.1) already exhibit

reduced outbreak-restraining effects as LP increases. In the panels Fig 4(a.2)–4(a.7), 4(b.2)–4

(b.7), 4(c.2)–4(c.7) and 4(d.2)–4(d.7), as the spread of information accelerates, fragmented

population clusters grow to be more connected and larger in size. This may well represent the

real-world phenomenon that a population with fast-spreading information (possibly associ-

ated with urbanization) is more likely to form larger aggregations, which consequently may

escalate the spread of disease. Indeed, in real life, generally, rural area is paired with lower

speed of spread of the popularity variable, compared with urban area. This is possibly due to

lack of efficient information dissemination. Indeed it is also well observed that large-scale pop-

ulation mobility is relatively lower in rural area, which usually witnesses a smaller outbreak

and slower spread of the epidemic than urban area.

Table 3. Event types, parameter values and corresponding physical meanings for the biased random walk model.

Event types Parameters values Physical meanings

Increase of P IP ¼ 1 parameter determining rate of Type (X) clock

�dþP ¼ 0:3 size of increment

Spread of P LP ¼ 2; 4; 8; 16 parameter determining rate of Type (XI) clock

α = 0.125 magnitude of spread

Decrease of P DP ¼ 1 parameter determining rate of Type (XII) clock

�d �P ¼ 0:36 size of decay

Pmin ¼ 1=30 minimum value of P

https://doi.org/10.1371/journal.pcbi.1012345.t003
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Remark 8 Here we note that Eq (3) is no longer the corresponding equation parallel to the
agent-based biased random walk foraging-behavior model described in this section. Instead, we
use the agent-based simulations of the unbiased random walk model as the reference.

3.3 Simulations to investigate impacts of the awareness factor

According to the biased random walk foraging-behavior model (Fig 4), weaker outbreak-flat-

tening effects are exhibited in the presence of faster spread of the popularity variable. So it is

natural to investigate impacts of the awareness variable under D ¼ 2;LP ¼ 16, where the pop-

ularity variable spreads rapidly.

3.3.1 Parameter values and Initial data. The same parameter values in Tables 2 and 3

used to create Fig 4(d.1) are going to be adopted. Here ℓ = 1/100, D ¼ 2 and LP ¼ 16 are

fixed. There are additional parameter values concerning the awareness variable which are spec-

ified in Table 4 below.

The initial data for agent compartments are the same as those for simulations of the biased

random walk foraging-behavior model (Section 3.2.1). Moreover, to incorporate A, we assume

that initially it is uniformly zero over every site, which stands for the scenario that the public

has little knowledge of the epidemic at its very beginning.

3.3.2 Daily cases, 2D portraits of agent distributions, and statistical histograms of peak

height. Scenario I. In this scenario, we find that A incorporated in biasness alone does not

necessarily constrain outbreaks compared with (average of multiple outcomes of) the corre-

sponding biased random walk foraging model described as in Section 2.4. In fact, even larger

outbreaks arise when individuals in our model become increasingly vigilant to signs of an

ongoing outbreak, i.e., when y
þ

a increases (Fig 5). In other words, disease responses may aggra-

vate disease outbreak if each individual responds independently upon their awareness.

But such finding actually coincides with our real-life observations. It is well documented

that a trend of people traveling away from high-risk areas leads to aggravating disease out-

breaks. Before moving away, there is a high chance that the agent has already been infected in

the high prevalence area and will further spread the disease to places where the epidemic prev-

alence level is still relatively low. As a result, disease transmissions are boosted and outbreaks

are escalated.

It is clearly visualized that the first disease peak can even be heightened in Scenario I, com-

pared with the biased random walk foraging model described as in Section 2.4 (Fig 5(a.2)–5

(d.2)). The same transition appears when y
þ

a increases, that is, from (a.2)-(d.2), there is a signif-

icant shift of the histogram, which also indicates an escalated peak of the first wave.

Scenario II-i. For Scenario II-i, the initial data and parameters will be set the same as those

for simulations of Scenario I (Sections 2.5.2). Compared to Scenario I (Section 2.5.2), A in

Table 4. Event types, parameter values and corresponding physical meanings for the preliminary agent-based

symmetric random walk model.

Event types Parameters values Physical meanings

Decrease of A DA ¼ 1 parameter determining rate of Type (XIII) clocks

θ− = 0.2 percentage of decay

Spread of A LA ¼ 20 parameter determining rate of Type (XIV) clock

η3 = 0.125 magnitude of spread

Increase of A y
þ

r ¼ 0:2 increment size due to hospitalization events

y
þ

a ¼ 1, 3, 10, 20 increment size due to symptomatic cases

IA ¼ 1 parameter determining rate of Type (XV) clock

https://doi.org/10.1371/journal.pcbi.1012345.t004
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Scenario II-i displays a distinctive type of impacts, namely, the first outbreaks are delayed and

reduced as the growing rate of A increases.

Fig 6(a.2)–6(d.2) provide an evidence that as y
þ

a increases, the disease peaks are flattened in

Scenario II-i, as an evident shift of the histogram arises (see (a.2)-(d.2)), which also indicates a

suppressed peak of the first wave. In other words, outbreaks are controlled as agent mobility is

restrained. It is worth noting that an opposite type of transition patterns is displayed in Fig 5

(a.2)–(d.2), where disease outbreaks are escalated rather than being controlled as y
þ

a increases.

This indicates that mere aversion to disease transmission does not necessarily lead to suppres-

sion of outbreaks.

Scenario II-ii. In numerical simulations, Scenario II-ii displays the same but evidently

stronger impact than that observed in Scenario II-i, namely, the first outbreaks are delayed

and reduced as y
þ

a increases. Here the initial data and parameters are set as the same as those

for simulations of Scenario I (Section 2.5.2).

In Fig 7(a.1)–7(d.1), agent-based simulations exhibit delayed and suppressed disease peaks

as y
þ

a increases. Indeed, in 2D spatial portraits of susceptible agents in Fig 7, spread of the epi-

demic decelerates as y
þ

a increases (till day 60). Particularly, by comparing Fig 7(a.6)–7(d.6) at

day 20, it is seen that area of cavity, i.e., lower density regions of susceptible agents, decreases

as y
þ

a increases. The same type of transitions is displayed in panel sets Fig 7(a.7)–7(d.7) (day

40) and Fig 7(a.8)–7(d.8) (day 60).

Fig 5. Simulations of Scenario I: Integrating awareness into biasness of random walks. Panels (a.1)-(d.1) compare �E‘ðtÞ þ �P ‘ðtÞ þ �A‘ðtÞ þ �I ð� Þ;‘ðtÞ þ �I ðþÞ;‘ðtÞ, where

the reference is the biased random walk model without awareness in Section 2.4. Incorporated awareness in biasness alone does not necessarily constrain outbreaks.

When the increment of public awareness y
þ

a increases from 1 to 3 to 10 to 20, there is a high chance that the susceptible agents have already transitioned into the exposed

or asymptomatic infectious ones. As a result, disease transmissions are boosted and outbreaks are escalated.

https://doi.org/10.1371/journal.pcbi.1012345.g005
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What’s more, it is clear that effects on disease control are stronger in Fig 7 than those in

Fig 6. This implies that coordinated traffic restrictions are more helpful than localized mobility

constraint prompted by disease awareness of agents on each site. As a result, we expect that a

community will effectively control the outbreak only when people work together, albeit pan-

demics are very likely to exploit divisions among individuals. Indeed, rather than allowing

each individual to respond independently upon their awareness, disease control is achieved

only if the whole community takes response in a collaborative way, such as following traveling

restrictions, staying-at-home orders, etc.

4 Conclusions and discussions

4.1 Conclusions

In this paper, we study the roles played by spatial and informational heterogeneities at multiple

levels in a disease outbreak. Simultaneously, the interplay between such heterogeneities and

various types of Public Health and Social Measures (PHSMs) has also been investigated. To

highlight the major observations obtained in this study, we first note that whenever spatial het-

erogeneity is introduced into the system, in comparison to continuum and spatially homoge-

neous simulations, the corresponding agent-based simulations constantly produce suppressed

and delayed disease peaks. This trend remains robust and consistent for spatial heterogeneity

Fig 6. Simulations of Scenario II-i: Locally-supervised disease awareness. Panels (a.1)-(d.1) compare �E‘ðtÞ þ �P ‘ðtÞ þ �A‘ðtÞ þ �I ð� Þ;‘ðtÞ þ �I ðþÞ;‘ðtÞ, where the reference is

the biased random walk model without awareness in Section 2.4. Disease control is achieved if the whole community takes response in a collaborative way. When the

increment of public awareness y
þ

a increases from 1 to 3 to 10 to 20, the agent mobility is restrained. As a result, the disease peaks are flattened and an evident suppressed

peak of the first wave is observed.

https://doi.org/10.1371/journal.pcbi.1012345.g006
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introduced by randomness (see Fig 2), or by incorporation of environment variables like P
(Fig 4).

What’s more, disease outbreak escalations are also observed in the biased random walk for-

aging-behavior model (Section 2.4) whenever LP , the speed of spread of information about

location popularity P, increases (Fig 4). Moreover, we note that there is a subtle difference

between impacts of D and LP to the first disease wave. Namely, increased LP not only leads to

an earlier peaking time but also a larger final size of the first disease wave. Indeed, with

increased macroscopic clustering, there is less suppression to the spreading of epidemic

between two clusters, and thus the state of herd immunity can only be reached macroscopically

when the epidemic has reached all the subpopulations. At the same time, smaller clustering,

which arises with a decreased LP , leads to a herd immunity early enough such that active-virus

carriers have not yet escaped to somewhere else. This also coincides with the real-world sce-

nario that a decreased D represents travel restrictions, while a decreased LP resembles a rela-

tively more strict policy such as stay-at-home orders.

As for the awareness factor A, we demonstrate that public knowledge and aversion of the

disease can have notably distinct impacts, depending on the strategy the community adopts in

response to the outbreak (Section 2.5). The first type of strategies we assess lead to individual-

ized actions to avoid places with visibly high prevalence. This is discussed in Scenario I (Sec-

tion 2.5.2), where A is configured to only affect the direction of agent movement. What we

observe is that this strategy do not automatically bring about disease control effects, when

Fig 7. Simulations of Scenario II-ii: Spatially-uniform awareness. Panels (a.1)-(d.1) compare �E‘ðtÞ þ �P ‘ðtÞ þ �A‘ðtÞ þ �I ð� Þ;‘ðtÞ þ �I ðþÞ;‘ðtÞ, where the reference is the

biased random walk model without awareness in Section 2.4. When the increment of public awareness y
þ

a increases from 1 to 3 to 10 to 20, a coordinated disease control

campaign is implemented in the whole region. As a result, the first epidemic peak is are strongly delayed and reduced.

https://doi.org/10.1371/journal.pcbi.1012345.g007
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compared to the biased random walk foraging model that do not incorporate the A factor as

described in Section 2.4. In fact, negative impacts can even be made to epidemics spread, like

escalated disease peaks, if population mobility is not effectively controlled (Fig 5).

Nevertheless, there is a strong indication that disease response measures that can make the

whole population or a part of it to be less mobile is helpful in fighting disease transmissions.

This type of disease control effects is observed in Scenario II, including Scenario II-i (Section

2.5.3), which assumes reduced population mobility based on awareness of local disease trans-

missions (Fig 6), as well as in Scenario II-ii, where a centralized disease control measure is

additionally implemented (Fig 7). Furthermore, our simulations strongly indicate that in com-

parison to Scenario II-i, Scenario II-ii is significantly more effective in suppressing the first

wave of the outbreak. This suggests that a coordinated disease censoring and control system

can be vital in the response of a newly emerging pandemic. To summarize, the mere presence

of individual awareness and desire to avoid the disease will not automatically ensure the sup-

pression of the outbreak at the community level. Fortunately, an effective control can be

achieved when we unite and respond to the outbreak wisely.

When comparing our finding to existing literatures, we can see that very different modeling

methodologies may result in highly correlated epidemiological insights, which further sup-

ports the robustness of these findings. Firstly, in [30], leveraging the recognition in ecological

studies that the spatial distribution of natural populations consists of subpopulations instead

of being homogeneous, models of dynamics of infectious diseases with the existence of sub-

populations of hosts as a consequence of spatial partitioning are studied; results indicate that

when the degree of spatial partition decreases, and when time of visitation between localities

increases (through which the contact between subpopulations is achieved), the transmission of

disease becomes more prone to occur, which is in alignment with our results that addition of

spatial heterogeneity introduced by randomness results in de-escalated severeness of the first

episode of the disease outbreak in agent-based symmetric random walk model compared with

the corresponding continuum simulations (Fig 2 in Section 3.1.3).

Secondly, using real-life data, copious studies have confirmed that outbreaks of infectious

disease generally display clear spatial patterns with complex geographies, such as a high level

of regional disparities and fragmentations (see e.g. [22], [23], [26], [21] and [20]). This coin-

cides with our main proposals in this article, that it may be beneficial to understand disease

outbreaks as socio-spatial processes with heterogeneity, and it is highly important to carry out

systematic investigations of formation of epidemic spatio-temporal patterns. Particularly, in

[28], a stochastic SIR model assuming homogeneous mixing turns out to fail to capture certain

specific feature of disease wave duration, compared with the results of an individual-based SIR

model set over a discrete lattice with foraging-like host movements for heterogeneously dis-

tributed resource. We note that as the focus of study of [28] is on animal hosts, agent move-

ment behavior is assumed to be driven by resources like food, water, etc. In contrast, humans

are more likely to make use of information (for example the popularity level of locations) to

direct their social behavior as well as make responses to the prevalence level of the disease

progression.

Moreover, [25] builds a computational georeferenced metapopulation approach consisting

of various data layers for capturing the transportation infrastructures and mobility patterns. It

is observed that whenever the radiation pattern of epidemic to the neighboring areas is remi-

niscent of the process of diffusion, a stronger correlation arises in the evolution of the pan-

demic at the local level. The synchronization of the local epidemic profiles is enhanced by

addition of the dynamics of local commuting (Fig 3 in [25]). Additionally in [31], they discover

that, for a given prevalence at the system level, the higher degree of mixing between individuals

and subpopulations (which in the context of [31] arises due to Markovian approaches in a
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memoryless model) leads to much faster occurrences of the epidemic progression, reaching a

much larger fraction of subpopulations. These aforementioned findings are in agreement with

our result that increasing D, the rate of movement, in the agent-based model leads to a system

whose dynamics is closer to the ODE, producing heightened disease peaks.

Furthermore, in [23], an analysis of German COVID-19 outbreak (2020) is conducted,

where they find that the most important reason for the rapid spread of COVID-19 in February

2020 in Heinsberg district is arguably the carnival celebration coinciding with the disease

onset there. Compared with at least 390 cases related to this outbreak, another super-spreading

event occurring in a birthday party in a nightclub in Berlin leads to a much less prominent out-

break, with only 53 related infections. The reason of this gap is discussed: the carnival festivi-

ties in Heinsberg attracted a relatively larger audience from much farther away regions.

Indeed, this discovery of [23] lends support to our result that increased LP , i.e., increased

spread speed of popularity, leads to an increased final size of the first disease wave. What’s

more, they argue that returnee infections cases of individuals returning from touristic or busi-

ness trips are shown to be an example of significant relocation diffusion. According to the spe-

cific data sample in [23], the impact of tourist mobility is demonstrated to be extremely

widespread spatially. This result is in agreement with our findings about disease response strat-

egy of Scenario I which does not necessarily lead to disease control, where individuals leaving

high prevalence sites may prompt the spread of epidemic to communities not yet hit by the

outbreak. Another article that supports our discovery about effects of disease awareness and

responses is [90]. Indeed, it is pointed out in [90] that in many parts of the world, spatially het-

erogeneous COVID-19 curves with an absence of attention to potential of epidemic spatial

spillovers may be the result of a fragmented public health response; the patchwork of health

interventions whose focus has been on interruptions of transmission within but not across

regional boundaries has resulted in case resurgences in areas that successfully flattened the epi-

demic curve beforehand. Therefore, the conclusion of [90] is in line with our finding about

helpfulness of a coordinated disease response. We recall that Scenario II-ii, the response strat-

egy with coordinated and centralized disease censoring system, is considerably more effective

in controlling disease transmission compared to Scenario II-i, where agent mobility is assumed

to decrease based on local awareness of epidemic severeness level.

4.2 Mathematical understanding of the spatial correlation

It is worth noting that the correlation of interaction discussed in this study is also intrinsically

connected to the finite range effect, the celebrated mathematical theories of contact process as

an Interacting Particle Systems (IPS) ([91] [92] [93]). The contact process can be seen as an

agent based SIS model on Zd (or other infinite graphs) where each site resides a non-moving

agent. An infected agent with rate λ passes the pathogen to someone randomly chosen from a

certain neighborhood of them, and with rate 1 recovers and gets back to State S. A key charac-

teristic of such a system is that, there is a critical value λc> 1 such that the epidemic can have a

positive probability to survive if and only if λ> λc [94]. In other words, when λ 2 (1, λc],
although we seem to have R0 > 1 and the corresponding mean-field ODE survives, the locality,

which is now in the sense of interaction range rather than moving speed, may also impede dis-

ease transmission and force the stochastic system to remain sub-critical. Meanwhile, as the

range of interaction goes to infinity or, when there is a mechanism of fast stirring (neighboring

sites exchanging their values, like moving), the contact process will also enjoy increasing

homogeneity and converges in distribution to its mean-field model or have λc! 1 [94, 95]. In

our study, on the other hand, we have been focusing more on the case when the transmission
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rate is given to be super-critical and explore how the interactions of agent activity and infor-

mation dynamics affect the size and severity of the pandemic.

4.3 Future works

As for future works, firstly, we would like to find suitable ways for modeling of more than one

single variant of concern (VOC). There are many real-life scenario that are related with

dynamics of multiple VOCs. For example, suppose that when an epidemic is already peaked

and enters the stable state, becoming a so-called “endemic”, a new VOC emerges. Then an

interesting question to ask is how long does it take for the new VOC to make the second wave

to take place.

Secondly, we are interested in introducing medical resource limitations into the system,

which is not yet considered in our model in this paper. For example, with hospital capacity

strain, with COVID, death toll has turned out to be catastrophic. For now, A is assumed to

change according to two things: visible infectious case numbers and hospitalization events. It

will be of interest to also include medical system occupation ratio as a driven factor of the

awareness level and thus the implementation of stronger PHSMs. In this case it is possible to

observe positive effects of public awareness to hospital-overload prevention.

Moreover, besides Non-pharmaceutical Interventions (NPIs) that are considered here,

pharmacological interventions can also be incorporated into the system, such as vaccinations,

medications, etc. With limited medication supplies, how to optimize their distributions among

the whole population can be studied after this. Apparently one factor is type of effects of the

medication. For example, currently COVID medications mainly target those who develop

severe symptoms, which may lead to alleviation of pressure for hospital beds.

Finally, we remark that the evolution of popularity and awareness as information field

should be continuous in essence, even though the models proposed in this study is mostly dis-

crete in space and our findings make us believe that the discrete nature of agents is crucial in

capturing the finiteness of correlation and heterogeneity in disease transmission. Thus it

should be more suitable to consider these environment variables to be updated in a continuum

manner through kinetic modeling. Moreover, we note that there are quite a few works taking

into account of spatial heterogeneity in the context of kinetic modeling, on the mesoscopic

scale. Particularly, a kinetic model of crowd dynamics, which is a relatively more classical topic

(see e.g. [45, 47, 48, 53]), is adopted as a base. Then an epidemic contagion process is coupled

with the crowd dynamics model. These models can be built on network [96], or the continuum

space of space dimension one or two [46]. It is worth mentioning that a multi-scale model

encompassing miscro-scopic, mesoscopic, and macro-scopic scales in an aligned way is first

introduced in [44]. In this way, evolutions of the virus itself and cells as well as individuals and

further up to the collective behavior of populations are all taken into consideration. Along this

line there are a number of works emerging recently, e.g. [49, 51, 52, 97]. Inspired by the works

in [98], in subsequent studies we are going to modify the model in this paper into a multi-scale

framework. While keeping the discrete nature of agents as well as their epidemiological

dynamics, one may allow the popularity and awareness level to be continuous in time and

space, and let them evolve as a Piecewise-Deterministic Markov Process, i.e., the fields of infor-

mation follow their PDEs until they are interrupted by random transitions at the epidemiology

level. Then the PDEs restart with updated parameters and (or) initials conditions.

Supporting information

S1 Text. This file contains supplementary figures for sensitivity analysis and further dis-

cussions. Fig A: Simulations of symmetric random walk model with various values of Ds’ and

PLOS COMPUTATIONAL BIOLOGY Modeling on the impact of spatially heterogeneous behavioral factors on diseases spread

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012345 August 8, 2024 26 / 32

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012345.s001
https://doi.org/10.1371/journal.pcbi.1012345


δR = 0. Fig B: Simulations of biased random walk model with more different combinations of

D and ΛP. Fig C: configurations of mobile population in the simulations of biased random

walk model. Fig D: Simulations of biased random walk model under different values of the

scaling factor. Fig E: configurations of active virus carriers in simulations of biased random

walk model under different values of the scaling factor. Fig F: Simulations of the scenario

when awareness level reduces the rate of infectious contacts.

(PDF)

S1 Data. Records of simulation results which can be used to replicate study findings

reported in this paper.

(ZIP)

S2 Data. MATLAB sources code package and records of simulation results which can be

used to replicate study findings reported in this paper.

(ZIP)

Author Contributions

Conceptualization: Yuan Zhang.

Formal analysis: Yunfeng Xiong, Chuntian Wang, Yuan Zhang.

Investigation: Yunfeng Xiong, Chuntian Wang.

Methodology: Yunfeng Xiong, Chuntian Wang, Yuan Zhang.

Software: Yunfeng Xiong, Yuan Zhang.

Supervision: Yuan Zhang.

Visualization: Yunfeng Xiong.

Writing – original draft: Chuntian Wang.

Writing – review & editing: Yunfeng Xiong, Chuntian Wang, Yuan Zhang.

References
1. Organization WH, et al. COVID-19 Emergency Committee highlights need for response efforts over

long term. Geneva: WHO. 2020; 1:2020.

2. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international

spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020;

395(10225):689–697. https://doi.org/10.1016/S0140-6736(20)30260-9

3. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions

on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020; 368(6489):395–400.

https://doi.org/10.1126/science.aba9757 PMID: 32144116

4. Tian H, Liu Y, Li Y, Wu CH, Chen B, Kraemer MU, et al. An investigation of transmission control mea-

sures during the first 50 days of the COVID-19 epidemic in China. Science. 2020; 368(6491):638–642.

https://doi.org/10.1126/science.abb6105 PMID: 32234804

5. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the

rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020; 368(6490):489–493. https://

doi.org/10.1126/science.abb3221 PMID: 32179701

6. Hao X, Cheng S, Wu D, Wu T, Lin X, Wang C. Reconstruction of the full transmission dynamics of

COVID-19 in Wuhan. Nature. 2020; 584(7821):420–424. https://doi.org/10.1038/s41586-020-2554-8

PMID: 32674112

7. Tkachenko AV, Maslov S, Elbanna A, Wong GN, Weiner ZJ, Goldenfeld N. Time-dependent heteroge-

neity leads to transient suppression of the COVID-19 epidemic, not herd immunity. Proceedings of the

National Academy of Sciences. 2021; 118(17):e2015972118. https://doi.org/10.1073/pnas.

2015972118

PLOS COMPUTATIONAL BIOLOGY Modeling on the impact of spatially heterogeneous behavioral factors on diseases spread

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012345 August 8, 2024 27 / 32

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012345.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012345.s003
https://doi.org/10.1016/S0140-6736(20)30260-9
https://doi.org/10.1126/science.aba9757
http://www.ncbi.nlm.nih.gov/pubmed/32144116
https://doi.org/10.1126/science.abb6105
http://www.ncbi.nlm.nih.gov/pubmed/32234804
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1126/science.abb3221
http://www.ncbi.nlm.nih.gov/pubmed/32179701
https://doi.org/10.1038/s41586-020-2554-8
http://www.ncbi.nlm.nih.gov/pubmed/32674112
https://doi.org/10.1073/pnas.2015972118
https://doi.org/10.1073/pnas.2015972118
https://doi.org/10.1371/journal.pcbi.1012345


8. Cai J, Deng X, Yang J, Sun K, Liu H, Chen Z, et al. Modeling transmission of SARS-CoV-2 omicron

in China. Nature Medicine. 2022; p. 1–8. https://doi.org/10.1038/s41591-022-01855-7 PMID:

35537471

9. Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, et al. Association of public health interventions with the

epidemiology of the COVID-19 outbreak in Wuhan, China. Jama. 2020; 323(19):1915–1923. https://doi.

org/10.1001/jama.2020.6130 PMID: 32275295

10. Musa SS, Qureshi S, Zhao S, Yusuf A, Mustapha UT, He D. Mathematical modeling of COVID-19 epi-

demic with effect of awareness programs. Infectious disease modelling. 2021; 6:448–460. https://doi.

org/10.1016/j.idm.2021.01.012 PMID: 33619461
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