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Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintain-
ing cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), 
allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the 
regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracel-
lular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiologi-
cal conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein 
Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases 
PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether 
the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase 
mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive cal-
cium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive 
therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights 
the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication 
between the ER and mitochondria, and ultimately the determination of cell function and fate.
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Introduction

Disruption of organelle communication plays a pivotal role 
in the altered cellular homeostasis in older organisms and 
during disease progression. The cellular response to per-
turbations within the intracellular environment can be an 
adaptive and ultimately beneficial response, or a hormesis 
effect, where low levels of stress renders cells resistant to 
a subsequent challenge [1]. The beneficial hormesis effect 
is often preceded by an acute change in the cellular envi-
ronment, such as in skeletal muscle during exercise where 
there is a site-specific increase in ROS that activates specific 

signalling pathways, such as Nrf2 activation [2, 3]. Chronic 
changes in the intracellular redox environment, result in 
maladaptive responses that can be detrimental and often 
described in pathological conditions and age-related dis-
eases [4]. Cellular homeostasis is maintained by a constant 
flow of information from the external environment but also 
critically by inter-organelle communication, facilitating the 
exchange of material and information in response to bio-
logical perturbations. The endoplasmic reticulum (ER) and 
mitochondria are key regulatory hubs in maintaining cell 
homeostasis and they have a synergistic relationship that can 
determine their function and response to the cellular envi-
ronment. Mitochondrial-ER contact sites (MERCS) medi-
ate the exchange of information between these organelles 
and help determine how the cell responds to disruption in 
the cellular environment. The regulation of the assembly 
and disassembly of MERCS is an active area of research, 
in particular in the context of how MERCS change during 
development, age and disease and with subsequent effects 
on the function of both the ER and mitochondria.
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Endoplasmic reticulum stress 
and the unfolded protein response

The endoplasmic reticulum (ER) is the largest of the 
cell's membrane-bound organelles (~ 10% cell volume), 
it is composed of a continuous network of tubules and 
sacs surrounded by membranes or cisternae [5]. The ER 
contributes to proteostasis by regulating protein synthesis, 
folding and transport [6]. It is the main intracellular store 
of calcium  (Ca2+), the ER releases  Ca2+ into the cytosol in 
response to cellular signals, initiating a signalling cascade 
that can modulate a wide range of cellular functions [7]. 
The rough ER is composed of sacs with a high density of 
ribosomes attached to the cytosolic domain and involved 
in protein biosynthesis, while the smooth ER contains 
tubules that specialise in lipid synthesis [5, 8].

Protein folding is a key regulatory step in proteostasis 
and disruption can result in the accumulation of misfolded 
proteins. The ER has a unique environment that facili-
tates protein folding, its oxidising nature favouring the 
formation of disulphide bonds [6]. ER homeostasis can 
be altered by physiological and pathological conditions, 
leading to an accumulation of misfolded proteins in the ER 
lumen, referred to as ER stress and results in the activation 
of the unfolded protein response (UPR) [9]. A variety of 
cellular stress conditions can alter ER proteostasis, includ-
ing disruption of  Ca2+ homeostasis, protein glycosylation, 
redox imbalance and an accumulation of misfolded pro-
teins [10]. The adaptive  UPRER aims to restore proteostasis 
and alleviate ER stress by reducing protein translation, 
increasing the chaperone capacity of the ER and stimulat-
ing the degradation of misfolded proteins [6, 9].

UPR activation

The  UPRER comprises three branches: inositol-requiring 
enzyme 1α (IRE1α), protein kinase RNA-like ER kinase 
(PERK) and activating transcription factor 6 (ATF6) [9]. 
These ER signalling proteins have a similar structure, con-
sisting of ER luminal and cytosolic domains. The ER lumi-
nal domains are formed by a single pass through the mem-
brane [9], while cytosolic domains are the mediators of the 
 UPRER [9, 11]. Under physiological conditions, the chaper-
one BiP/glucose-regulated protein 78 (GRP78), binds to the 
luminal domains of the mediators of the  UPRER, repressing 
their activation [12, 13]. Upon accumulation of excessive 
unfolded or misfolded proteins in the ER lumen, BiP binds 
to misfolded proteins on the substrate-binding site and the 
ATPase domain dissociates from the transmembrane recep-
tors, allowing allosteric activation of the  UPRER regulators 
by oligomerisation [14, 15] (Fig. 1a).

UPRER signalling

IRE1α is the most conserved signalling branch of the 
 UPRER, it is a type I transmembrane protein with Ser/Thr 
protein kinase and endoribonuclease activities [42]. Upon 
accumulation of misfolded proteins, BiP dissociates from 
IRE1α, inducing its oligomerisation and autophosphoryla-
tion [43, 44]. Phosphorylated IRE1α RNase activity medi-
ates the unconventional splicing of an intronic region of 
XBP1 in the cytoplasm independently from the spliceosome, 
generating the active form, spliced XBP1 (XBP1s) [16–18] 
(Fig. 1a). XBP1s contains a basic leucine zipper domain 
(bZIP), it can translocate to the nucleus to induce expression 
of ER stress-response elements (ERSE), related to quality 
control (protein folding, translocation, and degradation) [9, 
19]. IRE1α also mediates the cleavage and degradation of 
mRNAs and microRNAs; in a process known as regulated 
IRE1α-dependent decay (RIDD), decreasing the abundance 
of some mRNAs and reducing the protein load in the ER 
lumen [20]. IRE1α regulation of mRNAs and microRNAs 
depends on the presence of an IRE1α cleavage site formed 
by a stem-loop containing the sequence “CUG CAG ” [45]. 
IRE1α has been demonstrated to degrade miR-17, -34a, 
-96, and -125b, these microRNAs target mRNA encoding 
the pro-apoptotic protein caspase-2, increasing the levels 
of this protein and initiating activation of apoptosis [46]. 
Furthermore, the cytosolic domain of IRE1α can interact 
with adapter proteins to establish crosstalk with other stress-
mediator pathways [47]. The interaction of IRE1α with 
TRAF2 (tumour necrosis factor receptor (TNFR)-associated 
factor-2) promotes the activation of ASK1/JNK [30], ERK 
and p38 [48], protein kinases involved in autophagy, apop-
tosis and NF-κB inflammatory pathways [49].

PERK is a type I protein kinase that dissociates from 
BiP under ER stress, it is activated by dimerization and 
autophosphorylation [12]. Active PERK phosphorylates 
eIF2α at serine 51 [21], promoting a rapid attenuation of 
global mRNA translation, reducing the protein load for fold-
ing in the ER [22, 23]. Phosphorylated eIF2α also controls 
the selective translation of the transcription factor ATF4 [24] 
(Fig. 1a). ATF4 promotes the translation of ER stress genes 
related to the restoration of cellular homeostasis: protein 
synthesis, amino acid metabolism, redox homeostasis, apop-
tosis and autophagy [9]. ATF4 orchestrates the restoration 
of protein synthesis when the ER stress levels have been 
reestablished by regulating a feedback loop responsible for 
eIF2α dephosphorylation. The feedback loop is mediated 
by the induction of C/EBP homologous protein (CHOP) by 
ATF4, upregulation of GADD34 (growth arrest and DNA 
damage 34), which forms a complex with PP1 (a serine/
threonine-protein phosphatase) to dephosphorylate eIF2α 
[25, 26].
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ATF6α is a type II transmembrane protein that pos-
sesses a cytosolic N-terminus containing a bZIP motif [50]. 
ATF6α is located on the ER membrane with BiP bound to 
its Golgi localisation sequences. Under ER stress BiP is 
released from ATF6α, allowing translocation to the Golgi 
apparatus [51]. In the Golgi apparatus ATF6α is cleaved 
by Site-1 and 2 proteases (S1P and S2P), generating the 
N-terminal cytoplasmic fragment (ATF6f) containing the 
bZIP motif [27, 28] (Fig. 1a). ATF6f, following translocation 

to the nucleus, promotes the expression of ERSE and the 
ER chaperones (BiP and GRP94), affecting protein fold-
ing, maturation, translocation, and degradation [27, 28]. 
ATF6f and IRE1α constitute a regulatory hub of signalling 
pathways that are normally activated simultaneously for the 
regulation of XBP1s [29]. ATF6α promotes the expression 
of XBP1 mRNA, enhancing the substrate load for IRE1α 
splicing [29]. ATF6α also heterodimerises with XBP1s 
for the transcription of genes required for ER associated 

Fig. 1  The UPRER. A Adaptive UPRER. Following ER stress, BiP 
binds to misfolded proteins on the substrate-binding site and the 
ATPase domain dissociates from the transmembrane receptors, allow-
ing allosteric activation of the UPRER regulators by oligomerisation 
and phosphorylation [14, 15]. (1) IRE1α RNase activity mediates 
unconventional splicing of XBP1 [16–18], XBP1s translocates to the 
nucleus to promote expression of genes related to quality control [9, 
19]. IRE1α also mediates the cleavage and degradation of mRNAs 
and microRNAs; regulated IRE1α-dependent decay (RIDD), decreas-
ing the protein load in the ER lumen [20]. (2) PERK phosphorylates 
eIF2α [21], promoting rapid attenuation of global mRNA transla-
tion [22, 23]. Phosphorylated eIF2α also regulates the translation 
of the transcription factor ATF4 [24]. ATF4 regulates the feedback 
loop responsible for the restoration of protein synthesis. ATF4 induc-
tion of CHOP, upregulates the expression of GADD34 which forms 
a complex with PP1 to dephosphorylate eIF2α [25, 26]. (3) ATF6α 
translocates to the Golgi apparatus, where it is cleaved to generate 
ATF6f, which acts as a transcription factor that promotes the expres-
sion of ER chaperones [27, 28]. ATF6α promotes the expression of 

Xbp1 mRNA, enhancing the substrate load for IRE1α splicing [29]. B 
Maladaptive UPRER. Following prolonged ER stress the homeostatic 
capacity of the UPRER becomes saturated that can activate pro-apop-
totic signalling. (1) IRE1α interacts with TRAF2 to promote a kinase 
signalling cascade that activates JNK [30, 31]. JNK promotes the oli-
gomerisation of BAX and BAK on the mitochondrial membrane and 
the assembly of the apoptosome [32, 33]. RIDD can promote apopto-
sis by degrading essential cell-survival mRNAs such as the negative 
regulators of TXNIP, promoting the assembly of the inflammasome 
leading to apoptosis [34, 35]. (2) PERK-eIF2α induces the transla-
tion of ATF4, activation of CHOP and GADD34 [25, 26]. CHOP 
promotes the expression of PUMA, NOXA, BIM and BID, which 
induce the mitochondrial BCL-2 pro-apoptotic proteins. CHOP can 
also activate the translation of ERO1α, promoting the oxidation of the 
ER environment [36, 37]. PERK-ATF4-CHOP arm regulates IP3R-
mediated  Ca2+ leakage from the ER [38, 39]. Sustained and excessive 
 Ca2+ transport from the ER to the mitochondria impairs mitochon-
drial metabolism and lead to opening of the mPTP and pro-apoptotic 
signalling [40, 41]
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degradation (ERAD). Finally, XBP1s and ATF6f promote 
cellular secretory capacity by inducing the expansion of the 
ER and Golgi apparatus [52–54].

ERAD is activated alongside the  UPRER [10, 55]. ERAD 
involves the recognition of misfolded proteins in the ER, 
their retrotranslocation to the cytoplasm, ubiquitination and 
subsequent degradation by the proteasome [55]. The induc-
tion of ERAD is regulated by the  UPRER, although there 
is crosstalk between these two mechanisms as ERAD can 
coordinate the expression of IRE1α [56].

Adaptive  UPRER signalling

The regulation and activation of the  UPRER is dose-depend-
ant, a low dose of an ER stressor can activate adaptive 
 UPRER, while in response to higher doses or chronic ER 
stress, maladaptive  UPRER is induced [57] (Fig. 1). Adap-
tive  UPRER activation (Fig. 1a) can promote an increase in 
the translation of chaperones,  Ca2+ binding proteins and 
activation of antiapoptotic and antioxidant signalling path-
ways [58–60]. Ageing is associated with an alteration of 
ER morphology and the expression levels of ER chaperones 
and transducers, resulting in an impairment of the adaptive 
 UPRER [59]. Subsequently cells are more susceptible to 
alterations in proteostasis and the ability to adapt to dis-
rupted homeostasis [61].

Adaptive  UPRER has been linked to a signalling network 
that improves the ageing phenotype. The stage of life of 
the organism, whether during development or maturity, can 
determine the hormesis effect of activation of the  UPRER 
which is related to the decline in the inducibility of these 
pathways with age [62]. In C. elegans it was demonstrated 
that the inducibility of the  UPRER peaks in the early devel-
opmental stages and declines in adulthood [62]. Exposure of 
C. elegans during larval development to low doses of tunica-
mycin (0.125 µg/ml) for 24 h resulted in increased lifespan 
and animals that had a delayed age-associated reduction in 
inducible  UPRER activation [63]. Activation of IRE1-XBP1 
arm can improve organismal development, stress resist-
ance, and longevity [63–66]. During dietary restriction in 
C. elegans, the IRE1-XBP1 arm activates ERAD and results 
in increased longevity [63]. Similarly in C. elegans, it was 
demonstrated that expression of XBP1s in neurons, led to 
extended lifespan by triggering an adaptive  UPRER in distant 
non-neuronal cells [65]. Activation of the ATF4 signalling 
pathway has also been demonstrated to extend lifespan in C. 
elegans [67, 68] and Saccharomyces cerevisiae [69].

Maladaptive  UPRER signalling

Following prolonged ER stress, the homeostatic capacity of 
the  UPRER becomes saturated and results in pro-apoptotic 
signalling, regulated by IRE1α and PERK, with increased 

 Ca2+ release from the ER (Fig. 1b). Under prolonged ER 
stress phosphorylated IRE1α interacts with TRAF2 to pro-
mote a kinase signalling cascade that ultimately activates 
JNK (Jun amino-terminal kinase) [30, 31]. JNK can promote 
apoptosis through activation of the mitochondrial BCL-2 
pro-apoptotic proteins, BAX and BAK [32]. Oligomerisation 
of BAX and BAK promotes the assembly of the apoptosome 
[33]. Activation of the RIDD pathway by IRE1α can pro-
mote apoptosis by degrading essential cell-survival mRNAs 
such as chaperone BiP [70]. RIDD can degrade microRNAs 
that negatively target the expression of caspase 2, mediat-
ing BAX/BAK dependant apoptosis [46]. Finally, RIDD is 
involved in the degradation of negative regulators of thiore-
doxin-interacting protein (TXNIP), promoting the assembly 
of the inflammasome leading to apoptosis [34, 35] (Fig. 1b).

The PERK-eIF2α branch of the  UPRER induces the trans-
lation of ATF4, activation of CHOP and GADD34 [25, 26]. 
CHOP regulates mitochondrial BCL-2 pro-apoptotic pro-
teins, BAX and BAK through upstream regulators such as 
BH1-3 pro-apoptotic proteins; PUMA, NOXA [71], BIM 
[72] and BID [73, 74]. Activation of GADD34 by CHOP 
can restore protein translation in homeostatic conditions, 
however when proteostasis is not recovered, they can dis-
rupt oxidative folding and result in altered ROS generation 
in the ER lumen [36, 75]. In addition, CHOP can activate 
the translation of ERO1α, involved in the formation of 
disulphide bonds in nascent proteins, but during ER stress 
promotes oxidation of the ER environment [36, 37]. The 
disruption of the ER redox state promotes leakage of  H2O2 
to the cytoplasm that can further induce apoptotic signalling 
[36] (Fig. 1b).

Redox regulation of the ER

The intracellular redox environment is closely linked to the 
initiation of ER stress and  UPRER activation. For example 
the disulphide reducing agent, dithiothreitol, is commonly 
used as an inducer of ER stress, as it can interfere with the 
redox dependent protein folding mechanisms within the ER 
[76]. In response to both endogenous and external stressors, 
the ER increases its protein folding capacity and activates 
defence mechanisms, such as autophagy and the antioxidant 
response [77, 78]. In the ER there is a constitutive produc-
tion of  H2O2 as a biproduct of oxidative protein folding, 
that promotes the formation of covalent disulphide bonds on 
nascent polypeptide chains [76]. The ER has a more oxidis-
ing environment compared to the cytosol that facilitates thiol 
disulphide exchange for correct protein folding and the ratio 
of GSH/GSSG is much lower compared to other organelles 
[79]. Oxidative folding is catalysed by ER-resident pro-
tein disulphide isomerases (PDIs), endoplasmic reticulum 
protein 72 (Erp72) and endoplasmic reticulum 57 (Erp57) 
[80]. The Cys residues located in the active site of PDI’s 
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are reduced upon oxidation of the polypeptide, promoting 
the formation of disulphide bonds and subsequently re-oxi-
dised by ER oxidoreductase 1 (ERO1) [81, 82]. ERO1 can 
transfer electrons to molecular oxygen  (O2) and as a result 
generate  H2O2, constituting a basal source of ROS in the 
ER [83]. Correct oxidative folding of proteins is essential 
for maintaining ER homeostasis, as impairment can induce 
the accumulation of both unfolded proteins and ROS in the 
lumen of the ER [76]. In C. elegans it was demonstrated that 
during ageing there is a shift in the redox state of the ER to 
more reducing conditions compared to the cytosol, which 
becomes more oxidised with age [84]. As a result of reduced 
folding capacity within the ER, cells are more sensitive to 
maladaptive UPR signalling or ER stress response failure, 
as described in metabolic disease and ageing [85]. Organelle 
specific changes in the redox environment reflect the distinct 
functions of these organelles and how redox homeostasis 
within different compartments needs to be regulated. Table 1 
contains ER and MERCS localised proteins identified with 
redox specific post transcriptional modifications.

The  UPRER response can also be activated by alterations 
in the redox state of the ER. Activation of the  UPRER in 
response to oxidative stress is mediated by two members of 
the PDIs, PDIA5 and PDIA6, which facilitate thiol–disul-
phide exchange on Cys residues of the luminal domains of 
IRE1, PERK and ATF6 [86, 87]. ER generated ROS can 
induce ATF6 signalling, PDIA5 cleaves disulphide bonds 
in ATF6, promoting oligomer dissociation and translocation 
from the ER to Golgi and expression of ATF6 target genes 
[87]. ROS can also activate IRE1α and PERK signalling, 
when PDIA6 binds to the luminal domain of both  UPRER 
sensors and promotes thiol disulphide exchange, similar to 
ATF6 activation [86, 88, 89]. Following initial ER stress 
PERK Cys216 can be reversibly oxidised allowing formation 
of covalent interactions with ERO1α, resulting in a tight-
ening of MERCS formation and increased  Ca2+ flux into 
mitochondria and regulating mitochondrial bioenergetics 
[90]. IRE1α also provides a metabolic link between  UPRER, 
redox signalling and mitochondrial function. Sulfenylation 
of a conserved Cys residue located in the IRE1α kinase loop 
can inhibit its kinase activity and promote p38 activation of 
the Nrf2/SKN-1 dependent antioxidant response, regulat-
ing cytoplasmic ROS and inhibiting the UPR [91]. IRE1α 
therefore lies at a metabolic hub that dictates cell fate via 
activation of the UPR, initiation of the antioxidant response 
(via Nrf2 activation) or activation of apoptotic cell death via 
enhanced  Ca2+ entry into mitochondria.

Calcium signalling in the ER

The ER is the main  Ca2+ store in metazoan cells, regulat-
ing  Ca2+ homeostasis which is vital for cellular function. 
In the lumen of the ER, chaperones including calreticulin, 

calnexin, BiP, GRP94 and PDI, maintain  Ca2+ levels within 
a physiological range [92]. Many of these chaperones are 
implicated in ER stress and ROS sensing, connecting these 
responses with  Ca2+ homeostasis [76].  Ca2+ flux within the 
ER is mediated by sarco/endoplasmic reticulum  Ca2+ trans-
port ATPase (SERCA) family, which regulates the pumping 
of  Ca2+ inside the ER in an ATP-dependent process [93]. 
Thapsigargin, an inhibitor of SERCA and commonly used 
to promote the induction of ER stress. The release of  Ca2+ to 
the cytosol is controlled by the inositol 1,4,5-trisphosphate 
receptor (IP3R) and the ryanodine receptor (RyR) families 
[94, 95].

Under ER stress conditions a decrease in ER  Ca2+ levels 
has been associated with the inhibition of SERCA activity 
[96–98] and passive leak of  Ca2+ from the ER due to altered 
IP3R activity [99]. An increase in ROS within the ER has 
been demonstrated to promote the release of  Ca2+ from the 
ER, linked with oxidation of specific Cys residues of  Ca2+ 
regulators including SERCA [100], IP3R [101] and RyR 
[102]. Perturbations in  Ca2+ homeostasis within the ER will 
inhibit the function of  Ca2+-dependent ER chaperones poten-
tially resulting in ER stress [103].  Ca2+ flux between the ER, 
cytoplasm and mitochondria can also determine apoptotic 
signalling during prolonged ER stress [104]. The PERK-
ATF4-CHOP arm regulates  Ca2+ flux by CHOP induction of 
ERO1α, that subsequently induces  IP3R-mediated  Ca2+ leak-
age from the ER [38, 39]. Sustained ER stress and excessive 
 Ca2+ transport from the ER to the mitochondria can impair 
mitochondrial metabolism and lead to opening of the mito-
chondrial membrane permeability transition pore (mPTP) 
and pro-apoptotic signalling [40, 41] (Fig. 1b).  Ca2+ release 
into the cytoplasm also activates Calpain proteases, which 
cleaves and activates caspase 12, triggering the induction of 
apoptosis [105, 106].

Mitochondria

Mitochondria are essential organelles with multi-fac-
eted functions including energy generation via oxidative 
phosphorylation, iron metabolism, ion and phospholipid 
homeostasis. Mitochondria are also involved in the gen-
eration of ROS and subsequent redox signalling,  Ca2+ 
homeostasis, apoptosis and autophagy. Disruption of mito-
chondrial function has been implicated in almost all age-
related diseases including sarcopenia, neurodegeneration 
and cancer [107]. Mitochondria are in constant dynamic 
flux determined by the balance between biogenesis, mito-
chondrial fusion and fission along with selective degrada-
tion via mitophagy [107]. Mitochondrial morphology has 
been linked to substrate use, with fragmented mitochon-
dria demonstrating increased fatty acid oxidation, linking 
mitochondrial dynamics and cellular fuel preference [108]. 
Indeed mitochondrial morphology can change rapidly in 
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Table 1  Proteins identified with redox post-translational modifications (PTMs) involved in ER-mitochondria communication

Protein Subcellular localization Biological process Redox related PTMs References

ACO Mitochondria TCA cycle Redox regulation of Cys residues in 
regulating Fe-S clusters

[271]

AKT Mitochondria Mit. Survival Disulphide between Cys297 and 
Cys311

[272]

ANT Mitochondria mPTP Disulphide between Cys160 and 
Cys257

[273]

ATF6 ER UPRER Inter and intramolecular disulphides 
in luminal domain (Cys467 and 
Cys618)

[274]

ATF6 ER UPRER ATF6α disulphide reduction during ER 
stress, by PDIA5

[87]

CAC Mitochondria TCA cycle Glutathionylation of Cys136 and 
Cys155

[275]

Complex I, 75-kDa subunit Mitochondria ETC Glutathionylation of Cys531 and 
Cys704

[276]

Complex I, ND3 Mitochondria ETC Functional redox switch 
Cys39 exposed in inactive state

[277]

Complex II, 70-kDa subunit Mitochondria ETC, TCA cycle Redox regulation of Cys90, by 
S-glutathionylation

[278]

Complex V, α-subunit Mitochondria ETC Functional redox regulation by of 
Cys294

[279]

Complex V, α-subunit and γ-subunit Mitochondria ETC Functional redox regulation by disul-
phide bond between Cys294 and 
Cys103

[279]

CYP-D Mitochondria mPTP Functional redox regulation of Cys203 [280]
DNAJA1 Cytosol UPRmt Redox modifications of Cys149 and 

Cys150
[281]

DRP1 Mitochondria, MAMs Mit. dynamics Functional redox regulation of Cys644 [282]
ERO1α ER, MAMs Oxidative folding, MERCS Cys94-Cys99 disulphide bond [283]
ERO1β ER Oxidative folding Cys90-Cys95 disulphide bond [283]
ERp72 ER Oxidative folding Cys-X-X-Cys motif in catalytic site [284]
ERp57 ER Oxidative folding Cys-X-X-Cys motif in catalytic site [284]
IRE1α ER UPRER Oxidation of conserved Cys605, 

Cys630, Cys715 and Cys951
[91, 285]

IRE1α ER UPRER IRE1α Cys148 and Cys332 involved in 
disulphide bonds

[286]

IRE1α ER UPRER Disulphide between IRE1α
Cys148 & PDIA6 Cys residue, regu-

lates IRE1α dephosphorylation

[86]

GPx7 ER Oxidative folding Peroxidatic Cys57 and Resolving 
CysCys87

[287]

GPx8 ER Oxidative folding Peroxidatic Cys79 and Resolving 
Cys108

[288]

GRP78 ER UPRER GPx7 activation by disulphide bond 
Cys41-Cys420

[289]

IDH Mitochondria TCA cycle Inactivation by glutathionylation
of Cys269

[290]

IP3R1 ER, MAMs Ca2+ Signalling, MERCS Functional redox regulation of Cys206 
and Cys214 (cytosolic suppressor 
domain), Cys1394 and 5 basally 
oxidised Cys

[291]

MCU Mitochondria, MAMs Ca2+ Signalling, MERCS Redox regulation of Cys97 [292]
MFN1 Mitochondria, MAMs Mit. dynamics, MERCS Redox regulation by disulphide bond 

between MFN1 and MFN2-Cys684
[293]
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response to metabolic demand during exercise [109] or in 
proliferating cells such as in stem cells or cancerous cells, 
where mitochondrial fission predominates over fusion and 
is characterised by a fragmented mitochondrial network 
[110].

Mitochondria and ER are linked at MERCS facilitating 
the dynamic flow of information between the organelles, 
allowing changes in ER homeostasis to regulate mitochon-
drial function [111, 112]. Early adaptive ER stress pro-
motes the formation of contact sites and facilitates  Ca2+ 
transfer to mitochondria that increases mitochondrial 
metabolism [113], increasing energetics to alleviate ER 
stress [114].

Mitochondrial dynamics

Mitochondrial biogenesis is a complex process requir-
ing the integration of mitochondrial DNA, lipids and pro-
teins, responding to stimuli such as hypoxia and metabolic 
demand [115]. Mitochondrial division stimulates the recruit-
ment of proteins and components to existing mitochondrial 
compartments and complexes, ensuring that biogenesis is 
closely coupled to mitochondrial fusion and fission [116]. 
The regulation of mitochondrial degradation via mitophagy 
is controlled by a number of pathways including: Ubiqui-
tin dependent degradation via the Pink/Parkin pathway, 
receptor mediated mitophagy via BNIP3, BNIP3L/NIX 

Table 1  (continued)

Protein Subcellular localization Biological process Redox related PTMs References

MFN2 Mitochondria, MAMs Mit. dynamics, MERCS Redox regulation by disulphide bond 
between MFN1 and MFN2-Cys684

[293]

MID49/51 Mitochondria, MAMs Mit. dynamics, MERCS Functional redox regulation by oligom-
erisation

[294]

ODH Mitochondria TCA cycle Functional redox regulation by sulfe-
nylation, sulfinylation, and S-glutath-
ionylation

[295]

PDH Mitochondria TCA cycle Functional redox regulation of Cys 
residue

[296]

PDI ER Oxidative folding Cys-X-X-Cys motif in catalytic site [284]
PERK ER, MAMs UPRER, MERCS PDIA6, PDI and ERp57 are involved 

in the redox regulation of PERK, 
likely involves disulphide bond 
formation

[86, 89]

PERK ER, MAMs MERCS Redox regulation of PERK-ERO1⍺ in 
MAMs requires PERK Cys216

[90]

PRDX3 Mitochondria Antioxidant Response Peroxidatic Cys47 and Resolving 
Cys168

[297]

PRDX4 ER Oxidative folding Peroxidatic Cys127 and Resolving 
Cys248

[298]

PRDX5 Mitochondria Antioxidant Response Peroxidatic Cys48 and Resolving 
Cys152

[299]

PTEN Mitochondria Mitophagy Disulphide bond Cys71-Cys124 [300]
QSOX ER Oxidative folding Cys-X-X-Cys motif in the catalytic site [301]
RyR1 ER, MAMs Ca2+ Signalling, MERCS Functional redox regulation of Cys253, 

Cys1040, and Cy1303 and others 
endogenously modified

[302]

SERCA ER Ca2+ Signalling Functional redox regulation of Cys674 [303]
VDAC1 Mitochondria, MAMs Ca2+ Signalling, MERCS Redox sensitive Cys127 & Cys232 [304]
VKOR ER Oxidative folding Cys-X-X-Cys motif in catalytic site [305]

ACO Aconitase, B-AKT protein kinase, ANT adenine nucleotide translocator, 6-ATF6 activating transcription factor, CAC  carnitine/acylcarni-
tine carrier, Complex I, 75-kDa subunit; Complex I, ND3; Complex II, 70-kDa subunit; Complex V, α-subunit; Complex V, γ-subunit; D-CYP-
D, cyclophilin, DNAJA1 DnaJ hsp40 family member A1, DRP1 dynamin-related protein 1, ERO1a endoplasmic reticulum oxidoreductase 1 
alpha, ERO1b endoplasmic reticulum oxidoreductase 1 beta, ERp72 protein disulphide isomerase family A, member 4; ERp57 protein disulphide 
isomerase family A, member 3, IRE1a inositol-requiring enzyme type 1 alpha, 7-GPx7 glutathione peroxidase, 8-GPx8 glutathione peroxidase, 
78-GRP78 glucose-regulated protein, IDH isocitrate dehydrogenase, IP3R1 inositol 1,4,5-trisphosphate receptor type1, MCU mitocondrial cal-
cium uniporter, 1-MFN1 mitofusin; 2-MFN2 mitofusin, MID49/51 mitochondrial dynamics protein49/51, ODH 2-oxoglutarate dehydrogenase, 
PDH pyruvate dehydrogenase, PDI protein disulfide isomerase, PERK protein kinase RNA-like ER kinase, 3-PRDX3 peroxiredoxin, 4-PRDX4 
peroxiredoxin, 5-PRDX5 peroxiredoxin, PTEN phosphatase and tensin homolog, QSOX quiescin sulfhydryl oxidase, RyR ryanodine receptors, 
SERCA  sarco/endoplasmic reticulum  Ca2+ ATPase, 1-VDAC1, voltage-dependent anion-selective channel; VKOR vitamin K epoxide reductase
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and FUNDC1, that facilitate direct interaction with the 
autophagosome [117, 118]. AMPK mediated mitophagy has 
also been described in conditions of high metabolic demand, 
with AMPK interacting antagonistically with mTORC1 to 
promote mitophagy [119]. The precise mechanisms underly-
ing basal levels of mitochondrial degradation or in response 
to acute and chronic stress are still to be defined, although 
it is increasingly recognised that MERCS play a key role in 
determining mitochondrial dynamics [112, 120, 121]. Key 
regulators of mitochondrial biogenesis and turnover such as 
PGC1α, DRP1, MFN2 and OPA1 have been demonstrated 
to be regulated by the redox environment [122, 123].

Mitochondrial stress sensing

Mitochondrial DNA (mtDNA) contains 37 genes, of which 
13 encode structural polypeptides of components of elec-
tron transport chain (ETC) complexes [124]. Most proteins 
that constitute the mitochondrial proteome are synthesised 
in the cytoplasm, targeted and imported into mitochondria, 
where they bind to mitochondrial-localised chaperones to 
help their translocalisation and assembly [125]. Trafficking 
of proteins into the mitochondrial matrix via the TOM/TIM 
complex (translocase of the outer membrane/translocase of 
the inner membrane) [126] needs to be carefully controlled 
since disruption could impair mitochondrial proteostasis 
and overwhelm the chaperone capacity within mitochon-
dria, inducing mitochondrial stress [127] (Fig. 2). Any per-
turbation of mitochondrial proteostasis that induces mito-
chondrial stress, activates pathways related to the integrated 
stress response (ISR) [128]. The ISR is activated to restore 
homeostasis in response to various types of stress conditions 
and ultimately results in the phosphorylation of eIF2α Ser51 
[129]. Phosphorylated eIF2α activates ATF4, inducing the 
attenuation of protein translation and promoting the expres-
sion of mRNAs encoding CHOP and ATF4, which promotes 
expression of ATF5 [130, 131].

Mitochondrial UPR

The canonical axis of the  UPRmt is controlled by the expres-
sion of ATF4, ATF5 and CHOP, three bZIP transcription 
factors central to the ISR [132]. ATF4 promotes the expres-
sion of genes related to the  UPRmt, however it mainly acts 
as a regulator of both ATF5 and CHOP expression [133]. 
CHOP alleviates proteotoxic stress by inducing the expres-
sion of the mitochondrial chaperones HSP10 and HSP60 
[134]. CHOP has been also proposed as a regulator of the 
protease complex ClpXP, which plays a key role in sens-
ing and maintaining proteostasis (through the ClpP proteo-
lytic subunit) inside the mitochondrial matrix [135]. ClpXP 
has been reported to activate  UPRmt under conditions of 
mitochondrial proteotoxic stress [136]. ATF5 possesses 

a mitochondrial-targeting sequence (MTS) and a nuclear 
localisation sequence (NLS) [137]. Under homeostatic 
conditions, ATF5 is imported into healthy mitochondria 
via TOM and TIM, where it is degraded by proteases, 
thus acting as a sensor of mitochondrial import efficiency 
[138]. However, under overload of misfolded proteins, pro-
tein aggregation and perturbed mitochondrial import effi-
ciency, ATF5 is activated by p-eIF2α and translocated to the 
nucleus, where it increases folding capacity via retrograde 
signalling [139] (Fig. 2a). ATF5 promotes the transcription 
of genes that aid in the recovery of normal proteostasis, for 
example by upregulating chaperonins, chaperones, proteases 
and antioxidant proteins [137]. Impaired mitochondrial pro-
tein import efficiency results in the accumulation of mistar-
geted mitochondrial proteins in the cytosol, that will activate 
the  UPRam (UPR activated by mistargeted proteins), which 
enhances the assembly of the proteasome in order to degrade 
potentially toxic mislocalised proteins [140, 141].

The sirtuin axis of the  UPRmt boosts the antioxidant 
capacity of the cell in response to disrupted proteostasis, 
driven by the increase in mitochondrial ROS derived from 
mitochondrial dysfunction and activation of the canoni-
cal  UPRmt [131]. During mitochondrial proteotoxic stress, 
activation of SIRT3 results in deacetylation of FOXO3A, 
promoting its translocation to the nucleus and transcription 
of SOD2 and catalase [142, 143] (Fig. 2b). Under proteo-
toxic stress in the IMS, AKT mediates the ROS-dependant 
phosphorylation of ERα, which increases the expression of 
nuclear respiratory factor 1 (NRF1) and the IMS protease 
HTRA2 transcripts [144]. NRF1 mediates the activation of 
protein quality control by stimulating mitochondrial respi-
ration [147], proteasome activity and the expression of the 
IMS protease OMI [144] (Fig. 2c). Mitochondrial proteo-
toxic stress also promotes epigenetic changes, through the 
induction of chromatin remodelling factors that facilitate the 
induction of mitochondrial chaperones [145]. These changes 
are regulated by HSF1, which also plays a key role in the 
heat-shock response and forms a complex with mitochon-
drial single-stranded DNA binding protein 1 (SSBP1) [145, 
146]. HSF1 translocates to the nucleus where it binds to 
the chromatin remodelling factor BRG1 and completes the 
formation of the chromatin remodelling complex, which will 
ultimately increase the expression of chaperones to protect 
mitochondrial function [146] (Fig. 2d).

Acute mitochondrial stress activates the translation 
axis of the  UPRmt, leading to a decrease in pre-RNA pro-
cessed product and decreased mitochondrial translation, 
reducing the folding load in mitochondria [148]. This axis 
of the  UPRmt works as a first defence mechanism against 
proteotoxic stress, it is activated in stressed mitochon-
dria before the activation of the canonical  UPRmt [148] 
(Fig. 2d). mtDNA is transcribed into long pre-RNAs, 
processed by the RNase P complex (formed by MRPP1, 
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2 and 3). Activation of the translation axis of the  UPRmt, 
reduces MRPP3 levels, as a result some of the mitochon-
drial long pre-RNAs are not translated with a subsequent 
reduction in mitochondrial protein biosynthesis [149, 
150].

Redox regulation of mitochondria

Mitochondrial respiration generates ATP but can also result 
in ROS generation, both superoxide and  H2O2 as a result 
of electron leak from redox donors in the ETC, reducing 

Fig. 2  The UPRmt. Most proteins that constitute the mitochondrial 
proteome are synthesised in the cytoplasm, targeted and imported 
into mitochondria [125] via the TOM/TIM complex [126], per-
turbation of this trafficking can impair mitochondrial proteostasis 
and induce mitochondrial stress [127]. A The canonical axis of the 
 UPRmt is controlled by the expression of ATF5, ATF4 and CHOP 
[132]. CHOP alleviates proteotoxic stress by inducing the expression 
of the mitochondrial chaperones HSP10 and HSP60 [134]. ATF5 is 
normally imported into mitochondria via TOM and TIM, where it is 
degraded by proteases [138]. Mitochondrial proteotoxic stress will 
perturb mitochondrial import efficiency, resulting in the activation 
of ATF5 by p-eIF2α and its translocation to the nucleus [139]. ATF5 

promotes the transcription of genes related to chaperones, proteases 
and antioxidant proteins [137]. B The sirtuin axis of the  UPRmt acti-
vates SIRT3, which deacetylates FOXO3A, promoting its transloca-
tion to the nucleus and transcription of SOD2 and catalase [142, 143]. 
C AKT mediates the ROS-dependant phosphorylation of ERα, which 
activates NRF1 and the  IMS protease HTRA2 [144]. NRF1 stimu-
lates mitochondrial respiration, proteasome activity and the IMS pro-
tease OMI. D  Mitochondrial proteotoxic stress promotes epigenetic 
changes in the cellular DNA regulated by HSF1, it translocates to the 
nucleus where it interacts with SSBP1 to bind to the chromatin and 
boost the expression of mitochondrial chaperones [145, 146]
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molecular oxygen to superoxide and its subsequent con-
version to  H2O2 [151]. Mitochondrial ROS generation has 
been described at various sites along the ETC in particular 
at complex I and III by both forward and reverse electron 
transport as well as in conditions of hypoxia, indicating 
mitochondria are key regulatory hubs for redox signalling in 
cellular homeostasis and pathologies [151, 152]. ROS gen-
eration during reverse electron transport has been identified 
as a major cause of oxidative damage in conditions such as 
ischaemia where there is an accumulation of succinate [153]. 
Succinate is a substrate for the TCA enzyme succinate dehy-
drogenase at complex II, a FAD-dependent enzyme from 
the IMM that participates in the reduction of ubiquinone 
[152]. During conditions of mitochondrial hyperpolarisa-
tion, reverse electron transport results in electrons flowing 
back to complex I, generating NADH and superoxide [154]. 
Under controlled conditions where complex I and III are 
blocked and levels of succinate reduced, complex II has the 
capacity to generate significant levels of ROS both in for-
ward (accepts electrons from succinate) and reverse (accepts 
electrons from ubiquinol) modes [155]. Cys39 of ND3 
subunit of complex I has been identified as a critical redox 
switch in determining its catalytic active state, this Cys resi-
due becomes accessible to alkylating agents in the inactive 
D-state [156]. Temporal reversible oxidation of Cys39 of 
ND3 has become a therapeutic target in ischaemia as when 
reversibly oxidised, complex I remains in an inactive state 
preventing reverse electron transport and subsequent super-
oxide generation [153]. In acute hypoxia, complex I acidi-
fies the mitochondrial matrix which can solubilise  Ca2+ and 
activate the  Ca2+/Na+ antiporter, causing a decrease in IMM 
fluidity, this can result in a reduction in the diffusion rate 
of ubiquinol from complex II to complex III, promoting 
ROS generation [157]. ROS generation within mitochon-
dria particularly the IMS has the capacity to result in redox 
modifications of sensitive proteins affecting their function 
and overall mitochondrial capacity. Redox modifications of 
proteins imported into the IMS can also affect mitochon-
drial activity as a result of disrupted assembly of complexes 
within the ETC due to the altered redox environment [158]. 
Table 1 contains mitochondrial localised proteins identified 
with redox specific post transcriptional modifications.

The mitochondrial redox environment also regulates 
mitochondrial dynamics, sites of mitochondrial fission have 
distinct ROS signatures, fission at the periphery or tip results 
in mitochondrial fragments destined for degradation while 
midzone fission is preferential for dynamics [159]. Disrupted 
mitophagy can result in an accumulation of dysfunctional 
mitochondria and has been associated with a range of age-
related diseases particularly in tissues with high metabolic 
demand such as neurons and skeletal muscle [160, 161]. 
Chronic mitochondrial dysfunction leads to the accumula-
tion of mitochondrial generated ROS, which can promote the 

unfolding/misfolding and aggregation of proteins inside the 
organelle and propagate mitochondrial dysfunction [162]. 
An increase in mitochondrial dysfunction can induce acti-
vation of the  UPRmt, in particular ATF5 activation, in order 
to resolve proteotoxic and oxidative stress [137, 163]. In C. 
elegans it was demonstrated that the orthologue of ATF5, 
ATFS-1 has a dual action to protect cells from mitochondrial 
dysfunction, as it can upregulate genes involved in mito-
chondrial proteostasis (such as chaperones to restore protein 
homeostasis or glycolysis to boost ATP production) and bind 
promoters of NADH ubiquinone oxidoreductase assembly 
factors to maintain the function of the ETC complexes in 
order to optimise respiratory capacity during mitochondrial 
stress [164].

Low levels of mitochondrial stress can result in a mito-
hormesis response, the initial activation of stress signal-
ling pathways that ultimately result in adaptive responses 
to improve stress resistance. A link between ROS produc-
tion and mitohormesis has been repeatedly demonstrated 
in C. elegans, for example glucose deprivation resulted 
in enhanced respiration, increased ROS generation and 
extended the lifespan of the nematodes [165]. Inhibition of 
mitochondrial complex I with low doses of rotenone has 
also been demonstrated to promote lifespan extension in 
C. elegans [166]. The amount and duration of ROS gener-
ated by the ETC can influence lifespan and behaviour in 
model organisms [167, 168]. Similarly a recent study using 
Drosophila and mice pre-treated with N-acetyl-L-tyrosine, 
induced the production of ROS and promoted stress resist-
ance related to mitohormesis [169].

Mitochondr ial  metabolism is  modulated by 
 Ca2+-dependent mechanisms linked to the ER stress 
response, through the stimulation of CHOP expression and 
phosphorylation of eIF2 and JNK [170]. The exchange of 
information via metabolites, ions and lipids between the ER 
and mitochondria can alter ATP production and promote 
reorganisation of the mitochondrial network [113]. Induc-
tion of an adaptive  UPRER has been demonstrated to increase 
mitochondrial biogenesis, through the PERK-Nrf2 pathway 
[171]. ER stress can promote changes in the morphology of 
mitochondrial by promoting  UPRER induced mitochondrial 
hyperfusion, in a process dependent on the phosphorylation 
of eIF2α by PERK [172]. A study in Drosophila demon-
strated mitochondrial ETC disruption specifically activated 
PERK, while the other branches of the  UPRER were not 
responsive [173]. This was attributed to PERK localisation 
at mitochondria-associated ER membranes (MAMs), mak-
ing it more sensitive to respond to local stress signals [173].

In C. elegans, ATFS-1 regulates mitochondrial biogenesis 
and network expansion during normal development [174]. 
High levels of mitochondrial protein synthesis are needed 
during development, this results in a reduction in the lev-
els of ATFS-1 imported into mitochondria. Subsequently 
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ATFS-1 is translocated to the nucleus and results in the acti-
vation of the  UPRmt, promoting the expansion of the mito-
chondrial network [174]. Mild mitochondrial stress can initi-
ate a hormesis response that increases lifespan in C. elegans, 
this effect can activate the  UPRmt leading to descendants 
with higher levels of mtDNA that exhibit longer lifespans; 
increased resistance to infection, heat shock, and oxidative 
stress; although with slower development and lower fertility 
compared to those with normal mtDNA and  UPRmt levels 
[175]. ATFS-1 regulates the accumulation of transcripts of 
OXPHOS from both the nuclear and mitochondrial genomes 
in order that biogenesis of the ETC complex aligns with the 
ability of the stressed organelles to fold proteins and assem-
ble ETC complexes [164].

Mitochondrial ER contact sites

Organelle contacts are essential for the maintenance of 
cellular homeostasis and establish a link that allows inter-
organelle signalling and transfer of metabolites [114, 176]. 
Contact sites refer to areas where two membranes are near 
each other, but do not merge as the individual organelles 
maintain their distinct identities. MERCS are dynamic struc-
tures that remodel in response to intra and extra cellular 
signals, affecting the function of both mitochondria and ER 
[5, 176]. MERCS are relatively stable structures that require 
the formation of molecular bridges established by interacting 
proteins anchored in the smooth ER and the mitochondrial 
outer membrane [5]. MERCS contain a defined subset of 
proteins involved in tethering membranes,  Ca2+ homeostasis, 
lipid transfer, redox balance and mitochondrial homeostasis 
[5, 40] (Fig. 3). The contacts between ER and mitochondria 
can be classified as narrow (8–10 nm) and wide (40–50 nm), 
resulting in different responses against stress and metabolic 
changes [121].

Tethering of MERCS

The tethering complexes are essential, structural and revers-
ible bonds that stabilise MERCS [177]. The most recognised 
MERCS tethering complexes occur between ER mitofusin-2 
(MFN2) and mitochondrial MFN2 or ER MFN2 and mito-
chondrial mitofusin-1 (MFN1) [178]. The MFN tethering 
complex is dependent on the interaction of MFN2 and PERK 
on the ER membrane, suggesting a potential role of PERK 
(and ultimately the  UPRER) as a key mediator of MERCS 
assembly [90]. The interaction of PERK with MFN2 is 
essential for the establishment of contact sites, inhibition 
of these components lead to a reduction in the number of 
MERCS [90, 179] (Fig. 3a). Ablation of MFN2 leads to an 
abnormal upregulation of the PERK-ATF4-CHOP pathway, 
resulting in an increase in ROS, abnormal mitochondrial 
 Ca2+ transients and altered mitochondrial morphology 

[179]. Knockdown of PERK in this condition can restore 
these alterations, demonstrating that PERK is a key regula-
tor of the mitochondrial antioxidant response [179]. Other 
members of the complexes reported as regulating the tether-
ing of MERCS include the ER vesicle‐associated membrane 
protein B (VAPB) and the OMM tyrosine phosphatase‐inter-
acting protein‐51 (PTPIP51) [180]. Disruption of these com-
ponents lead to a delay in  Ca2+ flux into mitochondria and 
mitochondrial aggregation [181, 182]. The ER membrane 
chaperone B-cell receptor-associated protein-31 (BAP-31) 
can also form a physical and regulatory tether with differ-
ent mitochondrial proteins [177], such as the mitochondrial 
fission protein-1 (FIS1), which contributes to the physical 
tethering and can promote the transmission of apoptotic sig-
nals from the ER to mitochondria [183]. Similarly, the inter-
action of BAP-31 with TOMM40 establish a physical tether 
that allows BAP-31 to control the transmission of apoptotic 
signals and regulate mitochondrial homeostasis [184].

Calcium flux between the ER and the mitochondria

An important function of MERCS is regulation of  Ca2+ flux 
between the ER and the mitochondria by the complex that 
forms between IP3R from the ER and VDAC from the OMM 
[5, 177].  Ca2+ passes through the MCU to reach the mito-
chondrial matrix [185, 186]. DJ-1 [187] and GRP75 [188] 
regulate the connection between IP3R and VDAC stabilising 
MERCS integrity allowing entry of  Ca2+ into mitochondria 
[189] (Fig. 3b). It has been recently demonstrated that IRE1a 
is also involved in regulating ER-mitochondria  Ca2+ transfer 
by interacting with IP3R, stimulating mitochondrial respira-
tion and ATP production to maintain energy homeostasis 
[197].  Ca2+ entry into the mitochondrial matrix provides 
 Ca2+ to mitochondrial membrane proteins, however in cases 
of chronic stress it promotes swelling of the mitochondria 
and the opening of the mPTP that can initiate apoptosis 
[5, 41]. Some components of the TCA cycle (isocitrate 
dehydrogenase, oxoglutarate dehydrogenase and pyruvate 
dehydrogenase) require the binding of  Ca2+ for their func-
tion. The ER poses a much higher concentration of  Ca2+ 
(100–500 μM) compared to the cytosol (~ 100 nM), the 
interaction of mitochondria and ER via MERCS can supply 
enough  Ca2+ to mitochondria for stimulating the TCA cycle, 
resulting in an increase in ATP production [190] (Fig. 3). 
Excess  Ca2+ transfer into mitochondria via IP3R can induce 
the opening of the mPTP, release of Cytochrome c and acti-
vation of the caspase signalling cascade and pro-apoptotic 
pathways [198] (Fig. 4).

Regulation of mitochondrial homeostasis

Mitochondrial fusion, fission and mitophagy and the organi-
sation of the mitochondrial network regulate mitochondrial 
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Fig. 3  Mitochondria-ER contact sites molecular components and cel-
lular functions. MERCS are relatively stable structures that require 
the formation of molecular bridges established by interacting proteins 
anchored in the smooth ER and the OMM [5]. Tethering complexes 
are essential, structural and reversible bonds that stabilise MERCS 
[177]. A MERCS tethering complexes occur between ER MFN2 and 
mitochondrial MFN2 or ER MFN2 and MFN1 [178]. The MFN teth-
ering complex is dependent on the interaction of MFN2 and PERK 
at the ER membrane, essential for the establishment of the contact 
sites [90, 179]. Other complexes reported as regulating the tethering 
of MERCS include the ER VAPB and the OMM PTPIP51 [180]. B 
MERCS regulate  Ca2+ flux between the ER and the mitochondria by 
the complex that forms between IP3R from the ER and VDAC from 
the OMM [5, 177].  Ca2+ passes through the MCU to reach the mito-
chondrial matrix [185, 186]. DJ-1 [187] and GRP75 [188] regulate the 
connection between IP3R and VDAC [189]. Some components of the 
TCA cycle require the binding of  Ca2+ for their function, the interac-
tion of mitochondria and ER via MERCS supply  Ca2+ to mitochondria 

for stimulating the TCA cycle, resulting in an increase in ATP produc-
tion [190]. C MERCS control the processes of mitochondrial fusion, 
fission and mitophagy [111, 191]. The ER promotes the polymerisa-
tion of actin filaments and establishment of close contacts between 
the two organelles [192]. ER tubules will release  Ca2+ ions into the 
mitochondria, triggering the inner mitochondrial membrane to divide 
[192, 193]. DRP1 assembles around mitochondria at the fission site, a 
DRP1 ring constricts with the aid of actin–myosin filaments, resulting 
in the formation of two daughter mitochondria. ER tubules guide the 
position and timing of mitochondria fusion through the tethering with 
mitochondria [191, 194]. During mitochondrial fusion the contact 
sites between the tubules and the mitochondria need to be maintained 
to avoid the disruption of these MERCS, the  Ca2+ sensitive motor-
protein Miro cease all transportation movements of the mitochondria 
involved [195]. In the mitochondria PINK1 phosphorylates MFN2, 
recruits Parkin at the MERCS, allowing Parkin dependent ubiquitina-
tion of ER MFN2, promoting the separation of the two organelles and 
the initiation of mitophagy [196]
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function and fuel utilisation [199]. The ER can coordinate 
these processes by establishing contact sites between ER 
tubules and mitochondria [111, 191]. The ER inverted 
formin-2 (INF2) interacts with the OMM actin nucleator 
Spire1c to polymerise actin filaments and establish close 
contacts between the two organelles [192]. Actin poly-
merisation around mitochondria stimulates ER tubules to 
release  Ca2+ ions into mitochondria through the VDAC1 
channel, triggering the inner mitochondrial membrane to 
divide [192, 193]. The inner membrane scission is followed 

by constriction of the outer membrane, which occurs when 
the cytosolic GTPase DRP1 assemble around mitochondria 
at the fission site, guided by the OMM receptors FIS1 and 
MFF [193, 200]. This DRP1 ring constricts with the aid of 
actin–myosin filaments, resulting in the formation of two 
daughter mitochondria [191, 193] (Fig. 3). During mito-
chondrial fission, the original mitochondrion needs to trans-
fer a copy of mtDNA to daughter mitochondria, MERCS 
mediate the replication and distribution of the mtDNA along 
the mitochondrial network, in a process that depends on 

Fig. 4  MERCS regulation of cellular signalling in ageing and disease. 
Disruption of MERCS assembly and disassembly plays a key role in 
pathophysiological conditions particularly in ageing and age-related 
diseases. Disrupted  Ca2+ flow from the ER to mitochondria can result 
in mitochondrial dysfunction with loss of mitochondrial membrane 
potential and mitochondrial ROS generation, that result in activation 
of apoptotic pathways or senescence [40]. Excess  Ca2+ transfer into 
mitochondria via IP3R can induce the opening of the mPTP, release 

of cytochrome c and activation of the caspase signalling cascade and 
pro-apoptotic pathways [198]. On mitochondria PINK1 phosphoryl-
ates MFN2, recruits Parkin at the MERCS, allowing Parkin depend-
ent ubiquitination of ER MFN2, promoting the separation of the two 
organelles and the initiation of mitophagy [196]. Release of mtDNA 
through channels such as VDAC (located in or close to MERCS) has 
emerged as a potential regulator for the inflammatory response [201]
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DRP1 [201, 202]. Disruption of mitochondrial dynamics and 
subsequently mtDNA replication, may result in the release 
of mtDNA into the cytoplasm and in the generation of an 
inflammatory response [203, 204]. Considering that the 
release of mtDNA is thought to occur through channels such 
VDAC (located in or close to MERCS), and as MFN2 medi-
ates the tethering of ER with mitochondria, contact sites 
between these two organelles emerge as a potential regulator 
of the inflammatory response [201] (Fig. 4). If mitophagy 
is activated, the pre-autophagosome markers ATG14L and 
ATG5 [205] and the mitophagy regulator PINK1 and Par-
kin localise to MERCS [206]. In the mitochondria PINK1 

phosphorylates MFN2, recruits Parkin at MERCS, allowing 
Parkin dependent ubiquitination of ER MFN2, promoting 
the separation of the two organelles and the initiation of 
mitophagy [196] (Figs. 3 and 5).

It has been proposed that ER tubules guide the position 
and timing of mitochondria fusion through the tethering with 
mitochondria [191, 194]. Fusion of the OMM is mediated by 
MFN1 and MFN2 homodimers [207, 208], while the IMM 
fusion is regulated by OPA1 [209]. During mitochondrial 
fusion the contact sites between the tubules and the mito-
chondria need to be maintained to avoid the disruption of 
MERCS and decrease mitochondrial motility [210]. In yeast 

Fig. 5  PERK regulation of mitochondrial capacity. PERK is a key 
regulator of both the  UPRER and the  UPRmt, that localises at MERCS 
[90]. The adaptive ER stress response promotes mitochondrial elon-
gation and network establishment [172]. The modulation of mito-
chondrial metabolism by PERK results in improved cristae forma-
tion, assembly of the ETC and oxidative phosphorylation efficiency 
[220]. 1 PERK regulates the expression of the mitochondrial contact 
site and cristae-organizing system (MICOS) [221]. 2 The activation 
of ATF4 by PERK promotes the expression of SCAF1 helps medi-
ate assembly of the ETC [218, 222]. 3 The adaptive  UPRER also 
promotes one-carbon metabolism [223]. 4 PERK can promote cell 

survival by increasing antioxidant capacity through the activation 
of Nrf2 [224]. 5 During the adaptive  UPRER response, there is an 
upregulation of TFEB [225], which can induce the ISR via activation 
of ATF4 and CHOP, activate mitophagy machinery and boost mito-
chondrial biogenesis by promoting expression of PGC1α, TFAM and 
NRF1 [219]. 6 The formation of PERK-ERO1⍺ complex can restore 
mitochondrial homeostasis and promote the formation of MERCS 
[188, 226]. 7 PERK is essential for the activation of  UPRmt transcrip-
tion factor ATF5 [139] and can reduce mitochondrial protein import 
by promoting the degradation of mitochondrial translocase TIM17A 
by phosphorylation of eIF2α [227]
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during mitochondrial fusion, the  Ca2+ sensitive motorpro-
tein Miro, is involved in both actin filament and microtubule 
transport, that ceases all transportation movements of the 
mitochondria involved [195] (Fig. 3).

Redox Regulation of MERCS

The connection established by MERCS between the ER 
and mitochondria implies that disruption of redox homeo-
stasis in one organelle will affect the other, generating a 
regulatory hub. It has been reported that ROS production in 
mitochondria leads to an exacerbation of ER stress, suggest-
ing the existence of a feed-back loop that generates ROS in 
both organelles [211]. Within MERCS there is a constant 
production of ROS, generated from the oxidative protein 
folding activity of the ER chaperone ERO1α and the ER 
NADPH oxidase activity of NOX4 [212]. The presence of 
ROS within MERCS generates redox nanodomains between 
the two organelles, in a  Ca2+-dependent process, allowing 
for effective redox crosstalk [213]. Targeting a  H2O2-specific 
fluorescent probe to MAMs, it was reported that these 
redox nanodomains promoted IP3R-mediated  Ca2+ release 
via MERCS,resulting in the swelling of the mitochondrial 
matrix, reduction of the cristae and release of  H2O2 [213].

PERK is a key regulator of both the  UPRER and the 
 UPRmt and localises at MERCS [90, 214]. Mouse embry-
onic fibroblasts with PERK knocked out, have a disrupted 
MERCS network, altered ER morphology, disrupted redox 
signalling and impaired  Ca2+ transport [215, 216]. PERK 
is a regulatory signalling hub that monitors stress in both 
organelles and its Cys216 can be reversibly oxidised allow-
ing formation of covalent interactions with ERO1α and 
tightening of MERCS [90, 217].  UPRER and  UPRmt estab-
lish a crosstalk in response to proteotoxic stress through 
PERK activation, regulating the coactivation of CHOP and 
ATF4 and increasing the expression of ATF5, promoting the 
translation of ER and mitochondrial chaperones to alleviate 
proteotoxic stress [217]. As mentioned, the UPR can be an 
adaptive or maladaptive response depending on stress inten-
sity and duration, that can impact mitochondrial morphology 
and function [172, 218, 219].

The  UPRER effects on mitochondrial morphology go 
through different stages: early ER stress (30 min) induces 
mitochondrial fragmentation, MERCS formation and 
 Ca2+ influx into mitochondria; adaptive ER stress (6 h) 
promotes mitochondrial elongation and network estab-
lishment, improving oxidative phosphorylation efficiency 
[228], known as stress-induced mitochondrial hyperfusion 
[172] (Fig. 5). Maladaptive ER stress (24 h or more) trig-
gers apoptosis through mitochondrial fragmentation and 
opening of the mPTP [172, 220, 229]. Inhibition of PERK 
or p-eIF2α during the adaptive  UPRER stage induced the 
blockage of mitochondrial hyperfusion and fragmentation 

of the mitochondrial network [172], indicating that com-
munication between the ER and mitochondria is mediated 
by the PERK-eIF2α axis.

Adaptive  UPRER protects the cells against oxidative 
damage though the activation of PERK, which can boost 
the production of ATP [218] and activation of the anti-
oxidant response [223]. The modulation of mitochondrial 
metabolism by PERK results in improved cristae forma-
tion, assembly of the ETC and oxidative phosphorylation 
efficiency [220]. During adaptive UPR, PERK phospho-
rylates N-acetyl-glucosamine transferase OGT, which can 
activate TOM70 stimulating the import and assembly of 
the mitochondrial contact site and cristae-organizing sys-
tem (MICOS) [221] (Fig. 5). The activation of ATF4 by 
PERK promotes the expression of SCAF1, a protein that 
mediates the assembly of the ETC [218, 222] (Fig. 5). It 
has been reported that cells with a missense mutation in 
complex I NADH ubiquinone oxidoreductase, were able 
to recover the assembly of the super complexes by phar-
macologically activating PERK [218]. As a counter meas-
ure to stress, the adaptive  UPRER promotes one-carbon 
metabolism, in a process mediated by PERK [223]. One-
carbon metabolism links the methionine and folate path-
ways through the interconversion of Serine and Glycine 
providing one carbon units for biosynthesis and reducing 
power in the form of NADH and NADPH [230] (Fig. 5).

PERK can promote cell survival by increasing anti-
oxidant capacity through the activation of nuclear factor 
erythroid 2-related factor 2 (Nrf2) [224] (Fig. 5). PERK 
phosphorylation of Nrf2, releases it from Keap1 and subse-
quent translocation to the nucleus, initiating the transcrip-
tion of numerous antioxidant genes, including thioredox-
ins, glutathione synthetase, glutathione S-transferase, and 
ferritin [231]. PERK silencing resulted in disrupted Nrf2 
activation, an increase in ROS and an impairment of mito-
chondrial bioenergetics [232]. Key interactions of PERK 
that help determine mitochondrial capacity are established 
with TFEB, ERO1⍺ and the  UPRmt [90, 139, 219]. During 
the adaptive  UPRER response, there is an upregulation and 
nuclear translocation of TFEB [225]. TFEB can activate 
the ISR via ATF4 and CHOP, promotes the activation of 
mitophagy machinery and boost mitochondrial biogen-
esis by the expression of PGC1α, TFAM and NRF1 [219] 
(Fig. 5). The formation of a PERK-ERO1⍺ complex can 
restore mitochondrial homeostasis and promote the forma-
tion of MERCS by increasing tethering via GRP75 and 
MFN2 [188, 226] and stimulating  Ca2+ transfer to increase 
mitochondrial capacity [90] (Fig. 5). PERK is essential for 
ATF5 activation and  UPRmt [139], and can reduce mito-
chondrial protein import by promoting the degradation of 
mitochondrial translocase TIM17A by phosphorylation of 
eIF2α [227] (Fig. 5).
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MERCS in ageing and disease

The dynamic nature of MERCS in terms of assembly and 
disassembly are determined by intracellular cues, allow-
ing adaptation to the intracellular environment for both 
cell survival associated with increased metabolism but 
also potentially triggering the collapse of mitochondrial 
membrane potential resulting in apoptosis or senescence. 
MERCS can regulate  Ca2+ homeostasis, redox signalling 
and lipid transfer, providing signalling hubs that can mod-
ulate mitochondrial dynamics, apoptosis, protein homeo-
stasis and inflammation [40]. As a result, disruption of 
MERCS assembly and disassembly is thought to play a 
key role in pathophysiological conditions particularly in 
cancers and age-related diseases. In proliferating cells with 
high anabolic demand, mitochondrial fission predominates 
over mitochondrial fusion, MERCS can help determine 
mitochondrial morphology and allow efficient transfer of 
 Ca2+ and other metabolites to mitochondria during prolif-
eration. The accumulation of cells that have entered cell 
cycle arrest or senescence in ageing tissues is well docu-
mented [233]. MERCS assembly and disassembly provide 
a regulatory role in determining cell fate. Disrupted  Ca2+ 
flow from the ER to the mitochondria can result in mito-
chondrial dysfunction with loss of mitochondrial mem-
brane potential and increased mitochondrial ROS gen-
eration, resulting in activation of apoptotic pathways or 
senescence [40]. Senescent cells accumulate during age-
ing, an increase in the cell capacity to remove senescent 
cells results in delayed aging and improves both lifespan 
and health-span [234]. It has been reported that the expo-
sure to pro-senescent stressors or other stimuli can alter 
the number of MERCS [40, 235]. An aberrant increase in 
MERCS, during ageing, can result in the accumulation of 
 Ca2+ in the mitochondria, activation of the p53/p21 and 
p16/Rb pathways, leading to cell cycle arrest and Senes-
cence-Associated Secretory Phenotype (SASP) partially 
driven by NF-κB [40, 235]. Senescence of endothelial 
cells is considered to be a risk factor related to the devel-
opment of cardiovascular disease and can contribute to 
disrupted vascular tone and angiogenesis [236]. It has been 
demonstrated in an in vitro model of endothelial cell age-
ing that increased MERCS formation result in an increase 
in  Ca2+ transfer, altering mitochondrial bioenergetics and 
cell senescence [237]. Most studies would indicate senes-
cence is associated with increased MERCS formation and 
elevated mitochondrial  Ca2+, however decreased MERCS 
formation could also be a pro-senescent signal [40]. How-
ever, it is clear that not only the abundance of MERCS is 
important but also the width of the interface between the 
ER and OMM, where loose junctions (~ 25–40 nm) pro-
mote  Ca2+ transfer and tight junctions (~ 10 nm) inhibit 
 Ca2+ transfer between the organelles [121].

Changes in MERCS formation is context dependent and 
distinct between cell types, with a number of pathologies 
reporting increased MERCS formation and others decreased 
MERCS formation. In cancerous cells, increased  Ca2+ 
uptake in the mitochondria can promote metabolism and 
tumorigenesis, however excessive  Ca2+ uptake can induce 
cell death [238]. In neurodegenerative diseases such as Alz-
heimer disease and Parkinson disease, increased MERCS 
have been reported [239]. Mitochondrial dysfunction in 
neurodegenerative diseases, are associated with the loss of 
neuron structure and function and altered protein composi-
tion of MAMs, required for the scaffolding of MERCS and 
ultimately disrupted mitochondrial turnover [240–242].

Skeletal muscle and adaptive UPR signalling

In almost all eukaryotic cells the ER is an essential organelle 
for protein synthesis and folding, lipid and sterol synthe-
sis, as well as a depot for the storage of  Ca2+. The con-
traction and relaxation of skeletal muscle depends on the 
on the release and uptake of  Ca2+ from the sarcoplasmic 
reticulum (SR). The SR has been described as a fully dif-
ferentiated domain of the muscle ER and it is recognised 
that the ER and SR are a continuous membrane system of 
different specialised regions [243, 244]. The SR contains a 
number of recognised ER proteins, although at a relatively 
lower concentration and it was proposed that during myo-
genic differentiation there is ER expansion that is engulfed 
by myofibrils [243, 245].

UPRER activation during myoblast differentiation

UPRER activation is crucial for muscle stem cell homeosta-
sis, myogenic differentiation, exercise adaptation and skel-
etal muscle regeneration after injury [246]. Myogenesis is 
a complex and tightly regulated process that involves the 
selection of multipotent mesodermal cells to produce myo-
blasts, their exit from the cell cycle and differentiation into 
myotubes [247]. During muscle differentiation a population 
of myoblasts, that are differentiation-incompetent or less 
resistant to stress, will undergo selective apoptosis [248]. 
This process is thought to be mediated by the  UPRER and 
it is crucial for skeletal muscle development [247]. The 
 UPRER plays an essential role in this process by controlling 
the induction of caspase-12, promoting a caspase signalling 
cascade that results in selective apoptosis [249]. Markers of 
the UPR, such as ATF6, CHOP, and BiP, are upregulated 
during myogenesis and it has also been demonstrated that 
pharmacological induction of ER stress increased apoptosis 
in myoblasts, leading to improved myogenesis [249, 250]. 
Pharmacological induction of ER stress (using the N-gly-
cosylation inhibitor tunicamycin and the SERCA inhibi-
tor thapsigargin) in myoblasts lead to an increase in cell 
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apoptosis, however the remaining myoblasts differentiated 
more efficiently into myotubes [250].

Redox and adaptive  UPRER in skeletal muscle

Exercise is one of the most effective and beneficial inter-
ventions for overall health. Exercise can improve insulin 
sensitivity, cardiovascular health and help maintain muscle 
mass and function [251]. Regular exercise has been shown to 
reduce oxidative stress, inflammation, and reverse mitochon-
drial and ER dysfunction [252]. The changes in  Ca2+ flux 
during muscle contractions has been associated with the for-
mation of contact sies between the sarcoplasmic reticulum 
and mitochondria [244]. During contractile activity there is 
localised endogenous ROS generation that is required for the 
activation of specific signalling pathways required for the 
adaptive response to exercise [253, 254]. Temporal endog-
enous ROS generation is also necessary for the repair and 
activation of quiescent satellite cells following muscle injury 
[255]. Fluctuations in  Ca2+ homeostasis, together with an 
altered redox environment are linked to the activation of all 3 
branches of the  UPRER following exercise with downstream 
signalling effects on mitochondrial dynamics [113, 256].

Although chronic ER stress can activate cell death path-
ways, recent research suggests that low levels of ER stress 
may potentially benefit cells by inducing an adaptive UPR 
that can reduce the harmful consequences of accumulat-
ing misfolded proteins [231]. Physical exercise generates 
a physiological stress and activation of  UPRER pathways, 
several studies have demonstrated that acute exercise is 
characterised by an increase in BiP translation and eIF2 
phosphorylation [257–259]. As a result, regular exercise 
can inhibit the activation of pro-apoptotic pathways, main-
taining or decreasing the levels of BiP, PERK, IRE1a and 
CHOP including downstream  UPRER components such as 
ATF4 and XBP1 [260, 261]. Mitochondria are also affected 
by contractile activity in skeletal muscle, it has been demon-
strated that exercise plays a key role in mitochondrial adap-
tation to stress, promoting mitochondrial biogenesis and 
mitophagy [254]. PGC-1α is activated in skeletal muscle in 
response to exercise, promoting mitochondrial biogenesis 
and the adaptative response to exercise [256]. It has also 
been reported that PGC-1α regulates the expression of ATF5 
[262], providing a link between activation of the UPR and 
mitochondrial biogenesis.

In skeletal muscle there are distinct populations of mito-
chondria, subsarcolemmal and intermyofibrillar, providing 
the ATP required for sustaining contractions and membrane 
potential. Mitochondria are in close contact with the SR and 
it has been proposed that MERCS are essential for main-
taining muscle homeostasis [263]. MERCS impairment in 
skeletal muscle is associated with ageing and muscle wast-
ing, caused by the downregulation of SR-mitochondria  Ca2+ 

transport proteins  IP3R, VDAC, and GRP75 [264]. Disrup-
tion of  Ca2+ transits between the SR and the mitochon-
dria may contribute to the decline in muscle performance 
during ageing [264–266]. In single adult skeletal muscle 
fibres, pharmacologically opening of the mPTP resulted in 
increased mtROS and caspase activation, leading to muscle 
fibre atrophy [267]. In striated muscle, the partitioning of 
ER/SR and mitochondria is highly organised and as a result 
MERCS formation are considered more ordered compared 
to proliferating cells [264]. Disrupted  Ca2+ homeostasis is 
thought to play a role in the age-related loss of skeletal mus-
cle function and muscular pathologies. Decreased MERCS 
formation has been reported with age [268] and depletion 
of MERCS are associated with muscular dystrophy [263]. 
In pathophysiological conditions, disrupted inter-organelle 
communication between mitochondria and ER results in 
altered contact sites, potentially resulting in a resistance to 
mitochondrial degradation, accumulation of dysfunctional 
mitochondria, release of proinflammatory mtDNA and an 
amplification of the pathophysiological response. Energetic 
stress and subsequent AMPK activation has been demon-
strated in cell models to promote autophagy and MERCS 
formation [269]. From a physiological perspective introduc-
ing an exercise protocol that involves extensive cytoskeletal 
remodelling and energetic stress, that can promote UPR 
activation and induce mitochondrial remodelling, would 
ultimately result in an improved bioenergetic profile. This 
beneficial adaptive response may be facilitated by increased 
formation of MERCS.

Conclusions

The intricate crosstalk between the ER and mitochondria can 
be mediated by MERCS, providing an effective conduit for 
cell signalling and facilitating the exchange of information 
and metabolites. There are still a large number of outstand-
ing questions in the field in relation to how the activation 
of the UPR following ER stress mediates the assembly and 
disassembly of MERCS. Similarly, it is still uncertain how 
MERCS influence the UPR and how alterations in MERCS 
may impact the cell's ability to respond to ER stress. It is 
clear from studies using a variety of tissues that MERCS 
directly impact and determine mitochondrial function and 
dynamics. As a result, MERCS are critical regulators of cell 
fate under conditions of stress, determining whether the cell 
will undergo an adaptive response, proliferate, initiate apop-
tosis or undergo cell cycle arrest and senescence. Disruption 
of MERCS formation could result in ER stress response dys-
function, where there is impaired UPR activation and failure 
to activate the appropriate arms of the UPR and subsequent 
downstream signalling effects. Modulation of MERCS for-
mation could potentially be a valuable therapeutic approach 
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in order to exacerbate mitochondrial  Ca2+, increased ROS 
formation to potentially sensitise senescent cells to apoptosis 
[270].
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