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adipocytes plays a role in the development of osteoporosis 
[10, 11].

Protein synthesis requires the participation of eukaryotic 
elongation factor 1 (eEF1) [12]. The eEF1 family com-
prises eEF1A and eEF1B complex [12]. EEF1B2 encodes 
the eEF1B proteins, which consist of the α, β, and γ sub-
units [13, 14]. Extensive research has been conducted on 
the role of EEF1B2 as a guanine nucleotide exchange factor 
(GEF) for eEF1A [15–17]. In addition to its role in trans-
lation elongation, previous research has demonstrated that 
EEF1B2 is expressed in various tissues and cell lines and at 
different developmental stages [18]. Moreover, EEF1B2 has 
been implicated in intellectual disability and tumorigenesis. 
EEF1B2 was found to be overexpressed in lung cancer in 
humans [19]. Conversely, intellectual disability is caused by 
the loss of function in the EEF1B2 gene [20, 21]. Neverthe-
less, the expression of EEF1B2 in BMSCs and its function 
and underlying molecular mechanisms in the modulation of 
BMSCs differentiation are still poorly understood.

BMSCs exhibit a high degree of plasticity, allowing them 
to differentiate into various cell lineages. In vitro, the dif-
ferentiation of BMSCs can be manipulated by adjusting 

Introduction

Osteoporosis is a condition that affects the bones as people 
age, causing them to become weaker and more prone to 
fractures, even from minor injuries [1, 2]. The pathological 
changes of osteoporosis mainly include decreased mineral-
ization and accumulation of marrow adiposity [3–5]. Bone 
marrow-derived mesenchymal stem cells (BMSCs) are pro-
genitors that have the ability to self-renew and differentiate 
into osteoblasts, chondrocytes, and adipocytes [6–9]. The 
uneven differentiation of BMSCs into either osteoblasts or 
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Abstract
The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchy-
mal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability 
and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the 
process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expres-
sion was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and min-
eralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis 
and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to 
mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of 
β-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate 
that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone 
and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.
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the composition of the culture medium. For instance, expo-
sure to an osteogenic induction medium containing factors 
β-glycerophosphate and ascorbic acid prompts BMSCs to 
differentiate into osteoblasts. Conversely, treatment with 
adipogenic components, including insulin, rosiglitazone, 
and IBMX, induces BMSCs to differentiate into adipo-
cytes [22–24]. The differentiation of BMSCs is regulated 
by a complex network influenced by various factors, such 
as changes in the microenvironment, chemical factors, and 
non-coding RNAs like miRNA-128 and ANCR, which act 
through different molecular signaling pathways [25, 26]. 
The Wnt/β-catenin pathway has been identified as a key 
regulator of BMSCs differentiation [27, 28], with factors 
like Foxf1, Piezo1, Stat3 and CDC20 facilitating osteogen-
esis and adipogenesis of BMSCs by modulating β-catenin 
activity [29–32]. So far, the investigation of the regulator 
of β-catenin during BMSCs differentiation is still required.

This study shows that during osteogenic differentiation, 
the expression of EEF1B2 is increased in BMSCs, whereas 
it is decreased during adipogenic differentiation. In vitro, 
the suppression of EEF1B2 in BMSCs resulted in decreased 
osteogenic function and enhanced adipogenic specializa-
tion. Consistently overexpressing EEF1B2 in the BMSC 
cell line resulted in enhanced osteogenesis and suppressed 
adipogenesis. In vivo, the excessive expression of EEF1B2 
can mitigate bone loss and decrease the amount of fat in 
the bone marrow of mice with osteoporosis. Mechanically, 
EEF1B2 controlled the transition from bone formation to fat 
formation in BMSCs by influencing the function of the Wnt/
β-catenin signaling pathway. Our data identified EEF1B2 as 
a regulator of BMSCs in maintaining bone-fat equilibrium.

Materials and methods

Mice

The C57BL/6 mice were purchased from the Laboratory 
Animal Center of Southern Medical University. All animal 
experiments were approved by the Animal Care and Use 
Committee of Nanfang Hospital, Southern Medical Univer-
sity (IACUC-LAC-20230620-003) and were following the 
guidelines of the National Institute of Health. All animals 
were maintained in the animal facility of the Nanfang Hos-
pital and housed under standard conditions of constant tem-
perature and humidity on a 12/12 h light/dark cycle.

Cell isolation, culture and differentiation

BMSCs were isolated from 6 weeks old C57BL/6 mice 
femurs and tibias bone marrow and cultured in α-minimum 
essential medium (α-MEM) containing 10% fetal bovine 

serum (FBS) and 1% penicillin and streptomycin (P/S, all 
from Gibco, Grand Island, NY, USA) in a 37 °C incuba-
tor with a 5% CO2 atmosphere. The adherent cells were 
digested and cultured until 80% confluence. Cells between 
passages 3 and 5 were utilized for the experiments, and all 
in-vitro experiments were repeated in triplicate.

The C3H10T1/2 cell line (#CL-0325) was purchased 
from Procell Life Science & Technology Co., Ltd. (Wuhan, 
China). The C3H10T1/2 cells were cultured in α-MEM con-
taining 10% FBS, 2mM L-glutamine and 1% P/S (Gibco, 
Grand Island, NY, USA).

For osteogenic induction, BMSCs were cultured in osteo-
genic medium containing 50 µg/ml ascorbic acid and 10 mM 
β-glycerophosphate [24]. C3H10T1/2 cells were cultured in 
osteogenic medium containing 50 µg/ml ascorbic acid, 10 
mM β-glycerophosphate, and 100 nM dexamethasone (all 
from Sigma-Aldrich, St. Louis, MO, USA). The culture 
medium change was performed every 3 days [33, 34].

For adipogenic induction, adipogenic medium consists 
of adipogenic medium A (AM-A) and adipogenic medium 
B (AM-B). AM-A consist of αMEM, 20%FBS, 1%P/S, 
1µmol/mL dexamethasone, 10 µg/mL insulin, 1µM rosigli-
tazone and 0.5mM 3-Isobutyl-1-methylxanthine (IBMX). 
AM-B consist of αMEM, 20%FBS, 1%P/S, 1µM rosigli-
tazone and 10 µg/ml insulin. BMSCs and C3H10T1/2 cells 
were cultured in AM-A for 2 days, followed by AM-B for 4 
days with culture medium changed every 2 days, to induce 
differentiation into adipocytes [24].

siRNA-mediated knockdown and cell transfection

Eef1b2-specific siRNAs and negative control siRNA (NC) 
(RiboBio, Guangzhou, China) were used to cell transfec-
tion. Transfection of siRNA oligonucleotides was performed 
using Lipofectamine RNAimax (Invitrogen, Carlsbad, CA, 
USA) according to the manufacturer’s instructions. Eef1b2 
expression was determined by quantitative reverse tran-
scription PCR (RT-PCR). Transfected cells were passaged 
and used for downstream analyses.

Alkaline phosphatase (ALP) and Alizarin Red S (ARS) 
staining

For ALP staining, Differentiated BMSCs were fixed with 
4% paraformaldehyde (Solarbio, China) for 15 min. The 
cells were washed three times with PBS and stained with 
1-Step nitro blue tetrazolium (NBT)/5-bromo-4-chloro-3-
indolyl phosphate (BCIP) (Thermo Fisher, MA, USA) for 
30 min and washed by PBS. ALP-positive cells were visual-
ized by light microscopy or scanning.

For ARS staining, Differentiated BMSCs were fixed with 
4% paraformaldehyde for 15 min. The cells were washed 
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three times with distilled water and stained with ARS stain-
ing solution for 15 min. The staining solution was removed, 
and the cells were washed three times in distilled water. The 
mineralized part was visualized by scanning.

Oil Red O staining

To detect the lipid droplet formation of BMSCs after adipo-
genic differentiation, cells were fixed in 4% paraformalde-
hyde for 15 min at room temperature, washed with PBS, 
and stained with an Oil red O staining kit (Solarbio, Beijing, 
China) for 20 min.

Lentiviral construction and cells transfection

EEF1B2 overexpression lentiviruses were generated by 
Tsingke Biotech Co., Ltd (Beijing, China). The lentivi-
ruses were then transfected into C3H10T1/2 (MOI:20) and 
screened with puromycin.

Small molecule treatment

WAY-262,611 (Selleck, TX, USA) and ICG-001 (Selleck, 
TX, USA) were dissolved in dimethyl sulfoxide (DMSO) 
and administrated at a concentration of 3µM. Control 
groups received equivalent volumes of DMSO.

RNA isolation and quantification of mRNA 
expression

TRIzol™ reagent (Thermo Fisher, MA, USA) was used 
to extract the total RNA from the cells. PrimeScript RT 
Reagent Kit (Takara, Otsu, Japan) was used to synthesize 
complementary DNA (cDNA). A qRT-PCR was performed 
by using an SYBR Green PCR Kit (Takara, Otsu, Japan) 
as directed by the manufacturer. Gene expression levels 
were analyzed relative to β-actin or GAPDH. The primer 
sequences are shown in Table S1.

Table 1 Primer sequence
S. No. Gene name

(Mus musculus)
Direction Sequence

1 Eef1b2 Forward primer 5’- T G A C C T G T G T C A T G C C C T A C-3’
Reverse primer 5’- G C C A T A C T T G C C C A A A G A T T T C T-3’

2 Runx2 Forward primer 5’- A A C C C A C G G C C C T C C C T G A A C T C T-3’
Reverse primer 5’- A C T G G C G G G G T G T A G G T A A A G G T G-3’

3 Sp7 Forward primer 5’- C C C A C T G G C T C C T C G G T T C T C T C C-3’
Reverse primer 5’-GCTBGAAAGGTCAGCGTATGGCTTC-3’

4 Col1a1 Forward primer 5’- C A C C C T C A A G A G C C T G A G T C-3’
Reverse primer 5’- G T T C G G G C T G A T G T A C C A G T-3’

5 Bglap Forward primer 5’- A C C C T G G C T G C G C T C T G T C T C T-3’
Reverse primer 5’- G A T G C G T T T G T A G G C G G T C T T C A-3’

6 Alpl Forward primer 5’- C T T G A C T G T G G T T A C T G C T G A T-3’
Reverse primer 5’- G G A A T G T A G T T C T G C T C A T G G A-3’

7 Tcf7 Forward primer 5’- T C G A G A A G A G C A G G C C A A G T-3’
Reverse primer 5’- A G A G C A C T G T C A T C G G A A G G A A-3’

8 Axin2 Forward primer 5’- C C A T T G G A G T C T G C C T G T G-3’
Reverse primer 5’- G G A C A C T T G C C A G T T T C T T T G-3’

9 Pparg Forward primer 5’- A A G A A G C G G T G A A C C A C T G A-3’
Reverse primer 5’- T G C G A G T G G T C T T C C A T C A C-3’

10 Adipoq Forward primer 5’- C C A A T G T A C C C A T T C G C T T T A C-3’
Reverse primer 5’- G A A G T A G T A G A G T C C C G G A A T G-3’

11 Cebpa Forward primer 5’- G C G G G A A C G C A A C A A C A T C-3’
Reverse primer 5’- G T C A C T G G T C A A C T C C A G C A C-3’

12 Fabp4 Forward primer 5’- T C A T A A C C C T A G A T G G C G G G G-3’
Reverse primer 5’- G C C T T T C A T A A C A C A T T C C A C C A-3’

13 Lpl Forward primer 5’- T T G G A G A A G C T A T C C G C G T G-3’
Reverse primer 5’- C G T G G G A G C A C T T C A C T A G C-3’

14 Lepr Forward primer 5’- G A A A A A T G G A T G G G G A C G T T A C-3’
Reverse primer 5’- C A G T G A G T C A T T T T T C G T C A G G-3’

15 β-Actin Forward primer 5’- T C C G G C A C T A C C G A G T T A T C-3’
Reverse primer 5’- G A T C C G G T G T A G C A G A T C G C-3’

16 Gapdh Forward primer 5’- A T C A A G A A G G T G G T G A A G C A-3’
Reverse primer 5’- A G A C A A C C T G G T C C T C A G T G T-3’
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antibodies used are provided in Table S2. Sections were 
mounted in DAPI mounting medium (Vector laboratories). 
The staining was photographed with Zeiss Axio Imager D2 
(Zeiss, German).

RNA-seq and bioinformatics analysis

Total RNA of negative control siRNA (NC) or Eef1b2-
targeted siRNA (siEef1b2) treated- BMSCs were extracted 
by SteadyPure Quick RNA Extraction Kit (Accurate Biol-
ogy) following the manufacturer’s instructions 7 days after 
osteogenesis induction. Four biological replicates of each 
group were tested. Total RNAs were delivered to a facil-
ity core for quality proof, cDNA library construction, and 
RNA sequencing. High-throughput sequencing was per-
formed using the Illumina Novaseq 6000 (USA). The RNA-
seq reads were aligned to the mouse genome (GRCm39) 
using HISAT2 [36]. StringTie was subsequently used to 
count reads in features [37]. Genes of less than ten counts 
among all groups were filtered out using DESeq2 in R prior 
to the downstream analyses. Regularized logarithm (rlog) 
was applied to transform the read counts for Principal com-
ponent analysis (PCA) and plotting [38]. Genes with Ben-
jamini-Hochberg’s false discovery rate (FDR) < 0.05 and 
fold change > 2 were defined as significantly differentially 
expressed genes (DEGs) between conditions. The volcano 
plot was generated by the ggplot2 package in R [39]. Heat-
maps were generated by the pheatmap package in R. Gene 
ontology (GO) analysis was performed using the R package 
clusterProfiler [40, 41], input with the down regulated genes 
in the siEef1b2 group. Enriched pathways were ranked 
based on the adjusted p-value calculated by the software. 
Gene Set Enrichment Analysis (GSEA) was performed 
using GSEA software (version 4.3.2) following the manu-
facturer’s instructions, input with normalized count matrix 
generated by the DESeq2 package in R [42].

Western blot

Cells were lysed using radioimmunoprecipitation assay 
(RIPA) buffer (Solarbio, Beijing, China) with protease 
inhibitor mixture (Roche, Swiss). Total cell lysates were 
analyzed using Western blotting. Western blotting analyses 
were conducted using standard procedures. The details of 
the antibodies used are provided in Table S2.

OVX animal model and AAV injection

Bilateral surgical ovariectomy (OVX) was performed to 
create a mouse model of osteoporosis in postmenopausal 
condition [35]. Briefly, 8 weeks old female mice were anes-
thetized. Then, the mice were subjected to Sham surgery or 
bilateral surgical ovariectomy by the dorsal approach. In the 
Sham operation group, the anesthesia, fixation, and selected 
incision were the same as those in the model group.

For AAV injection, 4 weeks after surgery, OVX mice 
were anesthetized. AAV-eGFP and AAV-EEF1B2 (Tsingke, 
Beijing, China) were injected into OVX mice tibias. In the 
Sham operation group, mice tibias were injected with PBS. 
µCT scanning analyses µCT scanning of mice tibias was 
conducted using a SkyScan1276 according to standard pro-
cedures and data were analyzed using software from the 
manufacturer.

Hematoxylin and eosin (H&E) staining and 
immunofluorescent (IF) analysis

Tibias were fixed in 4% paraformaldehyde at 4 °C shaker 
overnight. Then they were decalcified by using EDTA solu-
tion at 4 °C shaker for 14 days. Those tissues were pro-
cessed for either cryostat or paraffin sections. For H&E 
staining, paraffin sections were used with standard proto-
col. For IF staining, cryosections were rehydrated, washed 
with PBST (PBS + 0.05% Triton), and were blocked in 
3% BSA (Bovine Serum Albumin) in PBST. IF staining 
were performed using standard methods. The details of the 

Table 2 Antibodies
No. Antibodies Sources Cat. No. Dilution Applications
1 Anti-EEF1B2 Proteintech 10483-1-AP 1:1000 WB
2 Anti-β-ACTIN Proteintech 66009-1-Ig 1:10000 WB
3 Anti-β-CATENIN Proteintech 51067-2-AP 1:5000 WB
4 Anti-FABP4 Proteintech 12802-1-AP 1:5000 WB
5 Anti-GAPDH Santa Cruz sc-365,062 1:3000 WB
6 Anti-RUNX2 Beyotime AF2593 1:500 WB
7 Anti-Osteocalcin Abcam ab93876 1:500 WB
8 Anti-β-CATENIN Proteintech 51067-2-AP 1:200 IF
9 Goat anti-Mouse IgG H&L (IRDye® 800CW) Abcam ab216772 1:5000 WB
10 Goat anti-Rabbit IgG H&L (IRDye® 800CW) Abcam ab216773 1:5000 WB
11 Goat Anti-Rabbit IgG H&L (Alexa Fluor® 555) Abcam ab150078 1:500 IF
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Fig. 1 EEF1B2 expression is increased in osteogenic differentiation 
and decreased during adipogenic differentiation. (A) Relative expres-
sion of Eef1b2 and osteogenic marker genes Runx2, Bglap and Sp7 
in mouse BMSCs during osteogenesis were assessed by qRT-PCR. 
(B) Western blot analysis of EEF1B2 and OCN protein levels during 
osteogenic differentiation of mouse BMSCs. (C) Representative image 
of ALP staining of mouse BMSCs on the indicated days of osteogenic 
differentiation. (D) Relative expression of Eef1b2 and adipogenic 

marker genes Pparg, Adipoq and Cebpa in mouse BMSCs during 
adipogenesis were assessed by qRT-PCR. (E) Western blot analysis 
of EEF1B2 and FABP4 protein levels during adipogenesis of mouse 
BMSCs. (F) Representative image of Oil Red O staining of mouse 
BMSCs on the indicated days of adipogenesis. Scale bar, 100 μm. 
Data presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001
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In the EEF1B2 knockdown (KD) groups, ALP activity sig-
nificantly decreased after culturing the cells in osteogenic 
medium (OM) for 7 days (Fig. 2B). Mineralized nodule for-
mation was abolished in EEF1B2 KD groups as shown by 
Alizarin Red S staining (ARS) (Fig. 2B). In the EEF1B2 
KD groups, the expression of Sp7, Col1a1, Alpl, and Bglap 
mRNA was consistently decreased (Fig. 2C). Furthermore, 
the western blotting analysis demonstrated a reduction in 
the protein levels of RUNX2 and OCN in the groups with 
EEF1B2 knockdown (Fig. 2D). Confirming the impairment 
of osteogenic differentiation, the results were duplicated 
with C3H10T1/2 cell lines due to the silencing of EEF1B2 
(Fig. 2E-G). These data shows that knockdown EEF1B2 
expression in BMSCs suppresses osteogenic differentiation.

Knock down EEF1B2 in BMSCs promote adipogenic 
differentiation

Since osteoblast and adipocyte have a shared ancestry, our 
investigation focuses on determining if reducing EEF1B2 
can promote adipogenesis. EEF1B2 silencing led to an aug-
mentation in lipid droplet formation, as evidenced by the 
intensified staining with Oil Red O (Fig. 3C). Consistently, 
elevated levels of adipocyte marker gene Adipoq, Lpl, and 
Fabp4 were observed in EEF1B2 KD groups (Fig. 3A). Fur-
thermore, the western blot analysis revealed an elevation in 
the protein expression of FABP4 in the EEF1B2 KD groups 
(Fig. 3B). Similarly, knockdown EEF1B2 in C3H10T1/2 
cell line under adipogenic medium also showed increased 
adipogenesis activity (Fig. 3D-F). Our finding indicates 
that suppressing EEF1B2 expression in BMSCs leads to 
enhanced adipogenesis.

EEF1B2 overexpression in C3H10T1/2 cell line 
promotes osteogenic differentiation and inhibits 
adipogenic differentiation

In order to validate the impact of EEF1B2 on the cellular 
destiny of BMSCs, lentivirus was utilized to overexpress 
EEF1B2 in the C3H10T1/2 cell line. The Western blot 
analysis revealed a significant increase in the expression 
of EEF1B2 (Fig. 4A, B). By contrast, ALP activity was 
enhanced when EEF1B2 was overexpressed (Fig. 4C).

To explore the impact of EEF1B2 overexpression on 
the adipogenic differentiation of C3H10T1/2, we inves-
tigated its potential contrary effect on osteogenesis and 
adipogenesis caused by EEF1B2 knockdown. EEF1B2 
overexpression groups exhibited a decrease in lipid drop-
let formation, as evidenced by the reduced staining of Oil 
Red O (Fig. 4F). Furthermore, the mRNA expression of the 
adipogenic marker genes were reduced when EEF1B2 was 
overexpressed (Fig. 4D), and down-regulated of FABP4 

Statistical analysis

Data were shown as the mean ± standard deviation (SD). 
GraphPad Prism was used to conduct the analysis. To evalu-
ate statistical significance, a two-tailed Student t-test was 
used to compare two groups, while one-way ANOVA analy-
sis was employed for multiple comparisons. A statistically 
significant difference was indicated for all experiments 
when P < 0.05.

Result

EEF1B2 is increasingly expressed in BMSCs over 
osteogenic differentiation while decreasingly over 
adipogenic differentiation

To identify the role of EEF1B2 in BMSCs differentiation, we 
first investigated the EEF1B2 expression in mouse BMSCs. 
The expression of EEF1B2 in BMSCs is indicated by the 
results of qRT-PCR and western blot. The mRNA levels of 
Eef1b2 and osteoblast markers Runx2, Sp7, Bglap (Fig. 1A) 
are increased in BMSCs during osteogenic differentiation, 
along with higher protein levels of EEF1B2, Osteocalcin 
(OCN)(Fig. 1B) and ALP (Fig. 1C). It was verified that 
the EEF1B2 expression is elevated throughout the process 
of osteogenic differentiation (Fig. 1A, B). Afterwards, we 
investigated the expression of EEF1B2 in BMSCs through-
out the process of adipogenic differentiation. The expression 
of adipocyte markers in both mRNA and protein levels was 
enhanced when mice BMSCs were cultured in adipogenic 
medium (Fig. 1D, E). Oil O Red staining showed increased 
lipid droplet formation during the adipogenic differentiation 
process (Fig. 1F). Concurrently, the expression of EEF1B2 
is reduced during the adipogenic differentiation of BMSCs 
(Fig. 1D, E). These results indicate that EEF1B2 might play 
an opposite role in osteogenic and adipogenic differentiation 
of BMSCs. EEF1B2 is potentially involved in the regulation 
of osteogenic-adipogenic differentiation balance of BMSCs.

Suppression of EEF1B2 in BMSCs hampers 
the process of osteogenic differentiation and 
mineralization

In order to comprehend the function of EEF1B2 in the pro-
cess of osteogenic differentiation, we reduce the expres-
sion of EEF1B2 in primary mice BMSCs as well as in the 
murine BMSC cell line C3H10T1/2 cells. The inhibition of 
Eef1b2 mRNA by 3 distinct siRNAs was confirmed through 
qRT-PCR analysis (Fig. 2A). Afterwards, we investigated 
the potential impact of suppressing EEF1B2 on the process 
of osteogenic differentiation and mineralization in BMSCs. 
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Fig. 2 Knockdown EEF1B2 suppresses BMSCs osteogenic differ-
entiation. (A) Eef1b2 knockdown efficiency in mouse BMSCs and 
C3H10T1/2 cells were evaluated by qRT-PCR. (B) Osteoblast differ-
entiation and mineralization of mouse BMSCs were accessed by ALP 
(day 6) and ARS (day 14). (C) Relative mRNA expression of osteo-
genic marker genes Sp7, Col1a1, Alpl and Bglap in mouse BMSCs 
were evaluated by qRT-PCR on day 6 of osteogenic induction. (D) 
Western blot analysis of RUNX2 and OCN protein levels of mouse 

BMSCs on day 9 under osteogenic induction. (E) Relative mRNA 
expression of osteogenic marker genes Sp7, Runx2, Col1a1 and Bglap 
in C3H10T1/2 cells were evaluated by qRT-PCR on day 6 of osteo-
genic induction. (F) Western blot analysis of EEF1B2 and OCN pro-
tein levels of C3H10T1/2 cells on day 9 under osteogenic induction. 
(G) Representative images of ALP staining of C3H10T1/2 cell on day 
7 under osteogenic induction. Data presented as mean ± SD. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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in Tb.Sp in the OVX + AAV-Eef1b2 group when compared 
to the OVX + AAV-eGFP group (Fig. 5B, C). This suggests 
that the overexpression of EEF1B2 in the bone marrow cav-
ities of OVX mice can alleviate bone loss. Furthermore, the 
H&E staining results indicate that OVX mice treated with 
AAV-Eef1b2 exhibited a decrease in adipocytes in compari-
son to the OVX + AAV-eGFP groups (Fig. 5C). These find-
ings highlight the importance of EEF1B2 overexpression in 
bone marrow in mitigating bone loss and decreasing mar-
row fat in mice that have undergone ovariectomy.

EEF1B2 controls the transition from adipogenic to 
osteogenic differentiation of BMSCs through the 
Wnt/β-catenin signaling pathway

To investigate the underlying mechanism by which EEF1B2 
controls the cell destiny of BMSCs, bulk RNA sequencing 

in LV-Eef1b2 group was shown by western blot analysis 
(Fig. 4E). In summary, our results indicate that increased 
expression of EEF1B2 promotes osteogenic differen-
tiation while inhibiting adipogenic differentiation in the 
C3H10T1/2 cell line.

EEF1B2 overexpression mitigates bone loss and 
diminishes marrow adiposity in mice afflicted with 
osteoporosis

In order to elucidate the function of EEF1B2 in the deter-
mination of BMSCs cell destiny in vivo, a model of osteo-
porosis was generated through the removal of ovaries in 
mice (OVX mice). AAV was administered into the mar-
row cavities of both tibias in OVX mice (Fig. 5A). After 4 
weeks of injection, the microtomography analysis (micro-
CT) revealed a rise in BV/TV, BMD, Tb.N, and a decrease 

Fig. 3 Knockdown EEF1B2 enhances BMSCs adipogenesis. (A) Rela-
tive mRNA expression of adipogenic marker genes Adipoq, Fabp4 and 
Lpl in mouse BMSCs were evaluated by qRT-PCR on day 4 under 
adipogenic induction. (B) Western blot analysis of FABP4 and EEF1B2 
protein levels of mouse BMSCs on day 6 under adipogenic induction. 
(C) Adipogenesis of mouse BMSCs were accessed by Oil Red O stain-
ing on day 6 under adipogenic induction. Scale bar, 200 μm. (D) Rela-

tive mRNA expression of adipogenic marker genes Adipoq, Fabp4, 
Lpl and Pparg in C3H10T1/2 cells were evaluated by qRT-PCR on 
day 4 under adipogenic induction. (E) Western blot analysis of FABP4 
and EEF1B2 protein levels of C3H10T1/2 cells on day 6 under adipo-
genic induction. (F) Adipogenesis of C3H10T1/2 cells were accessed 
by Oil Red O staining on day 6 under adipogenic induction. Scale bar, 
200 μm. Data presented as mean ± SD. *P < 0.05, **P < 0.01
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verified the significant knock down efficiency of the siRNA 
treated group in the RNA-seq data (Fig. 6B). Differen-
tially expressed genes (DEGs) were defined as genes with 
Benjamini-Hochberg’s false discovery rate (FDR) < 0.05 
and fold change > 2 between two groups and visualized via 
volcano plot (Fig. 6C). Gene ontology (GO) enrichment 
analysis using downregulated DEGs in siEef1b2 group as 

(RNA-seq) analysis was performed on BMSCs treated 
with or without siRNA targeted to Eef1b2 during osteo-
genic induction. Four biological repeated experiments 
were carried out in each group. Principal component 
analysis (PCA) exhibited well distinguished gene expres-
sion features between negative control (NC) and siEef1b2 
group(Fig. 6A). Normalized counts of the gene Eef1b2 

Fig. 4 Overexpress EEF1B2 in C3H10T1/2 cells elevates osteogen-
esis and inhibits adipogenesis. A-B Representative images (A) and 
quantitative data (B) of western blot analysis of β-catenin, EEF1B2, 
OCN protein levels of C3H10T1/2 cells on day 9 under osteogenic 
induction. C. Representative images of ALP staining of C3H10T1/2 
cell on day 7 under osteogenic induction. Scale bar, 200 μm. D. Rela-
tive mRNA expression of adipogenic marker genes Adipoq, Lepr 

and Pparg in C3H10T1/2 cells were evaluated by qRT-PCR on day 
4 under adipogenic induction. E. Western blot analysis of β-catenin, 
EEF1B2 and FABP4 protein levels of C3H10T1/2 cells on day 6 under 
adipogenic induction. F. Representative images of Oil Red O stain-
ing of C3H10T1/2 cell on day 6 under adipogenic induction. Scale 
bar, 100 μm. Data presented as mean ± SD. *P < 0.05, **P < 0.01, 
***P < 0.001
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Fig. 5 Overexpress EEF1B2 mitigates bone loss and diminishes mar-
row adiposity in mice afflicted with osteoporosis. A. A schematic map 
of experiment process. B-C. Representative images (B) and quantita-
tive data (C) of micro-CT analysis of tibias from different groups of 
mice. D. Representative images of H&E staining of proximal tibia from 

different groups of mice. Scale bar, 200 μm. E. β-catenin expression 
in tibias was evaluated by immunofluorescence. Scale bar, 200 μm. 
Data presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001
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Fig. 6 EEF1B2 regulates BMSCs osteogenesis and adipogenesis by 
modulating Wnt/β-catenin signaling activity. (A) Principal component 
analysis (PCA) of the transcriptomes of NC and siEef1b2 groups (n = 4 
per group). (B) Normalized counts of Eef1b2 in siEef1b2 groups com-
pared to NC groups. ****p value < 0.0001. (C) Volcano plot exhibit 
the DEGs of the siEef1b2 group compared to the NC group (n = 4 per 
group). Blue dots show genes more highly expressed in the NC group. 
Red dots show genes more highly expressed in the siEef1b2 group. (D) 
GO enrichment analysis of DEGs upregulated in the NC group. (E) 
Scaled expression levels of selected osteoblast differentiation or Wnt 
pathway related genes was showed by heatmap. (F) Gene set enrich-

ment analysis (GSEA) shows the enrichment score of Wnt signaling 
pathway by comparing with the siEef1b2 group to the NC group. 
(Wnt signaling pathway, NES=-1.546, Nominal p-value = 0.025; 
Wnt signaling pathway and pluripotency, NES=-1.600, Nominal 
p-value = 0.004. (G) Relative mRNA expression of β-catenin readout 
genes Tcf7 and Axin2. (H) Western blot analysis of β-catenin pro-
tein level of mouse BMSCs on day 9 under osteogenic induction. (I) 
Western blot analysis of β-catenin, OCN and EEF1B2 protein level of 
C3H10T1/2 cells on day 9 under osteogenic induction. Data presented 
as mean ± SD. *P < 0.05
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Nevertheless, there is a lack of publicly available reports on 
the effects and underlying mechanisms of EEF1B2 on the 
directional differentiation of BMSCs. In our present investi-
gation, we have shown that the involvement of EEF1B2 in 
the transition from osteogenesis to adipogenesis in BMSCs 
is evident as the inhibition of EEF1B2 suppresses BMSCs’ 
ability to form bone but promotes the formation of fat cells. 
In terms of mechanism, we discovered that EEF1B2 facili-
tated β-catenin activity, thereby regulating the differentia-
tion of BMSCs. These results demonstrated the integral role 
of EEF1B2 in BMSCs differentiation.

The process of protein synthesis in eukaryotes is depen-
dent on a tightly controlled mechanism that involves initia-
tion, elongation, and termination [44]. To ensure the precise 
production of the protein at the correct time and location, 
every stage of this procedure is meticulously regulated [45]. 
The regulation of gene expression in transcriptional control 
is widely acknowledged, although there remain numerous 
unresolved aspects regarding the regulation at the transla-
tion level [46]. Lately, there has been an increasing amount 
of proof regarding further regulation during the elongation 
stage. There are three types of supramolecular complexes 
involved in elongation in eukaryotes: the ribosome, the 
complex of elongation factors, and the multienzyme ami-
noacyl-tRNA synthetase complex [47]. The aminoacyl-
tRNA delivery step is catalyzed by the eEF1 complex. The 
eEF1 family includes eEF1A and eEF1B [48]. The canoni-
cal role of eEF1B is to ensure guanine nucleotide exchange 
on eEF1A during the elongation process [49]. In addition 
to its role in translation elongation, eEF1B has also been 
associated with overexpression in lung cancer, indicating its 
involvement in tumorigenesis [19]. Furthermore, according 
to the report, eEF1B is extensively expressed in various cell 
lines and tissues, indicating its crucial involvement in gene 
expression [18]. According to our data, EEF1B2 is detected 
in mouse primary BMSCs and the C3H10T1/2 cell line. It 
was found to be increased during osteogenic differentiation 
but decreased during adipogenic differentiation, suggesting 
a possible involvement in the regulation of cell fate. Further 
experiments involving knocking down and overexpress-
ing EEF1B2 provided additional clarification on its role in 
regulating the differentiation of BMSCs, specifically in the 
opposite directions of osteogenesis and adipogenesis.

Cell differentiation, proliferation, and migration are 
crucial functions regulated by the Wnt/β-catenin signaling 
pathway [50]. The regulation of osteogenesis and adipogen-
esis by Wnt/β-catenin is widely recognized as crucial for 
maintaining bone equilibrium. The activation of the Canoni-
cal Wnt signaling pathway relies on the activity of the tran-
scription factor β-catenin [51]. When β-catenin accumulates 
in the nucleus, it forms complexes with LEF/TCF transcrip-
tion factors to initiate the transcription of downstream target 

input showed the enriched biological processed including 
ossification and osteoblast differentiation (Fig. 6D). The 
gene expression values of the most enriched Wnt path-
way correlated gene set and the osteoblast gene set from 
NC BMSC RNA-seq data were extracted and displayed 
in the heatmaps (Fig. 6E). Gene set enrichment analysis 
(GSEA) revealed the significantly enriched gene set to be 
Wnt signaling pathway and pluripotency (p < 0.01) and 
Wnt signaling pathway (p < 0.05) in NC group compared to 
siEef1b2 group (Fig. 6F). Consistently, the results of qRT-
PCR demonstrated a decrease in the expression of the Tcf7 
gene, which is a readout gene for β-catenin. The Western 
blot analysis demonstrated that the expression of β-catenin 
was reduced in groups where EEF1B2 was knocked down 
(Fig. 6H) and increased in the group with overexpression of 
EEF1B2 (Figs. 4A and E and 6I). Furthermore, the tibias of 
OVX + AAV-eGFP mice exhibited a decrease in β-catenin 
expression when compared to the Sham + PBS groups. The 
overexpression of EEF1B2 led to a significant increase in 
the β-catenin level within the tibia cavities (Fig. 5D). These 
data support that EEF1B2 regulates BMSCs osteogenesis 
and adipogenesis by modulating Wnt/β-catenin signaling 
activity.

To further investigate the role of β-catenin in mediat-
ing EEF1B2-regulated BMSCs differentiation, we treated 
EEF1B2 KD BMSCs and the control group with WAY-
262,611, a β-catenin agonist. β-catenin activation could 
partially rescue the inhibition of osteogenesis and promo-
tion of adipogenesis by EEF1B2 silencing (Fig. 7A, B, D, 
E). In contrast, β-catenin inhibition eliminates the positive 
role of overexpression of EEF1B2 in osteogenic and adipo-
genic differentiation of C3H10T1/2 cells (Fig. 7C, F). Taken 
together, these data show that EEF1B2 regulates β-catenin 
activity to restore the equilibrium between osteogenesis and 
adipogenesis, suggesting the involvement of Wnt/β-catenin 
signaling in the osteogenic and adipogenic differentiation of 
BMSCs during the progression of osteoporosis.

Discussion

Bone marrow-derived mesenchymal stem cells have the 
ability to transform into various types of cells, such as 
bone-forming cells and fat cells. Therefore, the differentia-
tion direction of BMSCs is deemed crucial for the study and 
treatment of osteoporosis. Adipocytes accumulation and 
osteoblasts reduction are of high relevance to osteoporosis 
[43]. Currently, a significant body of research has examined 
the regulatory mechanisms governing the unidirectional dif-
ferentiation of BMSCs towards osteogenic or adipogenic 
lineages. Some studies have also explored the involvement 
of BMSCs in maintaining the balance between bone and fat. 
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differentiation condition, we conducted bulk RNA sequenc-
ing on BMSCs with EEF1B2 knockdown and a nega-
tive control group in the present investigation. The GSEA 
examination revealed a modification in the Wnt/β-catenin 
signaling pathway between the aforementioned groups. Our 
study explored the influence of decreased EEF1B2 expres-
sion on the Wnt/β-catenin signaling pathway during the 

genes, such as Sp7 and Runx2. Conversely, suppression of 
β-catenin leads to the upregulation of the critical adipogenic 
transcription factors C/EBPα and PPARγ to promote adi-
pogenesis [27, 52]. Previous research has indicated that, in 
addition to the Wnt family members, various elements such 
as ANKRD1, SFRPs, and PTTG1 have the ability to regulate 
the activation of β-catenin [53–55]. During the osteogenic 

Fig. 7 Activate or inhibit β-catenin reverses the effect of EEF1B2 
silencing or overexpression in osteogenesis and adipogenesis in 
BMSCs. (A) Representative image of ALP staining of mouse BMSCs 
on day 6 under osteogenic differentiation. (B) Western blot analysis of 
β-catenin, OCN and EEF1B2 protein level of mouse BMSCs on day 
9 under osteogenic induction. (C) Western blot analysis of β-catenin, 
OCN and EEF1B2 protein level of C3H10T1/2 cells on day 9 under 

osteogenic induction. (D) Western blot analysis of β-catenin, FABP4 
and EEF1B2 protein level of mouse BMSCs on day 6 under adipo-
genic induction. (E) Adipogenesis of mouse BMSCs were accessed 
by Oil Red O staining on day 6 under adipogenic induction. Scale bar, 
200 μm. (F) Western blot analysis of β-catenin, FABP4 and EEF1B2 
protein level of C3H10T1/2 cells on day 6 under adipogenic induction
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GO  Gene ontology
GSEA  Gene set enrichment analysis
BV/TV  Trabecular bone volume to total volume
BMD  Bone mineral density
Tb.N  Trabecular number
Tb.Sp  Trabecular separation
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