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Abstract
Plakophilin 4 (PKP4) is a component of cell–cell junctions that regulates intercellular adhesion and Rho-signaling during 
cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail 
to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-
depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-
ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho 
activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signal-
ing at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the 
Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and 
stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal 
organization.
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p120  P120-catenin
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Cdc42  Cell division cycle 42
Ect2  Epithelial cell transforming 2
FMRP  Fragile X mental retardation protein
ROCK  Ho associated kinase
MLC  Myosin regulatory light chains
LIMK  LIM kinase
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MMRRC   Mutant Mouse Resource and Research Center
PBS  Phosphate buffered saline
WT  Wildtype

KO  Knockout
FCS  Fetal calf serum
LCM  Low calcium medium
HCM  High calcium medium
EGTA   Ethylene glycol-bis-(2-aminoethylether)-

N,N,N′,N′-tetraacetic acid
SDS  Sodium dodecyl sulfate
IP  Immunoprecipitation
TBST  Tris-buffered saline with Tween20
BSA  Bovine serum albumin
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DABCO  1,4- Diazabicyclo[2.2.2]octane
FDR  False discovery rate
GSEA  Gene set enrichment analysis
ANOVA  One-way analysis of variance
FAK  Focal adhesion kinase
MLCK  Myosin light chain kinase
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ZA  Zonula adherens
GDI  Guanine nucleotide dissociation inhibitors
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Introduction

Epithelial integrity depends on cell–cell junctions that 
can resist mechanical stresses applied to tissues. Adhe-
rens junctions (AJs) bear mechanical tension and pre-
serve tissue integrity [1, 2]. This tension arises in part 
from intrinsic forces, where the contractile actomyosin 
cytoskeleton is coupled to cadherin adhesion, and such 
intrinsic junctional tension occurs also in cell monolayers 
[3, 4]. Tension also mediates localized processes, such 
as cell extrusion [5, 6]. This requires that tension is not 
only generated and sensed at AJs but also transduced into 
chemical signals that alter e.g. cytoskeletal organization 
and junction stability [7, 8].

AJs are calcium-sensitive structures, which maintain 
the physical association between cells by transmembrane 
clusters of cadherins. The cadherin cytosolic tail domains 
bind to adaptor molecules including p120-catenin (p120), 
plakophilin 4 (PKP4, previously named p0071), β-catenin, 
and α-catenin, which determine cadherin stability and 
facilitate binding to the actin cytoskeleton. These cell–cell 
junction components provide not only structural integrity 
to the cell but also function as signaling molecules [9].

PKP4 and p120 are closely related and share roles in 
regulating actin-dependent cellular processes via Rho-
GTPases. Generally, Rho-GTPases bind to effector mol-
ecules only in their active GTP-bound state. Their activ-
ity is controlled by guanine nucleotide exchange factors 
(GEFs), which activate Rho-GTPases by catalyzing GDP/
GTP exchange and by GTPase-activating proteins (GAPs), 
which stimulate the intrinsic GTPase activity thereby 
inhibiting Rho-GTPases [10–12]. The spatio-temporal 
control of Rho-GTPase activity by GEFs and GAPs is 
required to maintain the organization and function of 
AJs. p120 inhibited RhoA and promoted Rac family small 
GTPase 1 (Rac1) and cell division cycle 42 (Cdc42) acti-
vation resulting in reduced cell contractility and stress fib-
ers [13–15]. Its inhibitory effect on RhoA was mediated 
by an association with p190RhoGAP at the AJs [16, 17].

We have previously shown that PKP4 controls Rho-
signaling during mitosis [18–20]. During cytokinesis, 
PKP4 stimulated RhoA activity without affecting global 
Rac1 or Cdc42 activities. As a result, the RhoA-depend-
ent contractile ring formation required for abscission was 
disturbed in PKP4 knockdown cells resulting in failed 
cytokinesis and multinucleation. PKP4 associated not only 
with RhoA but also with the GEF epithelial cell trans-
forming 2 (Ect2) and both, PKP4 and Ect2 were required 
for full activation of RhoA in vitro [20]. Moreover, PKP4 
was identified as an important downstream mediator of 
fragile X mental retardation protein (FMRP)-dependent 
actin remodeling in mouse embryonic fibroblasts and in 

neuronal cells [21]. A role of PKP4 in regulating Rho-
signaling at cell contacts has so far not been demonstrated 
although Ect2 was shown to localize to AJs where Ect2 
activated Rho and supported junctional integrity through 
myosin IIA. A Centralspindlin-Ect2 complex also inhib-
ited the junctional localization of p190B-RhoGAP (ARH-
GAP5), which can inactivate RhoA [22].

RhoA activates several downstream effectors, including 
Rho associated kinases 1 and 2 (ROCK1 and ROCK2) that 
phosphorylate the myosin regulatory light chains (MLC), 
leading to activation of myosin and generation of actomyo-
sin contractile forces. ROCK also activates LIM-kinase 
(LIMK) which inhibits Cofilin’s actin depolymerization 
function thus stabilizing filamentous actin (F-actin). A frac-
tion of ROCK1 was shown to co-localize with AJs and was 
recruited to newly forming junctions in a p120-dependent 
manner. ROCK1 depletion resulted in the mislocalization of 
the cadherin complex and of cortical actin [23]. Mechanis-
tically, ROCK1 was necessary to stabilize GTP-RhoA and 
sustain junctional tension [24].

These data support the concept that junction formation 
and stability and the generation of intrinsic forces depend 
on the precise spatio-temporal regulation of RhoA activity 
and specific effectors. Here, we have addressed the role of 
PKP4 in skin keratinocytes. We show that PKP4 promotes 
the formation of the cortical actin ring and suppresses stress 
fiber formation. A general Rho activator mimicked the effect 
of a PKP4 knockout to a large extent. PKP4 associated with 
RhoA effectors as well as RhoA regulators to locally control 
RhoA activity and thus contractility at the cell cortex. Our 
data suggest that PKP4 might function as a scaffold to bring 
Rho-GTPases, specific regulators, and specific effectors 
together to control actin organization and junction stability 
in response to mechanical and chemical signals.

Materials and methods

Isolation of Pkp4+/+ and Pkp4−/− keratinocytes

The mouse strain used for this research project, C57BL/6N-
Pkp4tm1b(EUCOMM)Wtsi/JMmucd, RRID: MMRRC_049090-
UCD, was obtained from the Mutant Mouse Resource and 
Research Center (MMRRC) at University of California at 
Davis, an NIH-funded strain repository, and was donated to 
the MMRRC by The KOMP Repository, University of Cali-
fornia, Davis; Originating from Stephen Murray, The Jack-
son Laboratory. C57BL/6N-Pkp4tm1b(EUCOMM)Wtsi/JMmucd 
was generated by Cre-mediated excision of the parental 
 Pkp4tm1a(EUCOMM)Wtsi allele resulted in the removal of the 
promoter-driven neomycin selection cassette and critical 
exon 9, leaving behind the inserted lacZ reporter sequence. 
The reporter sequence was removed by breeding with B6; 
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SJL-Tg(ACTFLPe)9205Dym/J (RRID: IMSR_JAX:003800) 
mice and resulting post-Cre/post-FLPe mice were back-
crossed onto the C57BL/6 J (RRID: IMSR_JAX:000664) 
background for 10 backcross generations. Thereafter 
 Pkp4± siblings were intercrossed to generate  Pkp4+/+ and 
 Pkp4−/− animals.

Primary keratinocytes of  Pkp4+/+ and  Pkp4−/− mice 
were isolated from newborn pups, essentially as described 
in Rietscher et al. [25]. Briefly, the dissected skin was incu-
bated with 5 mg/ml Dispase (Roche diagnostics, Mannheim, 
Germany) in phosphate buffered saline (PBS) overnight at 
4 °C to separate the epidermis from the dermis. Subse-
quently, the epidermal sheet was incubated in trypsin solu-
tion (0.025% trypsin in PBS/ 0.02% EDTA) for 10 min at 
37 °C to liberate the keratinocytes [hereafter PKP4-wildtype 
(WT) and PKP4-knockout (PKP4-KO)].

Cell lines, cell culture, and treatments

HEK293T cells were grown in Dulbecco´s modified Eagle´s 
medium [DMEM, 4.5 g/l high glucose, 1 mM sodium pyru-
vate, 1 mM glutamate, 10% (v/v) fetal calf serum (FCS)] at 
37 °C in 5%  CO2 and 90% humidity. Mouse keratinocytes 
were grown on 15 µg/ml collagen I (Corning, Glendale, Ari-
zona, USA) in low calcium medium [LCM; DMEM/Ham’s 
F12 medium containing 50 μM  CaCl2, 10% (v/v)  Ca2+-free 
FCS, 1 mM sodium pyruvate, 1 mM glutamate, 0.18 mM 
adenine, 0.5 μg/ml hydrocortisone, 5 μg/ml insulin, 10 ng/
ml EGF, 100 pM cholera toxin, 1 mg/ml D-( +)-glucose] at 
32 °C in 5%  CO2 and 90% humidity.

To generate PKP4-KO keratinocytes expressing EGFP-
PKP4-WT (PKP4-KO + PKP4 rescue cells) and WT cells 
expressing EGFP (GFP cells), HEK293T cells were co-
transfected by  CaPO4 precipitation with the packaging plas-
mids pMD2.G (Addgene plasmid #12259; gift from Didier 
Trono), psPAX2 (Addgene plasmid #12260; gift from Didier 
Trono), and lentiviral expression vector pLVX-IRES-puro 
encoding either EGFP or human PKP4 N-terminally taged 
with EGFP. Lentiviral particles were purified 48 h after 
transfection using Lenti-X concentrator (Takara Bio Inc., 
Kusatsu, Shiga, Japan) according to the manufacturer´s 
protocol. Keratinocytes were incubated with the lentiviral 
particles for 24 h and subsequently selected using puromycin 
(1 µg/ml) to obtain stable cell lines. The resulting cell lines 
were analyzed by fluorescence microscopy and western blot-
ting to monitor expression of transgenes.

To induce the differentiation of keratinocytes, LCM was 
supplemented with 1.2 mM  CaCl2 (high calcium medium; 
HCM).

For activation of Rho- or Rac/Cdc42-GTPases, keratino-
cytes were treated with 5 µg/ml Rho activator II (Cytoskel-
eton) or 5 unit/ml Rac/Cdc42 activator II (Cytoskeleton) for 
2 h, respectively. PBS was used as a control treatment.

To analyze the stability of intercellular junctions, 
keratinocytes were treated with 3.3 mM ethylene glycol-
bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) 
for 3 h.

Transfections

Transfection of plasmid DNA was performed using Xfect™ 
(Takara Bio Inc.) according to the manufacturer’s instruc-
tions. Keratinocytes were grown in LCM for 24 h, incubated 
with the plasmid-Xfect mixture for 4 h, and maintained in 
HCM for an additional 24 h.

The siRNA pools (defined pools of 30 selected siRNAs, 
Table S1) were obtained from siTools Biotech GmbH (Mar-
tinsried, Germany) and transfected using Lipofectamine® 
RNAiMax (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s instructions. Keratinocytes 
transfected in suspension with 2 pmol of the respective 
siRNA pools were switched to HCM at 48 h after transfec-
tion and kept in HCM for another 24 h.

Plasmids and cloning

Human cDNAs of mCitrine-YFP-ARHGAP23 and mCitrine-
YFP-ARHGEF2 were a kind gift from Oliver Rocks [12]. 
RhoA-CA(Q63L) and RhoA-CN(T19N) were a gift from 
Gary Bokoch [26] (Addgene plasmids #12968, #12967). 
EGFP-RhoA Biosensor was a gift from Michael Glotzer 
[27] (Addgene plasmid #68026). Human cDNA of PKP4-
WT was subcloned into pLVX-IRES-puro (Takara Bio Inc.) 
containing an EGFP ORF. Vectors for the production of 
lentiviral particles pMD2.G and psPAX2 were a gift from 
Didier Trono (Addgene plasmids #12259, #12260). All con-
structs were validated by sequencing.

Protein extraction

For protein expression analysis, keratinocytes were lysed 
in sodium dodecyl sulfate (SDS) buffer [2.5% (v/v) SDS 
pH 7.5, 1  mM EDTA, 100  mM HEPES; supplemented 
with 1 × Halt™ protease and phosphatase inhibitor cock-
tail (Thermo Fisher Scientific)] and centrifuged for 15 min 
at 13,000 g. The protein concentration was determined 
using the Pierce™ BCA Protein Assay Kit (Thermo 
Fisher Scientific) according to the manufacturer`s proto-
col. Benzonase (Santa Cruz Biotechnology, Dallas, Texas, 
USA) and SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) loading buffer [250 mM Tris/HCl (pH 6.8), 30% 
(v/v) glycerol, 0.25% (w/v) bromophenol blue, 10% (v/v) 
β-mercaptoethanol, 8% (v/v) SDS] were added. Samples 
were heated to 95 °C for 5 min, separated by SDS-PAGE, 
and analyzed by western blotting.
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Immunoprecipitation

All steps of immunoprecipitation (IP) reactions were 
performed on ice. Cells were lysed in IP-buffer [20 mM 
Tris–HCl pH 7.5, 137 mM NaCl, 2 mM EDTA, 10% (v/v) 
glycerol, 1% (v/v) NP-40; supplemented with 1 × Halt™ 
protease and phosphatase inhibitor cocktail]. Lysates were 
cleared by centrifugation for 15 min at 4 °C and 13,000 g. 
One-sixth of the lysate was mixed with SDS-PAGE load-
ing buffer and stored at −20 °C as an input control. The 
residual lysate was incubated with anti-ARHGAP23 (Affin-
ity Biosciences), anti-ARHGEF2 (Cell Signaling Technol-
ogy), or anti-PKP4 (Peptide Specialty Laboratories) anti-
body overnight at 4 °C on an overhead rotator. Normal rabbit 
IgG (Santa Cruz) was used as an isotype control. Protein A 
agarose beads (Thermo Fisher Scientific) were washed in 
IP buffer and added to the lysate for 1 h at 4 °C on an over-
head rotator. Lysates were centrifuged for 3 min at 4 °C and 
4,000 g, washed three times in IP buffer, and bound proteins 
eluted in SDS-PAGE loading buffer.

For GFP-Trap experiments, cells expressing a GFP-tagged 
protein were treated as described above. The obtained cell 
lysates were incubated with GFP-Trap Agarose (ChromoTek, 
Planegg, Germany) for 1 h at 4 °C on an overhead rota-
tor, washed as described above, and eluted in SDS-PAGE 
loading buffer. In either case, input and eluate samples were 
separated by SDS-PAGE and analyzed by western blotting.

SDS‑PAGE and western blotting

Equal amounts of protein were separated by SDS-PAGE. 
Proteins were transferred to Amersham™ Protan™ nitro-
cellulose blotting membranes (pore size 0.2 µm, Th. Geyer, 
Renningen, Germany) using Mini Trans-Blot cells (Bio-
Rad Laboratories, Hercules, California, USA). After trans-
fer, membranes were stained in Ponceau S solution [0.2% 
(w/v) Ponceau S, 3% (w/v) TCA, 3% (w/v) sulfosalicylic 
acid] for 5 min, washed in distilled water, and documented 
using a scanner. Membranes were cut, destained in Tris-
buffered saline with Tween20 (TBST), blocked with 3% 
(w/v) skimmed milk/TBST or 3% (w/v) bovine serum albu-
min (BSA)/TBST, and subsequently probed overnight with 
the appropriate primary antibodies as listed in Table S2. 
Membranes were washed three times with TBST and incu-
bated for 1 h with the appropriate horseradish peroxidase-
conjugated secondary antibodies (Dianova, Hamburg, Ger-
many, see Table S3). Membranes were treated with ECL 
Western Blotting Substrate [equal parts chemiluminescence 
solution 1 (100 mM Tris/HCl [pH 8.5], 25 mM luminol, 
0.4 mM coumaric acid) and 2 (100 mM Tris/HCl [pH 8.5], 
0.02% [v/v]  H2O2)] or Western Blot Ultra-Sensitive HRP 
Substrate (Takara) and chemiluminescence was detected 
using a Fusion-SL 3500WL imaging system (Peqlab, 

Erlangen, Germany). If staining with additional antibodies 
was required, the membranes were washed three times in 
TBST for 10 min each, incubated in stripping buffer [0.2 M 
glycine, 0.05% tween-20 (pH 2.5)] for 1 h, washed again 
in TBST (3 × 10 min), blocked, and treated with antibodies 
as described above. Glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) or Ponceau S staining was used as the 
loading control.

Immunofluorescence analysis and image processing

Cells were grown on 12-mm collagen I-coated glass cov-
erslips and fixed for 10 min in methanol at −20 °C or for 
20 min in 3.7% (w/v) formaldehyde in PBS on ice or room 
temperature, permeabilized in detergent buffer [100 mM 
PIPES (pH 6.9), 4 M glycerol, 2 mM EDTA, 1 mM EGTA, 
0.5% (v/v) Triton X-100] for 15 min at room temperature, 
and blocked in 1% (w/v) BSA/PBS for 30 min at room 
temperature. Primary antibodies were diluted in block-
ing solution and incubated overnight at 4 °C in a humid 
chamber. The next day, coverslips were washed in PBS, 
briefly blocked, and incubated for 1 h at room tempera-
ture with the fluorophore-conjugated secondary antibody. 
DNA was stained with Hoechst 33,342 (Thermo Fisher 
Scientific). Antibodies used for immunofluorescence are 
listed in Table S2 and Table S3. Coverslips were mounted 
in Mowiol [5% (w/v) Mowiol, 30% (v/v) glycerol, 0.25% 
(w/v) 1,4-diazabicyclo[2.2.2]octane (DABCO)]. Images 
were taken using a Nikon Eclipse E600 microscope, a CCD 
camera, and a Plan APO 60xA/1.40 oil objective controlled 
by the NIS-Elements AR software (version 4.12.00). For 
comparisons between WT, PKP4-KO, and Rescue cells, 
samples were treated in parallel and images captured at the 
same exposure times. Fiji software was used for image pro-
cessing [28].

Epithelial sheet assay (dispase assay)

For analysis of intercellular adhesion, WT and PKP4-KO 
keratinocytes were kept in HCM for 24 h or 72 h before 
incubation with 2.4 U/ml dispase II (Roche Diagnostics, 
Indianapolis, IN, USA) in DMEM/Ham’s F12 medium 
supplemented with 1.2 mM  Ca2+ and 25 mM HEPES for 
30 min at 37 °C. After detachment, monolayers were kept 
for additional 30 min in DMEM/Ham’s F12 medium con-
taining 1.2 mM  Ca2+, 25 mM HEPES and 3.3 mM EGTA 
before submitting to mechanical stress on an orbital shaker 
at 750 rpm. For analysis of intercellular cohesion in com-
bination with knockdown, WT and PKP4-KO keratino-
cytes transfected with non-targeting (Ctrl), ARHGEF2-, 
or ARHGAP23-directed siRNA-pools, were switched to 
HCM at 48 h after transfection and kept in HCM for another 
24 h before incubation with 2.4 U/ml dispase II. Floating 



Plakophilin 4 controls the spatio‑temporal activity of RhoA at adherens junctions to promote… Page 5 of 23   291 

monolayers were treated as above. Images were taken using 
a Sony DSC-H300 camera. For image processing, counting 
of fragments, and measuring monolayer size, the ImageJ 
tools “Cell counter” and “Polygon selection” were used.

G‑actin/F‑actin ratio assay

The G-Actin and F-Actin ratio was implemented through the 
G-Actin/F-Actin in vivo assay kit (Cat. #BK037, Cytoskel-
eton Inc.). Briefly, the keratinocytes were washed two times 
in PBS before lysis with warm LAS2 buffer (1 ml of lysis 
and F-actin stabilization buffer, 10 µL of ATP stock solution 
(100 mM), 10 µL of 100 × protease cocktail inhibitor) and 
homogenized using a 25G syringe. The lysates were kept at 
37 °C for 10 min and then centrifuged at 350 × g in a table-
top microfuge at room temperature for 5 min to pellet unbro-
ken cells. The obtained supernatants were transferred into 
ultracentrifuge tubes and centrifuged at 100,000 × g, 37 °C 
for 1 h to pellet F-actin and leave G-actin in the supernatant. 
The obtained supernatants were transferred to fresh tubes 
designated as G-actin samples. F-actin depolymerization 
buffer (supplied in the kit) was added to the remaining pel-
lets and incubated on ice for 1 h to allow for actin depolym-
erization. For SDS-PAGE, pellet (F-actin) and supernatant 
(G-actin) samples were mixed with SDS-PAGE loading 
buffer and processed for western blotting.

RhoA activation assay

7.5 ×  106 WT, PKP4-KO, or Rescue keratinocytes were 
seeded onto collagen I-coated 15 cm dishes in LCM. After 
24 h, the medium was changed to HCM for another 24 h. 
Subsequently, keratinocytes were lysed using 750 µl  Mg2+ 
lysis/wash buffer (MLB; 25 mM HEPES, pH 7.5, 150 mM 
NaCl, 1% Igepal CA-630, 10 mM  MgCl2, 1 mM EDTA and 
2% glycerol) and the Rho Activation Assay was performed 
using Rhotekin Rho-binding domain agarose (Merck, Darm-
stadt, Germany) according to the manufacturer´s protocol. 
Amounts of Rhotekin-agarose bound RhoA were analyzed 
by western blotting using a RhoA Rabbit mAb (Cell Signal-
ing Technology).

RNA expression

For validation of knockdown efficiencies, keratinocytes 
transfected in suspension with 2 pmol of the respective 
siRNA pools were switched to HCM at 48 h after transfec-
tion and kept in HCM for another 24 h. Cells were homog-
enized in Trizol and RNA isolated by phenol/chloroform 
extraction and isopropanol precipitation. For cDNA synthe-
sis, 1 µg of total RNA served as the template using Super-
Script® II Reverse Transcriptase (Thermo Fisher Scientific) 
and random hexamer primers following the manufacturer’s 

protocol. Real-time PCR was performed with primaQUANT 
2 × qPCR CYBR Green MasterMix w/o ROX (Steinbren-
ner-Laborsysteme GmbH, Wiesenbach, Germany) using a 
LightCycler 480 II Real Time PCR system (Roche, Basel, 
Switzerland) with the following PCR conditions: 95 °C for 
15 min followed by 40 cycles of 95 °C for 15 s, 62 °C for 
15 s, and 72 °C for 20 s. Primer pairs were selected using 
Primer Blast (https:// www. ncbi. nlm. nih. gov/ tools/ primer- 
blast/). The primer sequences are listed in Table S4.

RNA sequencing

Keratinocytes were grown for 24 h or 72 h in LCM or HCM. 
Cells were homogenized in Trizol and RNA isolated by 
phenol/chloroform extraction and isopropanol precipita-
tion. Library preparation (Poly(A) tail RNA selection) and 
strand-specific RNA sequencing (total RNA amount ≥ 2 µg) 
was performed by LC Sciences (Houston, USA) on a 
Novaseq6000 system (Illumina, San Diego, USA), produc-
ing 149 bp long paired-end sequencing reads at an average 
depth of 2 × 19.7 million reads per sample.

RNA‑seq data processing

Quality of the raw fastq files was assessed using FastQC 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
fastqc/). Sequencing reads were aligned to the murine refer-
ence genome (UCSC mm39) concatenated with the GFP-
PKP4 sequence using HiSat2 v2.1.0 [29]. Alignments in 
the obtained bam files were sorted, indexed and secondary 
alignments were filtered out using samtools v1.10 [30]. 
FeatureCounts v2.0.0 [31] was used for summarizing gene-
mapped reads. Ensembl (GRCm39.105; [32]) was used as 
annotation basis. Differential gene expression was deter-
mined using the R package edgeR v3.42.4 utilizing trimmed 
mean of M-values normalization [33, 34]. A false discovery 
rate (FDR) adjusted p-value below 0.05 was considered sig-
nificant for differential gene expression.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using 
the R-package clusterProfiler (v 4.8.2; [35] and MSigDB 
mouse gene sets (v2023.1; [36]) utilizing the fgsea algo-
rithm and setting the exponent parameter to 0 for unweighted 
analyses of log2 fold change sorted gene lists obtained from 
differential gene expression analyses.

Western blot quantification

For quantification of western blots, the ImageJ tool “Gel 
Analysis” was used. All signals were normalized to the inter-
nal loading control GAPDH. If GAPDH expression varied 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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due to experimental conditions, Ponceau S staining was used 
as the loading control. Details concerning normalization 
procedures are given in the figure legends.

Quantification of immunofluorescence

To determine the enrichment factors in the nucleus and cyto-
plasm, fluorescence intensities were measured as described 
previously [37]. The quantification of fluorescence intensi-
ties at lateral and tricellular contacts have been described 
previously [38].

Statistical analysis

Statistical analysis and plot preparation were performed 
using Graphpad Prism Software (version 8.3). All individual 
data points are shown in the plots. Boxplots display the first 
to third quartile; whiskers extend to the minimum and maxi-
mum. For two independent data sets, significant differences 
were determined by a two-tailed Student’s t-test. To compare 
more than two independent data sets with normal distribu-
tion, one-way analysis of variance (ANOVA) followed by a 
Tukey’s multiple comparison test was used.

Results

PKP4 regulates actin‑ and adhesion‑associated 
pathway activities

The dynamic connection of AJs to the actin cytoskeleton 
is tightly regulated by Rho-signaling. When misregulated, 
abnormal junctional actin polymerization can drive patho-
logical conditions including cancer, vascular and neurode-
generative diseases [39]. As a novel model system to study 
how PKP4 affects the cortical actin cytoskeleton via Rho 
signaling, we used murine WT keratinocytes, PKP4-KO 
keratinocytes, and PKP4-KO keratinocytes overexpressing 
GFP-tagged PKP4 (Rescue cell line).

Using these cells, we have performed gene expression 
analyses to identify molecular processes that are affected 
by PKP4. RNA sequencing of WT, PKP4-KO, and Rescue 
cells grown for 24 h or 72 h in LCM or HCM was performed 
followed by assessment of GSEA of protein coding genes 
to identify differentially regulated biological pathways and 
molecular functions. Signaling pathways associated with 
PKP4 were identified using the gene ontology databases 
[40]. The downregulated genes in PKP4-KO cells and the 
upregulated genes in rescue cells were primarily associated 
with actin- and adhesion-associated pathways. (Figs. 1A, 
B, S1A, B). In addition, GSEA enrichment plots show that 
PKP4 regulated genes involved in both, actin filament based 
processes and in cell adhesion (Figs. 1C, D, S1C, D). Taken 
together, these data indicate that the loss of PKP4 altered 
actin- and adhesion-associated pathway activities.

PKP4 affects actin organization

Since AJs and the associated actin cytoskeleton are major 
determinants of tissue tension and dynamics [41], we inves-
tigated the role of PKP4 in generating tension. Keratinocyte 
monolayers detached from the culture dish by dispase treat-
ment typically contract due to intrinsic forces [42]. This con-
traction was essentially lost in PKP4-KO cells compared to 
their WT counterparts as determined by quantifying epithe-
lial sheet areas (Fig. 2A). The effect was reversed in Rescue 
cells confirming a role of PKP4 in generating tissue tension.

Actin filaments and AJs function as tension sensors [9, 
43]. Therefore, we asked if actin organization might be 
altered in PKP4-KO cells. WT cells and Rescue cells grown 
in HCM for 24 h to induce junction formation revealed a 
prominent cortical actin ring (Figs. 2B, S2A), whereas 
PKP4-KO cells displayed a striking increase in stress fib-
ers (Fig. 2B). In order to find out if cortical ring formation 
was only delayed or completely inhibited, cells were grown 
for 120 h in HCM to allow junction maturation. Even after 
this prolonged incubation in differentiation medium, WT 
and Rescue keratinocytes showed low numbers of cells with 
stress fibers whereas PKP4-KO cells were characterized by 
a loss of the cortical actin ring and increased stress fibers 
(Fig. S2B), suggesting a general failure rather than a delay 
of cortical actin assembly.

Dynamic alterations of cellular organization depend on 
actin remodeling. During polymerization, actin undergoes a 
rapid transition from its globular, monomeric state (G-actin) 
to its filamentous (F-actin) form [44], revealing that the actin 
cytoskeleton is a highly dynamic structure. To analyze if the 
altered actin organization correlates with a change in the 
G-Actin to F-actin ratio, we determined the G-actin/F-actin 
ratios in WT, PKP4-KO, and Rescue cells (Fig. 2C). The 
loss of PKP4 resulted in an increased G-actin/F-actin ratio, 

Fig. 1  PKP4 regulates actin- and adhesion-associated pathway activi-
ties. A, B Normalized enrichment scores of selected gene sets among 
protein coding genes in PKP4-KO or Rescue (PKP4-KO + PKP4) ver-
sus WT cells after (A) 24 h HCM or (B) 72 h HCM. Positive values 
represent up regulation, negative values represent down regulation. 
C, D Enrichment plots for the two most significantly enriched Gene 
Ontology (GO) Biological Processes gene sets for C PKP4-KO rela-
tive to WT cells or (D) Rescue (PKP4-KO + PKP4) relative to WT 
cells after 24  h HCM incubation, respectively. The plots show the 
profile of the running enrichment scores and positions of gene set 
members on the rank-ordered list. Genes on the far left (red) corre-
spond to the most upregulated actin- or adhesion-associated genes, 
whereas genes on the far right (blue) correspond to the most down-
regulated actin- or adhesion-associated genes. *P < 0.05; **P < 0.01; 
***P < 0.001; ns, not significant. See also Fig. S1
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suggesting that PKP4 promotes actin polymerization, which 
might facilitate cortical ring formation.

Stress fibers are often associated with focal adhesion 
contacts linking them to the underlying extracellular matrix 
[45]. Vinculin is a marker of focal adhesions but in addi-
tion has been recognized to localize at mature AJs that 
are under tension. Vinculin recruitment to AJs relies on 
force-dependent changes in α-catenin conformation [8, 46]. 
To analyze whether cytoskeletal changes affected vincu-
lin distribution, WT and PKP4-KO cells were maintained 
in HCM for 24 h and processed for immunofluorescence 
(Fig. 2D). In WT keratinocytes, F-actin was particularly 
apparent at the cell periphery and vinculin localized 

predominantly at lateral AJs. In contrast, PKP4-KO cells 
lacked vinculin staining at the cell periphery. Here, vincu-
lin localized at the tips of actin stress fibers suggesting that 
the loss of PKP4 led to vinculin localization at focal con-
tacts. Signals from focal adhesions are transduced by the 
focal adhesion kinase (FAK) to regulate mechanosensing 
[47]. Co-staining of FAK and vinculin revealed increased 
co-localization of both proteins in PKP4-KO compared to 
WT cells (Fig. 2E). Since protein levels of FAK and vincu-
lin were not affected by PKP4 (Fig. S2C), we assume that 
PKP4 primarily affected the localization of vinculin via 
generation of tension.
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Taken together, we show that loss of PKP4 leads to exten-
sive changes of the actin cytoskeleton, with an increase in 
cytoplasmic stress fibers at the expense of the cortical actin 
ring resulting in reduced tension (Fig. 2F).

PKP4 modulates the morphology of junctions 
and stabilizes keratinocyte cell–cell adhesion

Actomyosin promotes cadherin clustering and thus AJ 
morphology. Based on the changes in actin organization 
and the localization of PKP4 in AJs we asked if AJ mor-
phology and/or composition were altered in PKP4-KO 
keratinocytes. Cells were cultured in HCM for either 24 h 
to allow for junction formation or for 72 h to enable junc-
tion maturation and keratinocyte differentiation. Western 
Blot analysis revealed essentially unaltered expression of 
the AJ proteins analyzed (Fig. 3A). Unlike predicted, no 

compensatory upregulation of p120 was found. A tran-
sient and minor reduction of p120 was observed at 24 h 
after  Ca2+ switch but the level was adjusted after 3 days 
in HCM.

To analyze whether the loss of PKP4 affects the mor-
phology of AJs, WT, PKP4-KO, and Rescue keratinocytes 
were processed for immunofluorescence. AJ morphology 
was dramatically altered as revealed by E-cadherin staining 
(Fig. 3B). The loss of PKP4 resulted in an increased cyto-
plasmic pool of E-cadherin and decreased lateral E-cadherin 
localization with a punctate pattern instead of more con-
tinuous lines observed in WT and Rescue cells. Moreover, 
tricellular regions were not sealed. These findings indicate 
that loss of PKP4 interferes with AJ maturation and cortical 
actin organization.

Since AJs and desmosomes are interconnected [48], 
we asked whether PKP4 might alter the composition and 
morphology of desmosomes as well. Western blot analy-
sis revealed a slight increase of differentiation-associated 
desmosomal proteins desmoglein 1 and PKP1 in PKP4-KO 
cells after 72 h HCM (Fig. S3A). The most profound effect 
was on desmoplakin 1/2, which was increased in PKP4-
KO cells. Since desmoplakin 1/2 levels were considerably 
affected, WT, PKP4-KO, and Rescue keratinocytes were 
immunostained for desmoplakin (Fig. S3B). Similar to AJs, 
desmoplakin localization was altered with punctate instead 
of linear staining patterns in PKP4-KO cells. This suggests 
that the increased amounts of desmoplakin accumulate in 
the cytoplasm of PKP4-KO but did not incorporate into des-
mosomes. Again, the tricellular regions remained unsealed. 
To validate the dramatic loss of junctional proteins at tri-
cellular regions in PKP4-KO cells, WT, PKP4-KO, and 
Rescue keratinocytes were immunostained for tricellulin, 
which accumulates primarily at tricellular junctions [49]. 
Tricellulin was decreased at tricellular regions in PKP4-KO 
cells (Fig. S3C), suggesting that PKP4 was required to close 
tricellular regions.

To analyze whether PKP4 interacts with desmosomal 
components, immunoprecipitation of endogenous PKP4 was 
performed. PKP1, PKP3, and desmoplakin did co-purify 
with PKP4 (Fig. S3D), suggesting that an association with 
PKP4 might facilitate desmosome assembly and/or alter des-
mosome composition.

To test whether PKP4 also affects formation of des-
mosomes, we performed a time course analysis of des-
mosome assembly in WT and PKP4-KO cells (Fig. S3E). 
HCM induced rapidly E-cadherin recruitment to lateral cell 
membranes in both, WT and PKP4-KO cells. The desmo-
somal markers desmoplakin and PKP3 also localized at lat-
eral membranes after HCM treatment, but the loss of PKP4 
delayed incorporation of desmoplakin and PKP3 into lateral 
junctions. These data suggest that PKP4 promotes desmo-
some formation.

Fig. 2  PKP4 affects actin organization. A Dispase-based tension 
assay of WT, PKP4-KO, and Rescue (PKP4-KO + PKP4) cells grown 
for 24 h or 72 h in HCM. Left: Representative images showing the 
monolayers detached from the culture flask. Scale bar = 5 mm. Right: 
Quantification of monolayer size relative to WT cells. Box plots show 
the monolayer area from eighteen independent experiments. The 
whiskers extend to the minimum and the maximum values. B Immu-
nofluorescence analysis of F-actin organization. Left: Representative 
immunofluorescence images showing PKP4 and F-actin localiza-
tion in WT, PKP4-KO, and Rescue (PKP4-KO + PKP4) cells grown 
for 24 h in HCM. Scale bar = 50 µm, detail 10 µm. Right: Number of 
cells with stress fibers. Averages + SD from three independent experi-
ments are plotted. n ≥ 100 cells per condition. C G-actin/F-actin ratio 
in WT, PKP4-KO, and Rescue (PKP4-KO + PKP4) cells. Top: Rep-
resentative western blot of actin. Ponceau S staining was used as a 
loading control. Bottom: Quantification of G-actin/F-actin ratio. Box 
plots show the fold change from five independent experiments. The 
whiskers extend to the minimum and the maximum values. D Immu-
nofluorescence analysis of Vinculin and F-actin localization. Top: 
Representative immunofluorescence images showing F-actin and 
Vinculin localization in WT and PKP4-KO cells and a histogram of 
the relative average intensities of lateral Vinculin. Scale bar = 10 µm, 
detail 5 µm. Averages ± SD from n ≥ 100 cells per condition from two 
independent experiments are plotted. Bottom: Bicellular/cytoplasm 
ratio of Vinculin fluorescence intensity. n ≥ 100 cells per condition 
from two independent experiments are shown. Representative histo-
grams of the relative average intensities of lateral F-actin and Vincu-
lin in WT cells and PKP4-KO cells. E Immunofluorescence analysis 
of FAK and Vinculin localization in WT and PKP4-KO cells. Left: 
Representative immunofluorescence images showing FAK and Vin-
culin localization in WT and PKP4-KO cells. Scale bar = 10  µm, 
detail 5  µm. Right: Quantification of co-localization of FAK and 
Vinculin. Mander’s coefficient describes the amount of overlap in 
fluorescence intensity between two channels, here, the FAK and vin-
culin channel. It ranges from 0 for no co-localization to 1 for com-
plete co-localization. Box plots show the Mander’s coefficient from 
n ≥ 30 images per condition from two independent experiments. The 
whiskers extend to the minimum and the maximum values. F Sche-
matic depicting the difference in actin organization between WT and 
PKP4-KO cells. Created with biorender.com. *P < 0.05; **P < 0.01; 
***P < 0.001; ns, not significant. Significance was determined by 
one-way ANOVA with Tukey’s multiple comparisons test (A–C) or 
by student’s unpaired two tailed t-test (D, E). See also Fig. S2

◂



 L. Müller et al.  291  Page 10 of 23

Taken together, these data indicate that the loss of PKP4 
results in a reduction of junctional proteins at lateral and 
tricellular membranes, suggesting that PKP4-KO cells fail 
to form mature junctions.

Since AJs and desmosomes maintain the mechanical 
integrity of cell–cell adhesion [50–53], we asked whether 
the PKP4-depdendent changes in morphology of AJs and 

desmosomes would correlate with changes in intercellu-
lar adhesion. Epithelial sheet assays were performed to 
test the strength of cell–cell adhesion (Fig. 3C). In line 
with the reduced association of junctional proteins with 
lateral and tricellular membranes in PKP4-KO cells, the 
loss of PKP4 reduced cell–cell adhesion as revealed by an 
increased number of fragments generated by mechanical 
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stress. This confirms that PKP4 strengthens cell–cell 
adhesion.

U p o n  m a t u r a t i o n ,  d e s m o s o m e s  b e c o m e 
 Ca2+-independent which marks a state of strong intercel-
lular cohesion. To test if cell junctions in PKP4-KO cells 
would reach  Ca2+-independence, WT and PKP4-KO cells 
were treated with EGTA and processed for immunofluo-
rescence (Fig. 3D). In WT cells, EGTA treatment for 3 h 
induced small tricellular openings whereas lateral con-
tacts remained intact as revealed by E-cadherin staining. 
In contrast, the loss of PKP4 resulted in a reduction of 
E-cadherin at tricellular contacts already in the absence 
of EGTA. Incubation with EGTA slightly increased tricel-
lular gaps but in addition strongly reduced lateral E-cad-
herin staining. These data strongly support a role of PKP4 
in junction maturation and stabilization.

Taken together, we propose that PKP4 promotes an 
association of AJ and desmosomal proteins with lateral 
and tricellular membranes to stabilize cell–cell adhesion. 
The loss of PKP4 resulted in decreased lateral localiza-
tion of junctional proteins and increased tricellular gaps, 
which weakens cell–cell adhesion (Fig. 3E).

PKP4 promotes ROCK‑signaling

Given that the expression of PKP4 is low compared to 
E-cadherin it seemed unlikely that PKP4 strengthens inter-
cellular adhesion by directly recruiting E-cadherin and 
catenins. At the same time, intercellular adhesion increases 
with the application of force [54] supporting a role of actin 
organization in junction stability. Therefore, we hypothe-
sized that the effects of PKP4 depletion on junctions may be 
mediated by the loss of cortical actin organization and thus 
focused on regulators of actin polymerization and actomyo-
sin tension. The dynamic organization of the actin cytoskel-
eton is regulated by Rho GTPases [55]. GTP-bound RhoA 
activates ROCK1/2 which leads to activation of myosin light 
chain kinase (MLCK) and inhibition of MLC phosphatase 
(MYPT1), resulting in an increase of MLC phosphoryla-
tion (P-MLC) to induce actomyosin-based contractility [56]. 
ROCK also directly phosphorylates LIMK, which results in 
downstream phosphorylation and inactivation of the actin 
depolymerizing factor cofilin leading to filament stabiliza-
tion [57] (Fig. 4A).

To analyze the putative effect of PKP4 on ROCK-sign-
aling, we quantified the amounts and activation of several 
ROCK1/2 effectors in WT, PKP4-KO, and Rescue cells 
maintained in LCM or HCM for 24 h by western blotting 
(Fig. 4B). Protein levels of ROCK1, ROCK2, MLC2, cofi-
lin, and myosin IIA were unaltered by PKP4. More impor-
tantly, the loss of PKP4 led to increased protein levels of the 
opponents MLCK and MYPT1 suggesting increased actin 
dynamics. Strongly decreased phosphorylation of MLC2 
supports the reduced contractility observed in the PKP4-
KO keratinocyte sheets (Fig. 2A). Furthermore, decreased 
Cofilin phosphorylation in PKP4-KO cells fosters the data 
showing increased G-actin levels in these cells (Fig. 2C).

Since cortical actin was essentially lost but stress fib-
ers were increased in PKP4-KO cells, we wondered if this 
correlates with altered localization of ROCK1/2 and their 
effectors. WT, PKP4-KO and Rescue keratinocytes were 
maintained for 24 h in HCM and processed for immunofluo-
rescence. Whereas localization of ROCK1, MYPT1, cofilin, 
phospho-cofilin, and myosin IIA was unaltered in PKP4-KO 
cells (Fig. S4), lateral localization of ROCK2 and MLCK 
was reduced in PKP4-KO cells compared to WT and Rescue 
cells (Fig. 4C). Moreover, PKP4 dramatically promoted the 
lateral localization of total MLC2 and phospho-MLC2.

To analyze whether PKP4 interacts with effectors of 
ROCK1/2-signaling to modulate actin dynamics, GFP-PKP4 
was affinity purified from Rescue cells (Fig. 4D). RhoA, 
ROCK1, MLC2, phospho-MLC2, as well as cofilin, phos-
pho-cofilin, and myosin IIA, did not co-purify with PKP4. 
In contrast, ROCK2, MLCK, and MYPT1 co-precipitated. 
This was further validated in an immunoprecipitation of 
endogenous PKP4 which revealed again a co-precipitation 

Fig. 3  PKP4 modulates the morphology of junctions and stabilizes 
keratinocyte cell–cell adhesion. A Levels of AJ proteins in WT and 
PKP4-KO cells grown for 24 h or 72 h in medium with or without 
 Ca2+. Left: Representative western blots of AJ proteins. Ponceau S 
staining was used as a loading control. Right: Quantification of pro-
tein amounts normalized to Ponceau S staining and relative to WT 
cells grown for 24  h in medium without  Ca2+. Averages + SD from 
five independent experiments are plotted. B Immunofluorescence 
analysis of E-cadherin localization. Left: Representative immunofluo-
rescence images showing PKP4 and E-cadherin localization in WT, 
PKP4-KO, and Rescue (PKP4-KO + PKP4) cells. Scale bar = 50 µm, 
detail 10  µm. Right: Bicellular/cytoplasm ratio of E-cadherin fluo-
rescence intensity. n ≥ 100 cells per condition from two independ-
ent experiments. C Dispase-based dissociation assay of WT and 
PKP4-KO cells grown for 24  h or 72  h in HCM. Top: Representa-
tive images showing the results of dispase assays before and after 
mechanical stress. Scale bar = 5 mm. Bottom: Quantification of frag-
ment numbers. Box plots show the fragment numbers from six inde-
pendent experiments. The whiskers extend to the minimum and the 
maximum values. D Immunofluorescence analysis of E-cadherin 
localization in WT and PKP4-KO cells treated with EGTA (3.3 mM) 
for 3 h. Top left: Representative immunofluorescence images show-
ing E-cadherin localization in WT and PKP4-KO cells before (0  h) 
or 3 h after EGTA treatment. Scale bar = 10 µm. Top right: Overlay-
ing mask (yellow marked polygons) indicating exposed areas. Scale 
bar = 10 µm. Bottom: Quantification of the exposed areas. Box plots 
show the exposed area in percent per image from 20 images from two 
independent experiments. The whiskers extend to the minimum and 
the maximum values. E Schematic of junction morphology in WT 
compared to PKP4-KO cells. Created with biorender.com. *P < 0.05; 
**P < 0.01; ***P < 0.001; ns, not significant. Significance was deter-
mined by one-way ANOVA with Tukey’s multiple comparisons test 
(A, B) or by student’s unpaired two tailed t-test (C, D). See also 
Fig. S3
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of ROCK2, MLCK, and MYPT1 in WT cells (Fig. 4E), sug-
gesting that an association with PKP4 might alter their activ-
ity to control actin dynamics at the cortical ring.

Taken together we show that PKP4 promotes MLC and 
cofilin phosphorylation to regulate actomyosin-dependent 
tension and cortical ring formation. PKP4 dramatically 
increased the lateral localization of active phospho-MLC2, 
which facilitates actomyosin contraction at the cortical ring. 
These data suggest disturbed mechanosignaling in PKP4-KO 
keratinocytes. We conclude that PKP4 might function as a 
scaffold to locally regulate a ROCK2-MLCK-MLC2 axis to 
promote cortical actin tension.

PKP4 promotes RhoA activation at the cell cortex 
and cortical actin ring formation

The balance of the small GTPases RhoA, Rac1, and Cdc42 
controls actin cytoskeleton dynamics through ROCK signal-
ing [58]. The disruption of RhoA activity reduced phospho-
rylation of MLC2 [59] as observed in PKP4-KO cells. To 
analyze if RhoA activity would be affected, a RhoA activa-
tion assay was performed to measure total RhoA activities 
(Fig. S5A). In accordance with decreased phosphorylation 
of MLC2, the loss of PKP4 reduced total RhoA activity.

To analyze the roles of the Rho-GTPases Rho, Rac, 
and Cdc42 in stress fiber and cortical actin organization 

in more detail, WT, PKP4-KO, and Rescue cells were 
treated with Rho or Rac/Cdc42 activators and processed 
for immunofluorescence (Fig. 5A). Rho activation induced 
stress fiber formation in WT cells whereas Rac/Cdc42 
activation suppressed stress fibers in PKP4-KO cells. To 
further validate the PKP4-dependent regulation of Rho 
activity, constitutively active or constitutively negative 
mutants of RhoA GTPases were ectopically expressed in 
WT and PKP4-KO cells, followed by immunofluorescence 
(Fig. 5B). In agreement with the Rho activator studies, 
constitutively active RhoA increased stress fiber forma-
tion in WT cells whereas constitutively negative RhoA 
suppressed stress fibers in PKP4-KO cells suggesting that 
PKP4 affects the activity of Rho-GTPases.

To resolve the apparent contradiction between the 
reduced total RhoA activity found in PKP4-KO cells and the 
fact that hyperactive RhoA mimicked the PKP4-phenotype, 
we focused on the local regulation of Rho-GTPases. Active 
RhoA was shown to localize in the cytoplasm and at the 
membrane but to activate effector proteins primarily when 
localized at the membrane where RhoA needs to be stabi-
lized to engage downstream pathways of contractility [60]. 
Therefore, we asked if PKP4 would contribute to the stabi-
lization of active RhoA at the membrane. To evaluate if the 
cortical localization and/or activity of RhoA, Rac1, and/or 
Cdc42 was indeed dependent on PKP4, WT and PKP4-KO 
cells were processed for immunofluorescence (Fig. 5C, D). 
The loss of PKP4 correlated with decreased lateral localiza-
tion of both total and active RhoA. Rac and Cdc42 localiza-
tion were essentially unaffected but lateral localization of 
active Rac1 was increased in PKP4-KO cells compared to 
WT cells whereas Cdc42 activity was unaltered. These data 
suggest that PKP4 promotes the localization of active RhoA 
at the lateral membrane but suppresses lateral Rac1 activity.

To further validate a PKP4-dependent localization of 
active RhoA, a RhoA biosensor was ectopically expressed 
in WT and PKP4-KO cells and the cells were processed 
for immunofluorescence (Figs. 5E, S5B). This sensor 
visualizes endogenous Rho-GTP. Like E-cadherin, the 
sensor accumulated strongly at the lateral membranes in 
WT cells, indicating that RhoA was locally active at the 
plasma membrane. In contrast, the loss of PKP4 resulted 
in the loss of lateral RhoA-GTP which instead showed a 
cytoplasmic localization although E-cadherin membrane 
association was unaltered. This indicates reduced RhoA 
activity at the lateral membrane of PKP4-KO cells.

Taken together, we show that PKP4 suppresses cyto-
plasmic RhoA activation to restrain stress fiber formation 
but promotes RhoA activity at lateral membranes to facili-
tate cortical actin ring formation and the generation of 
tension through a RhoA-ROCK-MLCK-MLC2 axis.

Fig. 4  PKP4 promotes ROCK-signaling. A Schematic of ROCK-
signaling. P – phosphorylation. Inactive proteins are shown in white. 
Created with biorender.com. B Amount and phosphorylation of pro-
teins involved in ROCK-signaling. Left: Representative western blots 
of proteins in WT, PKP4-KO, and Rescue (PKP4-KO + PKP4) cells 
grown for 24 h in medium with or without  Ca2+. GAPDH was used as 
a loading control. Right: Quantification of protein amounts normal-
ized to GAPDH and relative to WT cells grown in medium without 
 Ca2+. Averages + SD from three independent experiments are plotted. 
C Immunofluorescence analysis showing the localization of proteins 
involved in ROCK-signaling. Left: Representative immunofluores-
cence images showing ROCK2, MLCK, MLC2, and P-MLC2-Ser19 
localization in WT, PKP4-KO, and Rescue (PKP4-KO + PKP4) cells. 
Scale bar = 50 µm, detail 10 µm. Right: Bicellular/cytoplasm ratio of 
fluorescence intensities. n ≥ 100 cells per condition from two inde-
pendent experiments. D GFP-PKP4 or GFP was affinity-purified 
from WT + GFP or PKP4-KO + PKP4 cells. Left: Representative 
western blots of co-purified proteins. Right: Enrichment of ROCK2, 
MLCK, and MYPT1 normalized to precipitated GFP and relative to 
values of GFP cells (second lane in immunoblot, which was set to 
1). Average + SD from three independent experiments was plotted. 
E Endogenous PKP4 was affinity-purified from WT cells. PKP4-KO 
cells were treated in parallel as control. Top: Representative west-
ern blots of input and co-purifying proteins. Bottom: Enrichment of 
ROCK2, MLCK, and MYPT1 normalized to Ig and relative to val-
ues of PKP4-KO cells (second lane in immunoblot, which was set to 
1). Average + SD from three independent experiments was plotted. 
*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Significance 
was determined by one-way ANOVA with Tukey’s multiple compari-
sons test (B, C) or by student’s unpaired two tailed t-test (D, E). See 
also Fig. S4
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PKP4‑dependent actin dynamics and tension are 
regulated by ARHGAP23 and ARHGEF2

Local changes in Rho-GTPase activity in the PKP4-KO 
cells raised the question how PKP4 modulates Rho-sign-
aling. Spatio-temporal control of Rho-GTPases depends 
on the local balance of GEF and GAP activities. Therefore, 
we hypothesized that PKP4 might affect Rho-signaling by 

modulating GEF and/or GAP localization and/or activities 
at keratinocyte AJs.

GEFs promote the release of GDP in exchange for GTP to 
activate the GTPase. In contrast, GAPs increase the intrinsic 
hydrolytic activity that converts GTP into GDP thereby inac-
tivating the GTPase [10, 11]. In order to find out how PKP4 
modulates the activity of Rho-GTPases we investigated 
interactions with these upstream regulators. For this pur-
pose, specific GEFs and GAPs were selected for a detailed 
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characterization based on several criteria (Fig. 6A): First, 
we analyzed those candidates that were already known to 
associate with PKP4 in a different context. A direct interac-
tion between PKP4, the GEF ECT2, and RhoA has been 
previously identified during cytokinesis [20]. Moreover, 
RACGAP1 [61] and ARHGAP21 had been described as a 
PKP4 interacting protein [12]. Since ARHGAP23 is simi-
lar to ARHGAP21 and both contain a PDZ domain, which 
might mediate PKP4 binding via its PDZ binding motif, 
ARHGAP23 was also included. Secondly, GEFs and GAPs 
that were known to modulate cell junctions were examined. 
ARHGEF2 regulates the assembly of AJs [62], and ARH-
GAP24 promotes the formation of AJs by accumulating 
E-cadherin [63].

To analyze whether PKP4 interacts with selected GEFs 
and GAPs, PKP4-GFP was affinity-purified from Rescue 
cells (Fig. 6B, for quantification see Fig. S6A). ARHGAP21 
did not co-purify with PKP4. In contrast, the GAPs ARH-
GAP23, ARHGAP24, and RACGAP1 co-precipitated. 
In addition, the GEFs ECT2 and ARHGEF2 (also called 
GEFH1) were both co-precipitated. The co-precipitation 
indicated an association with PKP4 and emphasized a role 

of PKP4 as a scaffold in the spatio-temporal control of Rho 
signaling.

The function of GEFs and GAPs is regulated by expres-
sion as well as localization. To analyze a putative effect of 
PKP4 on the protein level of the selected GEFs and GAPs, 
we quantified their amounts in WT, PKP4-KO, and Res-
cue cells maintained for 24 h in LCM where PKP4 is cyto-
plasmic or in HCM where PKP4 localizes at cell junctions 
(Fig. 6C, for quantification see Fig. S6B). Protein levels of 
ARHGAP21, ARHGAP24, RACGAP1, and ECT2 were 
unaltered by PKP4 as determined by western blotting. More 
importantly, the loss of PKP4 slightly increased ARHGAP23 
protein expression but dramatically decreased the ARH-
GEF2 protein level. These effects were reversed in Rescue 
cells, supporting a role of PKP4 in regulating ARHGAP23 
and ARHGEF2 levels.

To directly link the selected GEFs and GAPs with actin 
dynamics, the impact of siRNA-mediated repression of these 
GEFs and GAPs was studied with respect to actin organi-
zation. WT and PKP4-KO cells were treated with control 
(siCtrl) or GEF/GAP-directed siRNAs (siARHGAP21, 
siARHGAP23, siARHGAP24, siRACGAP1, siECT2, 
siARHGEF2), maintained for 24 h in HCM, and processed 
for immunofluorescence (Fig. 6D, for quantification of 
knockdown efficiencies see Fig. S6C). ARHGEF2 depletion 
increased stress fibers in WT cells whereas control-treated 
WT cells revealed a cortical actin ring, suggesting that 
ARHGEF2 depletion reduced cortical RhoA activity and 
thus mimicked the effect of PKP4 loss. In PKP4-KO cells, 
ARHGAP23 depletion correlated with a loss of stress fibers, 
suggesting that ARHGAP23 is active in the PKP4-KO cell 
cytoplasm to reduce cortical RhoA activity and suppress 
cortical ring formation. Thus, ARHGEF2 and ARHGAP23 
might be the key regulators for actin organization in a PKP4-
dependent manner (Fig. 6E).

Based on these findings, we predicted that overexpression 
of ARHGAP23 should promote stress fibers in WT cells. 
Transfected cells were maintained for 24 h in HCM and 
processed for immunofluorescence (Fig. 6F). In accordance 
with our assumption, overexpressed ARHGAP23 partially 
localized at the cell cortex where it could inactivate RhoA 
to prevent cortical actin ring formation and led to increased 
stress fibers in WT cells. Moreover, we wondered if over-
expression of ARHGEF2 in PKP4-KO cells might partially 
rescue cortical actin ring formation because of a general 
massive increase in its activity although PKP4 would not 
mediate its cortical localization. Indeed, overexpression of 
ARHGEF2 reduced stress fibers in PKP4-KO and improved 
cortical actin to some extent.

To reveal the functional consequences of the PKP4-
dependent actin regulation by ARHGAP23 and ARHGEF2 
we investigated if this would also affect cell tension. WT and 
PKP4-KO cells maintained for 24 h in HCM were treated with 

Fig. 5  PKP4 promotes RhoA activation at the cell cortex and corti-
cal actin ring formation. A Immunofluorescence analysis of F-actin 
organization after Rho or Rac/Cdc42 activation. Left: Representa-
tive immunofluorescence images showing PKP4 and F-actin locali-
zation in WT and PKP4-KO cells treated with PBS (Mock), Rho 
activator II (5  µg/ml), or Rac/Cdc42 activator II (5 units/ml). Scale 
bar = 50  µm, detail 10  µm. Right: Number of cells with stress fib-
ers. Averages + SD from three independent experiments are plotted. 
n = 50 cells per condition. B Immunofluorescence analysis of F-actin 
organization in constitutive active or negative RhoA expressing cells. 
Left: Representative immunofluorescence images showing F-actin 
localization in WT and PKP4-KO cells after ectopic expression of 
constitutive active RhoA (RhoA-CA(Q63L)) or constitutive negative 
RhoA (RhoA-CN(T19N)). Scale bar = 50  µm, detail 10  µm. Right: 
Number of cells with stress fibers. Averages + SD from three inde-
pendent experiments are plotted. n = 10 cells per condition. C Immu-
nofluorescence analysis showing total RhoA, Rac1, and Cdc42 locali-
zation. Left: Representative immunofluorescence images showing 
total RhoA, Rac1, or Cdc42 localization in WT and PKP4-KO cells. 
Scale bar = 100 µm, detail 10 µm. Right: Bicellular/cytoplasm ratio of 
fluorescence intensity. n ≥ 100 cells per condition from two independ-
ent experiments. D Immunofluorescence analysis of the localization 
of active RhoA, Rac1, and Cdc42. Left: Representative immunofluo-
rescence images showing active RhoA, Rac1, or Cdc42 localization 
in WT and PKP4-KO cells. Scale bar = 100 µm, detail 10 µm. Right: 
Bicellular/cytoplasm ratio of fluorescence intensity. n ≥ 100 cells per 
condition from two independent experiments. E Immunofluorescence 
analysis showing the localization of a RhoA-GTP biosensor. Top: 
Representative immunofluorescence images showing EGFP-RhoA 
biosensor localization in WT and PKP4-KO cells. Scale bar = 50 µm, 
detail 10  µm. Bottom: Bicellular/cytoplasm ratio of fluorescence 
intensity. n ≥ 50 cells per condition from two independent experi-
ments. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Sig-
nificance was determined by student’s unpaired two tailed t-test (A, 
B, C, D, E). See also Fig. S5
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control (siCtrl), ARHGEF2-directed (siARHGEF2), or ARH-
GAP23-directed (siARHGAP23) siRNAs and processed for 
the dispase assay (Fig. 6G). ARHGEF2 depletion in WT cells 
increased the sheet area, indicative of reduced mechanical ten-
sion in accordance with reduced cortical actin and increased 
stress fibers observed in these cells. In PKP4-KO cells, deple-
tion of ARHGEF2 did not affect sheet area probably because 
ARHGEF2 levels were already severely downregulated by the 
loss of PKP4. In contrast, ARHGAP23 depletion in PKP4-KO 
cells significantly reduced the sheet area, suggesting that the 
elevated ARHGAP23 level is connected to reduced mechani-
cal tension. Although the ARHGAP23 level was lower in WT 
than in PKP4-KO cells, depletion of ARHGAP23 further 
reduced the sheet area of WT cells confirming that ARH-
GAP23 negatively controls tension. In addition to the effects 
on cell tension, the regulation of RhoA also affects keratino-
cyte adhesion (Fig. S6D) where ARHGEF2 depletion in WT 
cells interfered with stable cell–cell adhesion as indicated by 
increased numbers of fragments generated by mechanical 
stress. In contrast, ARHGEF2 depletion had no significant 
effect on intercellular cohesion in PKP4-KO cells, where the 
ARHGEF2 level was already strongly reduced. ARHGAP23 
depletion decreased the number of fragments in PKP4-KO 
and WT cells, suggesting increased cell–cell adhesion.

Taken together, our data reveal that PKP4 affects actin 
organization through ARHGAP23 and ARHGEF2. PKP4 
promotes ARHGEF2 expression but suppresses ARHGAP23 
levels resulting in cortical ring formation and increased 
mechanical tension. By interacting with both proteins, PKP4 
could control their localization and balance their activities.

Junctional localization of ARHGAP23 and ARHGEF2 
is regulated by PKP4

Since GEFs and GAPs are essential for the local control of 
RhoA activity [64], we expected that PKP4 might direct the 
localization of ARHGAP23 and ARHGEF2 to control their 
function. To analyze a putative junctional localization of 
ARHGAP23, WT, PKP4-KO, and Rescue cells maintained 
for 24 h in HCM were processed for immunofluorescence 
(Fig. 7A). ARHGAP23 was not only upregulated in PKP4-
KO cells, but also showed increased lateral localization 
compared to WT and Rescue cells, suggesting that PKP4 
displaced ARHGAP23 from junctions. To test whether the 
mislocalized ARHGAP23 in PKP4-KO cells still interacted 
with RhoA, endogenous ARHGAP23 was affinity purified 
from WT and PKP4-KO cells maintained for 24 h in HCM 
and probed for co-purifying proteins by western blotting 
with the indicated antibodies (Fig. 7B). PKP4 and total 
RhoA were co-precipitated by ARHGAP23 from WT cells 
confirming an association as shown in Fig. 6B. Importantly, 
the amount of total RhoA co-precipitating with ARHGAP23 
was elevated in PKP4-KO compared to WT cells. Thus, we 
conclude that an increased ARHGAP23-RhoA interaction in 
PKP4-KO cells might diminish local RhoA activity at junc-
tions and the cell cortex and promote stress fibers.

Finally, we investigated the junctional localization of ARH-
GEF2 in WT, PKP4-KO, and Rescue cells maintained for 24 h 
in HCM and processed for immunofluorescence (Fig. 7C). Loss 
of PKP4 interfered with the lateral ARHGEF2 localization. 
Taken together with the reduction in ARHGEF2 protein level, 
this suggests that PKP4 recruits ARHGEF2 to AJ and stabilizes 
cortical ARHGEF2 by association. To probe for RhoA associa-
tion, endogenous ARHGEF2 was affinity purified from WT and 
PKP4-KO cells maintained for 24 h in HCM and probed by 
western blotting with the indicated antibodies (Fig. 7D). PKP4 
and total RhoA were co-precipitated, confirming the association 
between ARHGEF2 and PKP4. The association with RhoA was 
retained in PKP4-KO cells although the amount of the complex 
was reduced due to reduced ARHGEF2 levels. Thus the reduced 
level of ARHGEF2 in PKP4-KO cells did not interfere with an 
interaction with RhoA in general but the altered localization of 
ARHGEF2 shifted RhoA activity from cell adhesions to the 
cytoplasm thereby preventing cortical ring formation but sup-
porting stress fibers.

Collectively, we have demonstrated that PKP4 acts as a 
local scaffold that regulates the generation of intrinsic forces 

Fig. 6  PKP4-dependent actin dynamics and tension are regulated 
by ARHGAP23 and ARHGEF2. A Schematic of selected GEFs and 
GAPs and their role in promoting or inhibiting RhoA-activity, respec-
tively. Created with biorender.com. B GFP-PKP4 or GFP was affin-
ity-purified from WT + GFP or PKP4-KO + PKP4 cells. Representa-
tive western blots of co-purified proteins. C Protein level of selected 
GEFs and GAPs. Left: Representative western blots of GEF and GAP 
proteins in WT, PKP4-KO, and Rescue (PKP4-KO + PKP4) cells 
grown for 24 h in medium with or without  Ca2+. GAPDH was used 
as a loading control. D Immunofluorescence analysis of the F-actin 
organization in siRNA treated WT and PKP4-KO cells. Left: Repre-
sentative immunofluorescence images showing F-actin localization 
in WT and PKP4-KO cells after knockdown of the indicated GEFs 
and GAPs. Scale bar = 50 µm, detail 10 µm. Right: Number of cells 
with stress fibers. Averages + SD from three independent experiments 
are plotted. n ≥ 100 cells per condition. E Schematic of the effects 
of ARHGEF2 and ARHGAP23 in WT and PKP4-KO cells. Cre-
ated with biorender.com. F Immunofluorescence analysis of F-actin 
organization in WT cells ectopically expressing ARHGAP23 and 
in PKP4-KO cells ectopically expressing ARHGEF2. Left: Repre-
sentative immunofluorescence images showing F-actin localization 
in WT and PKP4-KO cells after ectopic expression of ARHGAP23 
or ARHGEF2, respectively. Scale bar = 100 µm, detail 10 µm. Right: 
Number of cells with stress fibers. Averages + SD from three inde-
pendent experiments are plotted. n ≥ 30 cells per condition. G Dis-
pase-based tension assay of WT and PKP4-KO cells treated with 
ARHGEF2- or ARHGAP23-directed siRNAs. Left: Representative 
images showing the monolayers. Scale bar = 5 mm. Right: Quantifica-
tion of monolayer size relative to non-targeting siRNA (siCtrl) treated 
cells. Averages + SD from five independent experiments are plotted. 
*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Significance 
was determined by student’s unpaired two tailed t-test (D, F, G). See 
also Fig. S6
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by promoting ARHGEF2 and preventing ARHGAP23 local-
ization at cell borders resulting in local RhoA activation and 
reorganizing of actin and AJs.

Discussion

AJ are dynamic structures that connect epithelial cells to form 
coherent cell sheets. Several studies have identified cellular 
contractility as an important determinant of junctional function 
[65]. Contractile tension at AJs is generated by an actomyosin 
cortex. Its formation depends on the recruitment of signaling 
proteins to AJ including RhoA, which activates non-muscle 
myosin [22, 66]. In addition, a conversion of disorganized actin 
filament networks into bundles is required for AJ maturation 
with formation of a zonula adherens (ZA) [67].

Here we have identified a role of the AJ associated protein 
PKP4 in the generation of tension across keratinocyte epi-
thelial sheets. We show that the generation of intrinsic force 
requires a PKP4-dependent regulation of RhoA activity. We 
propose that PKP4 provides a scaffold for the RhoA activa-
tor ARHGEF2 at AJs which allows the recruitment of RhoA 
and its effectors MLCK and MLC to AJs to facilitate corti-
cal ring formation and actomyosin contraction. In contrast, 
PKP4 association with ARHGAP23 reduced ARHGAP23 
binding to RhoA and this occurred primarily in the cyto-
plasm thereby reducing stress fiber formation (summarized 
in Fig. 7E).

The AJ proteins PKP4, p120, and α‑catenin 
differentially regulate Rho‑signaling

Among the E-cadherin associated cytoplasmic plaque pro-
teins of AJs, α-catenin and p120 are known to be involved 
in the spatiotemporal control of Rho signaling: The central-
spindlin complex, which consists of KIF23 (MKLP1) and 
RacGAP1 (MgcRacGAP), is known to control contractile 
ring formation and cell abscission during cytokinesis [68]. 
The same complex was shown to localize at the ZA in inter-
phase cells by interacting with α-catenin. α-catenin recruited 
ECT2 to activate RhoA and supported junctional integrity 
through tension generated by myosin IIA. Moreover, cen-
tralspindlin inhibited the junctional localization of ARH-
GAP5 thereby preventing RhoA inactivation [22]. α-catenin 
dependent RhoA activation increased actomyosin contractil-
ity at AJs leading to tension induced conformational changes 
in α-catenin. This α-catenin activation is a key event in the 
dynamic regulation of AJ remodeling and allows recruitment 
of specific actin-binding proteins, including vinculin. Thus, 
α-catenin regulates not only force sensing, but also force 
transmission, through a Rho-mediated feedback mechanism 
[8].

In contrast, p120 potently inhibited RhoA activity and 
in addition activated Rac and Cdc42 [69, 70]. p120 sup-
pressed the intrinsic GDP/GTP exchange activity of RhoA 
in a manner comparable to that of guanine nucleotide disso-
ciation inhibitors (GDI) [13]. By directly binding to RhoA, 
p120 sequestered RhoA in an inactive state. p120 also regu-
lated actomyosin contractility by controlling RhoA GTPase 
cycling at the centralspindlin complex during cytokinesis. 
RhoA activity was mislocalized in anaphase and telophase 
in p120 depleted cells resulting in cytokinesis defects [71].

PKP4 was shown to regulate cytokinesis and cell divi-
sion by regulating Rho activity [19, 20]. This required a 
direct interaction with RhoA and the Rho-GEF Ect2. How-
ever, a role of PKP4 in junction associated Rho-signaling 
has remained elusive so far. In keratinocytes, the activation 
of RhoA was necessary for the formation and stability of 
AJs, as RhoA inhibition resulted in E-cadherin removal from 
the junctional complex, and actomyosin contractility was 
crucial for confluence-dependent inhibition of keratinocyte 
proliferation [72].

Here we show that in PKP4-KO keratinocytes, actin 
organization and Rho-GTPase activity are profoundly 
altered, raising the question how PKP4 modulates Rho-sign-
aling beyond cytokinesis. Since the spatio-temporal control 
of Rho-GTPases depends on the local balance between GEF 
and GAP activities, we hypothesized that PKP4 might affect 
Rho-signaling by interacting with GEFs and/or GAPs at the 
AJs. We identified ARHGEF2 and ARHGAP23 as highly 
affected by PKP4. Whereas ARHGEF2 was recruited to 
AJs in a PKP4-dependent manner, ARHGAP23 was rather 

Fig. 7  Junctional localization of ARHGAP23 and ARHGEF2 is reg-
ulated by PKP4. A Immunofluorescence analysis of the junctional 
localization of ARHGAP23. Left: Representative immunofluores-
cence images showing ARHGAP23 localization in WT, PKP4-KO, 
and Rescue (PKP4-KO + PKP4) cells. Scale bar = 50  µm, detail 
10  µm. Right: Bicellular/cytoplasm ratio of fluorescence intensity. 
n ≥ 100 cells per condition from two independent experiments. B 
Endogenous ARHGAP23 was affinity-purified from WT and PKP4-
KO cells. Left: Representative western blots of co-purifying proteins. 
Normal rabbit IgG served as negative control. Right: Quantification 
of eluate protein levels normalized to IgG heavy chain and relative to 
values in control cells. Averages + SD from three independent experi-
ments are plotted. C Immunofluorescence analysis of the junctional 
localization of ARHGEF2. Left: Representative immunofluorescence 
images showing ARHGEF2 localization in WT, PKP4-KO, and Res-
cue (PKP4-KO + PKP4) cells. Scale bar = 50 µm, detail 10 µm. Right: 
Bicellular/cytoplasm ratio of fluorescence intensity. n ≥ 100 cells per 
condition from two independent experiments. D Endogenous ARH-
GEF2 was affinity-purified from WT and PKP4-KO cells. Left: Rep-
resentative western blots of co-purifying proteins. Normal rabbit IgG 
served as negative control. Right: Quantification of eluate protein lev-
els normalized to IgG heavy chain and relative to values in control 
cells. Averages + SD from three independent experiments are plot-
ted. E Proposed model of PKP4’s role in Rho signaling. Created with 
biorender.com. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not signifi-
cant. Significance was determined by one-way ANOVA with Tukey’s 
multiple comparisons test (A, C) or by student’s unpaired two tailed 
t-test (B, D)
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displaced from the cell cortex suggesting that PKP4 inter-
fered with its junction-associated activity. The local activ-
ity of ARHGEF2 together with the displacement of ARH-
GAP23 can both contribute to enhanced RhoA activity at the 
ZA which through the activation of a ROCK-MLCK-MLC 
signaling axis enables actomyosin contractility and the gen-
eration of tension.

These data imply Rho-signaling as a general feature of 
the p120 family of proteins. However, our results demon-
strate that p120 and PKP4 exert opposing roles in Rho-
signaling. What does this mean in the context of the epi-
dermis? Since PKP4 expression is restricted to the basal 
layers [73] its function in Rho signaling appears important 
for actively proliferating cells but dispensable for differ-
entiated cells. A main function of the suprabasal cells is 
to provide a stable barrier. In contrast, epidermal renewal 
depends on dynamic reorganization of the cytoskeleton and 
cell shape and requires cell extrusion from the basal layer. 
During physiological self-renewal, proliferation within the 
basal layer leads to crowding, thereby locally distorting cell 
shape and stress distribution resulting in a decrease in cor-
tical tension. This triggered differentiation and delamina-
tion of basal cells, reinstating basal cell layer density [74]. 
Epidermal renewal is balanced with differentiation and the 
movement of stem cells to the barrier-forming layers of the 
epidermis. According to our data, PKP4 would prevent the 
loss of tension and thus differentiation in most basal cells 
through the activation of RhoA and actomyosin at the cell 
cortex. In contrast, in cells committed to differentiation, 
PKP4 is down-regulated leading to reduced tension thus 
facilitating delamination. In accordance to this hypothesis, 
Spindler et al. [75] have shown that RhoA signaling is pri-
marily important in the lower epidermis to maintain adhe-
sion of keratinocytes, whereas in superficial layers, the role 
of RhoA signaling seemed to be less pronounced. Addition-
ally, p120 could counteract the function of PKP4 to guar-
antee the balance of forces and maintain barrier function in 
the suprabasal layers. In support of this notion, a conditional 
knockout of p120 in the epidermis caused decreased epider-
mal differentiation and interfered with barrier function [76].

A role of PKP4 in the pathogenesis of skin diseases

Altered cellular forces, AJs, and RhoA signaling have 
all been implicated in cancer. RhoA mutations appear 
restricted to certain cancer types and distinct RhoA muta-
tional hotspots are associated with different cancer types 
[77, 78]. However, mutations in RhoA are not frequent 
and accumulating evidence supports a role for its regula-
tors including ARHGEF2 as well as the effectors ROCK1/2 
and MLCK in tumor development and progression. Genetic 
analyses uncovered a strong correlation between the level 
of ARHGEF2 expression and cancer progression and the 

development of drug resistance. ARHGEF2 transcription 
was increased by oncogenic p53 mutations [79] and the 
activation of RhoA appeared to be intrinsic to its oncogenic 
abilities. ROCK-driven actomyosin contractility controls a 
series of processes including cell morphology, cell migra-
tion, invasion, differentiation, proliferation, and resistance to 
apoptosis. Accordingly, Rho-ROCK-myosinII signaling was 
shown to play a role not only in primary tumor formation but 
also in cell migration, dissemination, and metastasis. There-
fore, numerous ROCK inhibitors have been investigated for 
their therapeutic potential in the treatment of cancers [80]. 
Abnormal expression of MLCK has been observed in many 
diseases including cancer where MLCK-dependent phos-
phorylation of myosin II increased the metastatic potential 
of tumor cells [81]. Based on our findings that PKP4 is an 
important regulator of an ARHGEF2-RhoA-ROCK/MLCK 
signaling axis, it is tempting to speculate that this function 
of PKP4 may contribute to cancer. In support of this notion, 
PKP4 has been implicated in pancreatic adenocarcinoma and 
thymoma (http:// gepia2. cancer- pku. cn, [82]).

Beyond its potential role in cancer, distorted Rho signal-
ing has also been implicated in the autoimmune diseases 
Pemphigus Foliaceus (PF) and Pemphigus vulgaris. Most 
notably, PF-antibodies induced skin blistering by interfering 
with RhoA signaling which compromised intercellular adhe-
sion and ultimately induced keratinocyte dissociation [83]. 
In a variant of endemic PF, autoantibodies directed against 
PKP4 and the related armadillo repeat gene deleted in velo-
cardio-facial syndrome (ARVCF) protein were detected, 
pointing to a potential role of PKP4 in the pathomechanism 
of Pemphigus skin diseases.

Conclusions and limitations

Intrinsically generated forces at the junctions serve to 
balance cell proliferation and differentiation during skin 
renewal. Our data suggest that PKP4 plays a role in this 
context by dynamically regulating the spatio-temporal 
activity of Rho signaling. This raises several questions that 
require further investigation: First, the mechanism how 
PKP4 regulates the levels of the RhoA regulators ARH-
GEF2 and ARHGAP23 has currently not been resolved. So 
far, no data are available to link PKP4 with transcriptional 
or post-transcriptional regulation. Second, we have tested 
the response of murine keratinocytes to PKP4-mediated 
cell tension. However, our study did not specifically address 
the role of PKP4 in the intact epidermis. Second, it will be 
interesting to assess how PKP4 affects epithelial function 
and AJ-mediated tension in simple epithelial cells. This will 
be of special interest in the context of apoptotic or pyrop-
totic cell extrusion. It has been shown that contractility is 
essential for the expulsion of apoptotic cells which become 

http://gepia2.cancer-pku.cn
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hyper contractile to generate a tensile signal that is neces-
sary to activate RhoA in its neighbors [84]. Finally, it will 
be important to analyze if PKP4 is involved in cytoskeletal 
and AJ alterations occurring in infectious and autoimmune 
diseases and in cancer.
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