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Abstract

Epithelial mechanics and mechanobiology have become 2 important research fields in life sciences 

and bioengineering. These fields investigate how physical factors induced by cell adhesion and 

collective behaviors can directly regulate biologic processes, such as organ development and 

disease progression. Cell mechanics and mechanobiology thus make exciting biophysics education 

topics to illustrate how fundamental physics principles play a role in regulating cell biology. 

However, the field currently lacks hands-on activities that engage students in learning science 

and outreach programs in these topics. One such area is the development of robust hands-on 

modules that allow students to observe features of cell shape and mechanics and connect them 

to fundamental physics principles. Here, we demonstrate a workflow that engages students in 

studying epithelial cell mechanics by using commercial histology slides of frog skin. We show 

that by using recently developed artificial intelligence–based image-segmentation tools, students 

can easily quantify different cell morphologic features in a high-throughput manner. Using our 

workflow, students can reproduce 2 essential findings in cell mechanics: the common gamma 

distribution of normalized cell aspect ratio in jammed epithelia and the constant ratio between 
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the nuclear and cellular area. Importantly, because the only required instrument for this active 

learning module is a readily available light microscope and a computer, our module is relatively 

low cost, as well as portable. These features make the module scalable for students at various 

education levels and outreach programs. This highly accessible education module provides a fun 

and engaging way to introduce students to the world of epithelial tissue mechanics.
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I. INTRODUCTION

The epithelium is a sheet of tissue composed of tightly packed epithelial cells that line 

the surface of an organ, such as the intestine or skin. Although the packing and shape 

of epithelial cells may seem random, they are direct results of the intracellular and 

intercellular mechanical forces. These mechanical forces are intricately governed by well-

defined molecular events and geometry rules. Epithelial tissues are arguably one of the most 

studied and elegant examples for investigating tissue mechanics. These cells form strong 

adhesion with each other and with the substrates. These properties enable epithelial cells 

to adopt distinct shapes and sizes in response to forces generated from adhesions, density, 

and movement (1). Maintaining stable and adequate cell morphologic features is also critical 

for supporting the function of the epithelial sheet. This epithelial sheet performs a number 

of vital tasks, including absorption of nutrients into the gut, secretion of proteins that form 

a protective hydrogel in the lungs, and protecting the body from pathogens by forming a 

barrier on the skin.

Dynamic changes in epithelial cell morphologies and packing also determine the overall 

tissue shape that is fundamental for organ development and tissue regeneration (2). 

Aberrations in these processes can lead to developmental defects and other pathologic 

conditions, including cancer (3).

Cell shape and size can be modulated by forces generated through different processes, 

both from within the cell (e.g., actomyosin contractility) and between cells (e.g., cell–

cell adhesion and boundary constraints) (4). Meanwhile, scientists have observed striking 

similarities between the aggregates of epithelial cells (Fig 1A) and other jammed physical 

systems (Fig 1B), such as soap bubbles (5). It has been shown that the topologic 

and morphologic features of epithelial tissues can be predicted by geometry rules and 

mechanical force balance (6). Recent numeric simulations have further shown that the 

dynamics of epithelial morphology and corresponding tissue structure changes can also be 

explained by using physical models (7). All these findings suggest that even though cells are 

not bubbles, the shapes and packing are still strongly influenced by physics principles.

Despite the exciting growth of research in cell-level biophysics, for example, jamming 

transition of epithelial tissues and cell collective motion (8–10), current undergraduate 

biophysics curricula still heavily focus on physics at the subcellular and molecular level 

(11). In addition, curricular topics on cell mechanics are often restricted to the mechanical 
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properties of tissues or single cells. Such focuses overlook emergent phenomena and 

governing laws, which determine macroscopic observables from microscopic ones in 

biologic tissues (12, 13). In this article, we introduce an active learning module that enables 

students to learn how the Euler polyhedral formula and interfacial tension (force at the 

interface of 2 nonmixing liquids) jointly explain the fundamental morphologic features of 

epithelial cells. Here, the Euler polyhedral formula describes how the number of faces, 

vertices, and edges of a polyhedron (e.g., cuboid, prism, and pyramid) are related.

By combining light microscopy with a free and publicly available analysis software, students 

will learn how to quantify cell morphology and compare the measurements with theoretic 

predictions. To achieve this goal, we have identified commercial histology slides of frog 

skins for demonstrating the common distribution of cell aspect ratios (ARs) and the constant 

cell–nucleus size ratio. The use of premade histology slides allowed us to conduct the 

activities without biosafety concerns. We have designed the module to equip students 

with both conceptual understandings of cell mechanics and practical experiences in image 

acquisition and analysis. Through performing this module, students will understand the 

morphologic signatures of jammed epithelia and gain technical skills in using artificial 

intelligence (AI)–based segmentation tools.

II. SCIENTIFIC AND PEDAGOGIC BACKGROUND

We provide a brief review of the biophysics background to supply the theoretic 

understanding that complements the hands-on activity reported in this work. We focused 

on structurally simple epithelial cells and the nuclear morphologic features, both of which 

can be observed by using light microscopy and quantified by using simple image analysis 

pipelines. Specifically, we discussed how mechanical force balance determines the cell 

geometry and cell–nucleus size ratio. To gain a more comprehensive understanding of 

epithelial mechanics, the students and instructors of the module are encouraged to read 

recent articles (14–16). At the end of this section, we provide a discussion on pedagogic 

background and suggested teaching tips.

A. Epithelial cell morphology and intercellular junctional tension

One morphologic hallmark of mature epithelial tissues is the establishment of the tricellular 

junction network and hence the hexagonal packing of cells under steady state. This hallmark 

is established through adhesion at intercellular junctions (17–20). D’Arcy Thompson, a 

pioneer in mathematic biology, was one of the earliest scientists that researched the origin of 

these features. In his 1917 book, On Growth and Form (21), Thompson suggested that the 

cobblestone shape of cells (Fig 1A) arises from the interfacial tension along the intercellular 

junction, akin to soap bubbles (Fig 1B). In this context, the straight ridges separating cells 

simply result from the minimization of “interfacial energy” (22).

Building upon this analogy between epithelial cells and soap bubbles, the epithelial 

topology, specifically, how the cell–cell junctions are connected and the number of 

neighbors each cell has, can be derived from geometry rules. In 2 dimensions, the sum 

of the numbers of cells (F) and vertices (V ) minus the edge number (E) is always a constant, 

V − E + F = 2. This relationship is known as the Euler polyhedral formula, and the constant 
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is called the Euler characteristic, which is typically 2. A direct consequence of the Euler 

polyhedral formula is that

1
n + 1

z = 1
2

(1)

where n  is the average number of walls per cell and z  is the average number of edges that 

meet at a vertex. Detailed derivation of this equation from the Euler polyhedral formula can 

be found in a previous review paper (23). In a monolayer of cells, each vertex is typically 

joined by 3 walls, and cells are mostly hexagonal, implying that n  and z  are 6 and 3, 

respectively.

The tension force along the intercellular junctions not only determines the topology of 

the epithelial cell network but also impacts cell motion, as well as tissue structure and 

rigidity (24–27). Researchers have adapted numeric models that were originally used for 

simulating foams to describe the structural and mechanical properties of epithelial tissues. 

This simulation model, known as a vertex model, minimizes an effective energy as a 

function of the positions of cell vertices (28). In a general version of the vertex model, each 

cell stores a mechanical energy

Ecell = κA
2 A − A0

2 + κP
2 P − P0

2

(2)

that implies the existence of an optimal cell area and perimeter due to intercellular junction 

tension. Here, A, A0, P , P0 are the area, optimal area, perimeter, and optimal perimeter 

of a cell, respectively. Also, KA and KP are the parameters related to the cellular junction 

tension, actomyosin contraction (i.e., tensile stresses generated by myosin motor proteins 

pulling on cross-linked actin bundles), and cell stiffness (e.g., Young modulus and bulk 

modulus). Using this effective energy, scientists have been able to describe various biologic 

processes, such as gastrulation, appendage formation, cell migration, and vesicle growth 

(29). One recent important finding is the epithelial structural change associated with the 

jamming transition, where cell proliferation and motility dramatically slow down, as the 

cells crowd (30). Vertex model simulations identified a critical value of mean shape index 

q = P0/ A0 = 3.81. In simulation, when q is larger than 3.81, the cells are motile, capable 

of rearranging, and tissues are “fluidlike.” Conversely, when q becomes smaller than 3.81, 

the cells become immobile, and tissues are “solidlike” (31). In this perspective, the shape 

index acts as an order parameter that identifies the fluid–solid transition of epithelial tissues. 

This is akin to traditional phase transitions, including liquid freezing, the paramagnetic-

to-ferromagnetic transition (i.e., change of magnetic properties of materials), and Bose–

Einstein condensation (i.e., a quantum phenomenon in which a large number of bosons 

simultaneously occupy the system’s ground state).
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B. Nucleus size regulation

The nucleus is the largest and the most prominent cellular organelle. Since more than a 

century ago, scientists have found that although the size of the nucleus can vary greatly from 

cell to cell within a tissue, it is correlated with the size of the cell (32). In brief, the ratio 

between nuclear size and cellular size, the karyoplasmic or nuclear-to-cytoplasmic ratio, 

has been found to be a constant across numerous cell types. Despite the long history of 

this surprisingly simple and common finding, researchers are only beginning to understand 

its governing mechanism. It has long been postulated that the nucleus size is directly 

regulated by the DNA content (33). However, the current view posits that the cell size 

is the main regulator of nucleus size (34). Recent experiments showed that the main 

factors determining the nuclear-to-cytoplasmic ratio include the nuclear and cytoplasmic 

contents (e.g., proteins), the nuclear-to-cytoplasmic shuttling of proteins, nuclear membrane 

stiffness, and the cytoskeletal connection between the nuclear membrane and the cytoplasm 

(35). Specifically, recent theories have suggested that the osmotic pressure imparted by 

the nuclear and cytoplasmic contents may play a dominant role in deciding the nuclear-to-

cytoplasmic ratio over other factors (36, 37). Through our learning module, the students 

will observe that the nuclear-to-cytoplasmic ratio is roughly a constant within a cell type, 

because these cells share similar gene expression profiles and osmotic pressure across the 

nuclear envelope.

C. Pedagogic background

We include a breakdown of the scientific concepts covered in this module and its 

corresponding teaching applicability for each education level, ranging from elementary 

to graduate-level education (Table 1). Suggested modifications or teaching tips for each 

module component will be discussed within the appropriate section throughout the text. 

In brief, our module contains 3 main teaching aims covering biophysics concepts, image 

acquisition and processing, and data analysis. Conceptually, we envision that most students 

at any education level can understand the epithelial–foam analogy by using visual aids. 

For example, because understanding phase transitions is listed as a topic within the Next 

Generation Science Standards for fifth grade (38), we anticipate that all students beyond 

elementary school will be able to understand the jamming transition as a state change 

from a fluidlike to a solidlike system. As a teaching tip to facilitate motivation for the 

module, students can experiment with some bubbles, or foam, to visually observe how the 

system packs. Alternatively, counting vertex-forming boundaries of foam can be issued as a 

prelab for more independent students. Due to its complexity and interdisciplinary nature, we 

recommend reserving nucleus-to-cytoplasm ratio discussions for college-level students.

Regarding hands-on skills covered in the image acquisition and processing section, we 

anticipate that all levels above third grade will be able to operate a standard light 

microscope, in which there are only 2 main adjustable parameters to control the light 

intensity and focus plane. Because segmentation may require some quality control 

performed by students, we anticipate students beyond elementary school to be adequately 

equipped for this, and advanced high school or college-level students to be capable of 

performing iterative model training.
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Finally, with respect to analysis, we anticipate that intercellular junction counting can be 

performed by students beyond elementary school, while generating AR histograms can be 

performed by advanced high school or college-level students. Because investigating nuclear-

to-cytoplasmic correlation integrates fundamental principles from life science, physical 

science, mathematics, and statistics, we anticipate that only college-level students will be 

able to fully appreciate this analysis. We recognize it is critical to introduce image analysis 

to students at a young age to develop mathematic and scientific intuition, so we have 

included analysis adaptations that can be conducted by elementary-level students in section 

V of this article.

III. MATERIALS AND METHODS

Our experimental module can be divided into 3 main parts, as summarized in Figure 2A. 

The first part is the acquisition of histology images (top box, Fig 2A). After obtaining the 

images by using light microscopy, the characterization of cellular and nuclear morphology 

will be conducted in 2 sequential steps. As shown by the middle box in Figure 2A, the 

images are first segmented to outline the boundary of cells and nuclei, effectively separating 

them into distinct objects. The recorded boundary coordinates are then used for calculating 

the enclosed area and AR of each object (bottom box in Fig 2A). Finally, to obtain the 

nuclear-to-cytoplasmic ratio of each cell, the cell and nucleus measurements are paired 

by matching the centroids, which can be directly obtained as a measurement in ImageJ, 

version 2.14.0/1.54f (39), with respective ratios subsequently calculated. We anticipate that 

the image acquisition and AI segmentation will take approximately 1 h each per histology 

slide, and corresponding morphologic analysis will take about 6 h.

A. Histology image acquisition

In this work, we used commercial histology sections of the epidermis (outer layer) of frog 

skins (Triarch, Ripon, WI) to study the 2-dimensional (2D) epithelial cell morphology. 

Finding suitable 2D epithelial histology sections could be challenging because epithelial 

monolayers are usually only found in tubular (kidney) or glandular (prostate) structures, 

which are typically small (e.g., <100 μm) and difficult to be flat mounted on microscope 

slides. We addressed this challenge by studying the outermost layer (i.e., stratum corneum) 

of frog skin, which is composed of a layer of terminally differentiated epithelial cells. 

As illustrated in a cross-sectional view of frog skin (Fig 2B), such a layer of cells 

is substantially different from and thinner than the multilayered stratum germinativum 

underneath it and, therefore, can be roughly considered as a 2D epithelial system.

We used a transmitted light microscope (Olympus CKX41, objective 40× numerical aperture 

[NA] 0.55, Olympus, Breinigsville, PA) to image the histology slide. An example image is 

shown in Figure 2C. We used a relatively high NA objective to suppress light scattering from 

background cells and extracellular matrix. Although the background suppression, hence the 

use of high NA objectives, may not be essential, it can potentially improve image qualities 

and image segmentation robustness. Images acquired by using different objectives and 

modalities of transmitted light microscopy are shown in Figure 2D–F. We also found that it 

is unnecessary to capture a large field of view by using low-magnification lenses, because 
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the skin sample is often wrinkled, and only up to approximately 50 cells can be focused 

simultaneously. Based on these observations, we envision that any other student compound 

microscope (e.g., AmScope B120, Optika B-60, Meiji MT-30, or Leica DM300) would 

produce a similar image quality. Also, because we capture only approximately 50 cells per 

field of view, a 1-MP camera can readily resolve the morphology of cells and nuclei. Finally, 

we have uploaded 50 example images (40× phase contrast) used for analysis in this work 

as supporting materials (40). These images not only enable students without access to a 

microscope to complete the module but also serve as a reference for segmentation testing.

B. Image segmentation

In this work, we perform image segmentation that effectively extracts cell or nuclear 

contours by outputting the coordinates of the pixels that include the outline of the feature 

of interest. We use segmentation in order to later perform morphologic quantification. To 

perform image segmentation (Fig 3A), the acquired histology images were loaded into an 

AI-based segmentation software, Cellpose, version X (41). Although Cellpose is compatible 

with many imaging modalities (e.g., fluorescence, bright field, and phase contrast), we 

used phase contrast images as our input because this modality is widely accessible and 

can contrast the nuclear and cellar boundaries with ease. Cellpose currently has 2 versions: 

Cellpose 1.0 and 2.0. Briefly, Cellpose uses computational neural networks to analyze the 

imported images, and a numeric function of the corresponding image pixels is created to 

predict the outlines of features, such as cells and organelles. In Cellpose 1.0, the users 

use preestablished AI models for segmenting the images, whereas Cellpose 2.0 allows the 

users to either use preestablished models or train and correct new AI models. This AI-based 

segmentation tool has several advantages over traditional parametric methods. Cellpose is 

capable of accurately segmenting cells in a variety of imaging modalities. In addition, its 

deep learning approach reduces the need for manual intervention and can be trained with 

relatively few manual examples if the preset algorithms are not geared for the images being 

segmented. This image segmentation platform has been widely used in current research 

(42–44) and combined with many other cell characterization tools (45).

We used images saved as Joint Photographic Experts Group files to reduce the file size, 

although Cellpose is compatible with most bitmap file types. Once our image was imported, 

we adjusted the cell diameter parameter in the Segmentation module in the graphical user 

interface (GUI) to roughly match the diameter of the cell or nucleus, as indicated by the 

top yellow arrow in Supplemental Figure S1. All other parameters were left at the default 

setting, including the flow_threshold and the cellprob_threshold. Next, we executed the 

segmentation by choosing the appropriate compartment model from the model zoo in the 

GUI. For example, if cell boundaries are to be extracted, the cyto model, indicated by 

the bottom yellow arrow in Supplemental Figure S1, should be selected. Following this, 

the results were displayed as a mask overlay on the input image. To clean up data, we 

removed falsely detected masks and added masks that may have been missed, by control 

clicking and right clicking, respectively. After mask clean up (Fig 3B), we saved the outline 

boundary coordinates as a text file that would later be read into ImageJ, which is a common 

open-source software for image analysis (39). This step will be discussed further in the 

following. Analyses can also be performed by using other platforms, such as Python and 
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MATLAB. We presented the ImageJ example in this work due to its user-friendly interface 

with no coding experience required.

We found that the nuclear segmentation results were suboptimal when using the Cellpose 

nuclear model Figure 3C. This may be attributed to the fact that Cellpose is often performed 

on fluorescence images, in which the nuclei are the only feature in each image with a 

high contrast. On the other hand, histology slides contain many other features with a lower 

contrast between them. To overcome this issue, we trained our own nuclear model. To do so, 

we first manually outlined ~50 nuclei in an image (Supplemental Fig S2A) and saved the 

masks and images as a seg.npy file (Supplemental Fig S2B) and repeated this process for 4 

additional images. To train our model, we selected “train new model with image + masks in 

folder” under the models tab of the GUI (Supplemental Fig S2B). This procedure resulted 

in the trained model appearing as an option under the custom models menu, which was then 

used for segmenting other images (Fig 3A). We uploaded our model for students to use 

because we recognize training can be challenging for most kindergarten to grade 12 students 

(40). Finally, the instructor can emphasize the importance of data verification. Students can 

manually segment a manageable number of cells (e.g., 10 to 50) and compare the results 

with those from Cellpose. This validation activity not only ensures the quality of data for 

further analyses but also emphasizes the importance of rigor in biophysics research.

C. Morphologic analysis

1. Morphologic feature measurements—To perform morphologic quantification, we 

first opened the same image used to generate segmentations in Cellpose 2.0 into ImageJ. 

We then ran the imagej_roi_converter.py macro, which is an ImageJ script automatically 

included in the Cellpose download, to overlay the segmented boundaries on the image by 

clicking “Plug-ins → Macros → Run.” We then selected the corresponding text file of 

outline coordinates generated from Cellpose when prompted by the macro (Fig 3B). To 

obtain the final morphologic features of interest, we selected Measure in the ROI Manager 

(Figure 3D). Specific morphologic features of interest such as perimeter or area can be 

selected by using the set measurements option. The results (Fig 3E) were then saved as a 

comma-separated value for further analyses performed in Excel Version 2310 (Microsoft 

Corporation, Redmond, WA). Although other platforms, such as MATLAB or Python can 

be used, we used Excel Version 2310 because it is accessible and intuitive to use while 

requiring no coding experience.

For the junction counting analysis, we examined 108 vertices across 5 images, where a 

vertex is defined as the point where 3 edges (i.e., cell boundaries) meet. Vertices were 

manually assessed and categorized as either 3-cell vertices (i.e., isolated tricellular junctions) 

or associated vertices (i.e., 2 tricellular junctions in close proximity).

2. AR and nuclear-to-cytoplasmic ratio—We first characterized cell morphologic 

phenotype by calculating the cell AR, a direct readout obtained from ImageJ. Here, the AR 

is defined as the ratio between the major axis and minor axis, both of which are determined 

by fitting an ellipse to the outlined area. We calculated the AR for 500 cells across 19 

images.
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To assess the nucleus–cell area correlation, the nucleus and cell measurements from ImageJ 

were paired by using a MATLAB, version R2023a (The MathWorks, Natick, MA) code 

(40) that identifies the correspondence between cell and nucleus, based on the centroid 

coordinates of cell and nucleus outlines. Using this method, 500 cells and nuclei were 

paired. The paired cellular and nuclear areas were then used for generating a scatter plot and 

calculating the Pearson correlation coefficient, which is defined as

r =
∑i(Ac

i − 〈Ac
i〉)(∑i(An

i − 〈An
i〉)

∑i(Ac
i − 〈Ac

i〉)2∑i(An
i − 〈An

i〉)2

(3)

Here Ac
i and An

i correspond to the cell area and nucleus area of the ith cell, respectively, and 

〈〉 denotes average. The P value of correlation was calculated by using Mathematica, version 

X (Xxxxx, Xxxx, XX). The same calculation can be performed by using other software, 

such as MATLAB, Prism, and the scipy.stats.pearsonr function in Python. Further discussion 

of the meaning of P value is provided in the section IV.

IV. RESULTS

Using our imaging-segmentation pipeline (Fig 2A), we were able to reproduce 2 important 

findings of epithelial cell mechanics. In addition, we demonstrated the role statistics (i.e., 

sample size) plays in the quantitative analysis of the relationship between nucleus and cell 

size.

A. Morphologic characterizations

As discussed in section II, the cell shape and junction network are 2 imperative features 

to consider when characterizing epithelial morphology, because they help regulate essential 

tissue properties such as the barrier function and rigidity (46). By analyzing 108 vertices, 

we observed that all of them included 3 edges. We also found that although most of the 

examined vertices were well separated (Fig 4A), a few of them were paired (Fig 4B). We 

summarized this counting result in Figure 4C, which demonstrates that ~85% of vertices are 

isolated vertices (i.e., 3-cell vertices), and ~15% of vertices are associated vertices (i.e., 2 

vertices in close proximity). Our observation confirms that most cells in the tissue obey the 

behavior predicted by the Euler polyhedral formula. The observed associated vertices could 

be related to 4-cell vertices, which have been attributed to active structural rearrangements 

in living epithelial tissues (47). Events such as cell movements, cell proliferation leading 

to tissue growth, cell death, or cell extrusion can all contribute to changes in cell packing 

and organization. Our finding of associated vertices is also consistent with both reported 

experimental observations (48, 49) and vertex model simulations (47).

To further illustrate how the packing rule governs epithelial cell morphology, we 

investigated the degree of heterogeneity in our system. To do this, we calculated the 

probability distribution of cell AR for 500 cells (across 19 images). Here, the AR is 

defined as the ratio between the major and minor axes of an ellipse fitted to a cell. AR 

is a key morphologic indicator of epithelial phenotype, in which fully packed cells often 
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exhibit a low AR (Fig 4D), or more rounded shape, as a result of interfacial tension 

energy minimization. However, because the cells are randomly packed, different cells would 

experience various degrees of geometric constraint created by their neighbors. As a result, it 

is anticipated that a small population of cells would still display a relatively high AR (Fig 

4E) or elongated shape.

As shown in Figure 4F, we first confirmed that the mean AR of epithelial cells was low 

(〈AR〉 ~ 1.45). We further confirmed that the local packing gives rise to a relatively large 

spread in AR, indicating a noticeable morphologic heterogeneity in the epithelial monolayer 

sample (Fig 4F). This again highlights the dynamic nature of epithelial tissues, where active 

cellular events can introduce variations among the population. To compare the statistics of 

our results with other experiments and previous simulation predictions, we normalized the 

AR by rescaling the x axis of Figure 4F by using x = AR − 1
AR − 1  (Fig 4G). This rescaling 

effectively sets the distribution lower bound and mean to be 0 and 1, respectively. We then 

fitted our data to a gamma distribution, denoted by the black curve shown in Figure 4G. 

Here, a gamma distribution is defined as

PDF x; κ = κκxκ − 1e−κx/Γ κ

(4)

where PDF is probability density function, Γ κ  is the Legendre gamma function, x is the 

variable, and κ is the shape parameter. This function is often used to describe a distribution 

that has a sharp lower bound of zero but no upper bound, and a positive skew. Such a 

distribution has been used to model numerous social and biologic examples, including the 

size of insurance claims, the age of cancer incidence, and the interspike interval between 

neuron firings (50–52). From our fitting, we determined the shape parameter κ = 2.40, 

which is similar to the measurements using dog kidney cells (κ = 2.39), Drosophila (κ = 

2.52), and the vertex model prediction (κ = 2.53) (53).

Finally, we calculated the shape index q = P0/ A0 of each cell and found that the mean 

value, ~ 4.21, is slightly higher than the fluid-to-solid transition threshold 3.81, predicted by 

the vertex model. This discrepancy could be due to dynamic tissue rearrangement resulting 

from extrusion or apoptotic events. Specifically, as dying cells are shed off and new cells 

enter the stratum corneum, some cellular rearrangements could still occur and contribute 

to a larger measured shape index. We should, therefore, be reminded of the dynamic 

nature of a living tissue and the importance of considering other biologic factors when 

interpreting measurements of physical properties. In addition, because our analyzed frog 

skin epithelial cells are fully differentiated, the tissue should be completely solidlike. Such a 

deviation in shape index may be then due to the tortuous perimeter of our tested cell. This 

effectively leads to a higher shape index value, which was not considered in the original 

vertex model simulation. The origin of ruffled junctions (i.e., zigzag shape) and the biologic 

implications remain active research topics (54), which could be an interesting postlab 

discussion topic. Overall, we conclude that our morphologic analyses are in agreement with 

previous experiments and simulations.
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B. Nuclear-to-cytoplasmic area ratio

In this section, we analyzed the correlation between the nucleus and cell area. This ratio 

has been shown to be roughly a constant within a tissue sample but can vary across cell 

types. In testing the cell–nucleus correlation, we also demonstrated how statistics impact 

the analysis results and robustness, which play an essential role in interpreting research 

observations. We first plotted the nucleus area as a function of cell area by using all of 

the data points (N = 500, shown in the left panel of Fig 5A). In this plot, we observed a 

clear positive correlation between the cell area and nucleus area. The observed correlation 

was confirmed by a moderate Pearson correlation coefficient r ~ 0.67. Furthermore, the 

proportionality between the cell and nucleus areas was further confirmed by a linear fit (red 

line), An = 0.067Ac − 1.883 and its small intercept 1.883/〈An〉 ≪ 1.

To observe how the statistics influence the correlation analysis, we systematically reduced 

the data points by sampling a subset of N = 100, 50, and 10 points. As shown in Figure 

5A, we found that the nuclear-to-cytoplasmic area ratio is preserved across our tested sample 

sizes. However, we also found that the data trend starts to vary when the sample size is 

less than 50, as indicated by the changing slope of fitted lines (red dashed lines). To more 

quantitatively characterize this finding, we calculated the Pearson correlation coefficient 

between cell and nucleus area for all tested sample sizes and repeated this calculation for 

100 randomly sampled data subsets (Fig 5B). Consistent with our observation, although 

the mean value (Fig 5B, dark blue middle line) of the Pearson correlation coefficient does 

not depend on sample size, its standard deviation (Fig 5B, light blue band) does. In other 

words, the Pearson correlation coefficient remains unchanged when sampling only a few 

cells, although determining a trend becomes less definitive when the sample size is less than 

N = 20.

Finally, we analyzed how the correlation’s P value varies in response to sample size (Fig 

5C). Here, the P value is the probability of observing a correlation in the tested data when, 

in fact, there should be no correlation (i.e., the null hypothesis is true). This statistical 

analysis is important to report for any biologic experiments, which often contain notable 

uncertainties and variations. Typically, a P value less than 0.05 (yellow-shaded region in 

Fig 5C) is accepted to be significant, suggesting that the null hypothesis can be rejected. 

Our results showed that the observed correlation becomes statistically significant at around 

a sample size of N = 20. This is supported by our results of Figure 5B in which we saw a 

high degree of reproducibility in the Pearson correlation coefficient beginning around N = 

20. Together, these results demonstrate that students should analyze at least 20 cells in future 

experiments to obtain statistically significant data.

In our error analysis activity, the 500 data points were collected by using images from 

3 histology samples, thus, presumably 3 biologic replicates. Biologic replications are 

critical for quantification and allow statistical analyses of the data. A potential caveat with 

purchased histologic slides is that one cannot guarantee the preparations from different 

individual animals. Therefore, although the activity was designed to demonstrate the 

importance of sample size, instructors should discuss how biologic replicates are typically 
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achieved in laboratories, the differences between technical and biologic variations, and the 

use of biologic replicates for assessing statistical significance.

V. DISCUSSION

One important implication of our introduced demonstration is the morphologic contrast 

between epithelial and mesenchymal cells. Epithelial cells express a number of 

adhesion molecules, including cadherins, tight junctions, and desmosomes, which function 

collectively to enable strong cell–cell adhesion. These adhesion molecules are also linked to 

actin cables intracellularly and allow cells to both transmit forces and respond to mechanical 

signals. Together, these molecules underlie the intercellular junctional tension and contribute 

to the prototypical epithelial cell shapes, as students would have observed in the frog 

skin. Instructors can probe students to think about what cells would look like if they 

did not have these adhesion molecules. Will packed cells be more rounded and less like 

cobblestones? Will cells still be able to move around freely in a crowded environment? 

Indeed, mesenchymal cells are distinct from epithelial cells in that they have reduced cell–

cell adhesion and an elevated cell–matrix interaction. As such, packed mesenchymal cells 

often do not exhibit the same cobblestone morphology as epithelial cells and are more 

motile. Nonetheless, the morphologic features can be quantified by using the same method 

described here and investigated in the context of tissue mechanics.

Because our experimental module has 3 main components, we envision it would be best 

presented as a lab demonstration. For middle and high school students with roughly 50-min 

science class periods, the lab can be broken up into a 3-d experiment, where each day 

corresponds to each module presented in Figure 2A. For college students, the lab can be 

incorporated into lab curriculum or can be incorporated into lecture-based classes. In this 

case, students can acquire the data during the lecture’s discussion section and complete the 

segmentation and analysis as part of the lab write-up. If using this module as an outreach 

demonstration, we recommend giving all students the opportunity to work on the 3-module 

experiment collaboratively.

We anticipate that advanced high school students should be able to perform Cellpose model 

training. We recommend that elementary and middle school students use only the pretrained 

models if the instructor feels comfortable exploring the use of AI-based segmentation with 

advanced students (Table 1). If the user experiences difficulty in identifying nuclear outlines 

by using the pretrained models, we advise the student to use our trained model available for 

download (40).

We anticipate that all students ranging from elementary to high school should be able to 

conduct junction vertex analysis that mainly requires the students to be skilled in counting. 

For ease of visualization and to avoid double counting, elementary students can highlight 

edges contributing to vertex formation. To further simplify or save time for elementary 

school students, instructors can color code 3-cell vertices (isolated) versus associated 

vertices beforehand and ask students to count the number of vertices in each color.
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VI. CONCLUSION

In this work, we present a scalable teaching module exploring basic experiment and 

analysis skills in tissue mechanics research, including microscopy, image segmentation, 

and statistics. Using commercial histology slides of frog skin epithelial cell samples, we 

demonstrated the characterizations of junction vertex and morphology of jammed epithelial 

cells. By calculating the correlation between the cell and nucleus ratios, we also showed 

the role sample size plays in quantitative analysis. These cell properties are important 

to study in epithelial tissues, as they are known to associate with cell–cell and cell–

substrate interactions and are often used to report on the state of cells. All the images 

and computational routines used throughout this work are publicly available. In conclusion, 

we envision our introduced learning activities will be useful for both classroom teaching and 

outreach programs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Epithelium and jammed foam exhibit similar morphology. (A) Image of Madin–Darby 

canine kidney epithelial cells reproduced from He et al. (55). Scale bar is 10 μm. (B) 

Screenshot of a 2D wet foam, which represents a jammed physical system (56). Despite the 

different nature between these 2 physical and biologic examples, the analogous morphology 

suggests that interfacial tension largely regulates the structure in both systems.
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Fig 2. 
Data acquisition and analysis overview. (A) Workflow describing the 3 key experimental 

steps. Phase contrast images of frog skin epithelial cells are acquired (top) and used as an 

input into Cellpose, which is an AI-based segmentation tool for nuclear and cytoplasmic 

segmentation (middle). The segmentation outlines exported from Cellpose were then read 

into ImageJ to obtain morphologic measurements for downstream analyses, which can 

be performed by using various platforms, including MATLAB or Excel (bottom). (B) 

Cross-section image of frog skin illustrating the 3 main layers of the tissue. In this work, 

we focused on the topmost layer of the skin, the stratum corneum, because it can be 

approximated as a 2D system. Scale bar = 200 μm. (C) The 10× phase contrast image of flat-

mount frog skin, illustrating the overall shape and dimension of the sample. Out-of-focus 

regions represent portions of the sample that are not in the same optical plane due to sample 

wrinkling. The red box denotes the region of interest (ROI) shown in (D–F). Scale bar 

= 100 ¼m. (D) The 20× phase contrast image of ROI shown in (C). (E) The 40× phase 

contrast image of the same ROI. (F) The 40× bright field image of the same ROI, but this 

produced a more out-of-focus background and less defined boundaries, which may reduce 

the segmentation robustness. Scale bars in (D–F) = 50 ¼m.
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Fig 3. 
Image segmentation and morphology analysis. (A) Screenshot of Cellpose 2.0 displaying 

nuclear masks identified by using a user-trained model. (B) Cytoplasmic and nuclear 

segmentation overlay (yellow) superimposed on the original image using ImageJ. The region 

of interest (ROI) manager (left window) allows users to look at each outline individually. 

Users can then press measure to obtain the results shown in the right window. (C) Zoom 

in of the red boxed region of the Cellpose user interface shown in (A). Here, users can 

chose from a pretrained model or optimize segmentation parameters. (D) Enlargement of the 

orange boxed region shown in (B) illustrating the ImageJ ROI manager. (E) Enlargement of 

the green boxed region in (B) demonstrating the ImageJ measurement results.
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Fig 4. 
Epithelial cell vertex and AR analyses. (A) The 3-cell vertex. An example phase contrast 

image of 3 cell boundaries forming a vertex. (B) Associated vertices. An example phase 

contrast image of two 3-cell vertices that are closely associated. (C) Vertex distribution in 

frog skin samples. The 108 vertices were analyzed and roughly 85% of all vertices were well 

separated. (D) Representative phase contrast images of high AR cells. (E) Representative 

phase contrast images of low AR cells. (F) Probability density function (PDF) demonstrating 

the spread in AR within the frog skin samples. (G) PDFs normalized by using the rescaling 

parameter AR − 1
AR − 1  where AR  represents the average AR. Distribution was fit to a gamma 

curve with κ = 2.40. Scale bar for panels (A), (B), and (E) = 20 μm. Scale bar for panel (D) 

= 10 μm.
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Fig 5. 
Nuclear-to-cytoplasmic correlation analysis. (A) Scatter plot of nucleus area versus cell 

area used to obtain the Pearson correlation coefficient for varying sample sizes. The red 

dashed line denotes the best fit line. A higher correlation between nuclear and cell area 

was observed with increasing sample size N. (B) The Pearson correlation coefficient (linear) 

versus sample size (logarithmic). The middle blue curve denotes the mean, while the shaded 

blue band denotes the standard deviation. (C) The P value (linear) versus sample size 

(logarithmic). The tan-shaded region denotes a P value significance threshold of 0.05. The 

black dashed line denotes the corresponding sample size for a P value of 0.05.
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