Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Nov 15;264(1):79–85. doi: 10.1042/bj2640079

The Ca2+-binding sequence in bovine brain S100b protein beta-subunit. A spectroscopic study.

J Baudier 1, R D Cole 1
PMCID: PMC1133549  PMID: 2604719

Abstract

Conformational changes in the beta-subunit of the bovine brain Ca2+-binding protein S100b (S100-beta) accompanying Ca2+ binding were investigated by analysis of the spectroscopic properties of the single tyrosine residue (Tyr17 beta) and flow-dialysis binding experiments. S100-beta binds Ca2+ sequentially at two sites to change the conformation of the protein. The first Ca2+ ion binds to site II beta, a typical Ca2+-binding site in the C-terminal region, and it does not significantly perturb the proximal environment of Tyr17 beta. After the first site is occupied, another Ca2+ ion binds to the N-terminal Ca2+-binding site, I beta, and strengthens a hydrogen bond between Tyr17 beta and a neighbouring carboxylate acceptor group, which results in a large increase in the Tyr17 beta fluorescence spectrum half-width and a positive absorption and c.d. signal between 290 and 275 nm. Ca2+ binding to the S100b.Zn2+6 complex, studied by flow-dialysis and fluorescence measurements showed that, although Zn2+ ions increase the affinity of S100b protein for Ca2+, the Ca2+-binding sequence was not changed. Tb3+ (terbium ion) binding studies on the S100b.Zn2+6 complex proved that Tb3+ antagonizes only Ca2+ binding site II beta and confirmed the sequential occupation of Ca2+-binding sites on the S100b.Zn2+6 complex.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  2. Baudier J., Cole R. D. Reinvestigation of the sulfhydryl reactivity in bovine brain S100b (beta beta) protein and the microtubule-associated tau proteins. Ca2+ stimulates disulfide cross-linking between the S100b beta-subunit and the microtubule-associated tau(2) protein. Biochemistry. 1988 Apr 19;27(8):2728–2736. doi: 10.1021/bi00408a012. [DOI] [PubMed] [Google Scholar]
  3. Baudier J., Gerard D. Ions binding to S100 proteins. II. Conformational studies and calcium-induced conformational changes in S100 alpha alpha protein: the effect of acidic pH and calcium incubation on subunit exchange in S100a (alpha beta) protein. J Biol Chem. 1986 Jun 25;261(18):8204–8212. [PubMed] [Google Scholar]
  4. Baudier J., Glasser N., Duportail G. Bimane- and acrylodan-labeled S100 proteins. Role of cysteines-85 alpha and -84 beta in the conformation and calcium binding properties of S100 alpha alpha and S100b (beta beta) proteins. Biochemistry. 1986 Nov 4;25(22):6934–6941. doi: 10.1021/bi00370a029. [DOI] [PubMed] [Google Scholar]
  5. Baudier J., Glasser N., Gerard D. Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem. 1986 Jun 25;261(18):8192–8203. [PubMed] [Google Scholar]
  6. Baudier J., Gérard D. Ions binding to S100 proteins: structural changes induced by calcium and zinc on S100a and S100b proteins. Biochemistry. 1983 Jul 5;22(14):3360–3369. doi: 10.1021/bi00283a009. [DOI] [PubMed] [Google Scholar]
  7. Baudier J., Holtzscherer C., Gerard D. Zinc-dependent affinity chromatography of the S100b protein on phenyl-Sepharose. A rapid purification method. FEBS Lett. 1982 Nov 8;148(2):231–234. doi: 10.1016/0014-5793(82)80813-2. [DOI] [PubMed] [Google Scholar]
  8. Baudier J., Mochly-Rosen D., Newton A., Lee S. H., Koshland D. E., Jr, Cole R. D. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry. 1987 May 19;26(10):2886–2893. doi: 10.1021/bi00384a033. [DOI] [PubMed] [Google Scholar]
  9. Chiba K., Mohri T. Different conformation changes induced by calcium and terbium of the porcine intestinal calcium-binding protein. Biochemistry. 1987 Feb 10;26(3):711–715. doi: 10.1021/bi00377a008. [DOI] [PubMed] [Google Scholar]
  10. Chiba K., Ohyashiki T., Mohri T. Quantitative analysis of calcium binding to porcine intestinal calcium-binding protein. J Biochem. 1983 Feb;93(2):487–493. doi: 10.1093/oxfordjournals.jbchem.a134203. [DOI] [PubMed] [Google Scholar]
  11. Chiba K., Ohyashiki T., Mohri T. Stoichiometry and location of terbium and calcium bindings to porcine intestinal calcium-binding protein. J Biochem. 1984 Jun;95(6):1767–1774. doi: 10.1093/oxfordjournals.jbchem.a134789. [DOI] [PubMed] [Google Scholar]
  12. Desplan C., Heidmann O., Lillie J. W., Auffray C., Thomasset M. Sequence of rat intestinal vitamin D-dependent calcium-binding protein derived from a cDNA clone. Evolutionary implications. J Biol Chem. 1983 Nov 25;258(22):13502–13505. [PubMed] [Google Scholar]
  13. Dorrington K. J., Hui A., Hofmann T., Hitchman A. J., Harrison J. E. Porcine intestinal calcium-binding protein. Molecular properties and the effect of binding calcium ions. J Biol Chem. 1974 Jan 10;249(1):199–204. [PubMed] [Google Scholar]
  14. Dorrington K. J., Kells D. I., Hitchman A. J., Hartison J. E., Hofmann T. Spectroscopic studies on the binding of divalent cations to porcine intestinal calcium-binding protein. Can J Biochem. 1978 Jun;56(6):492–499. doi: 10.1139/o78-076. [DOI] [PubMed] [Google Scholar]
  15. Gérard D., Lemieux G., Laustriat G. Intrinsic fluorescence of S4 and S7 E. coli ribosomal proteins. Photochem Photobiol. 1975 Sep-Oct;22(3-4):89–95. doi: 10.1111/j.1751-1097.1975.tb08818.x. [DOI] [PubMed] [Google Scholar]
  16. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  17. Isobe T., Okuyama T. The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem. 1978 Sep 1;89(2):379–388. doi: 10.1111/j.1432-1033.1978.tb12539.x. [DOI] [PubMed] [Google Scholar]
  18. Kligman D., Hilt D. C. The S100 protein family. Trends Biochem Sci. 1988 Nov;13(11):437–443. doi: 10.1016/0968-0004(88)90218-6. [DOI] [PubMed] [Google Scholar]
  19. Lux B., Baudier J., Gerard D. Tyrosyl fluorescence spectra of proteins lacking tryptophan: effects of intramolecular interactions. Photochem Photobiol. 1985 Sep;42(3):245–251. doi: 10.1111/j.1751-1097.1985.tb08938.x. [DOI] [PubMed] [Google Scholar]
  20. Mani R. S., Boyes B. E., Kay C. M. Physicochemical and optical studies on calcium- and potassium-induced conformational changes in bovine brain S-100b protein. Biochemistry. 1982 May 25;21(11):2607–2612. doi: 10.1021/bi00540a005. [DOI] [PubMed] [Google Scholar]
  21. Mani R. S., Kay C. M. Hydrodynamic properties of bovine brain S-100 proteins. FEBS Lett. 1984 Jan 30;166(2):258–262. doi: 10.1016/0014-5793(84)80091-5. [DOI] [PubMed] [Google Scholar]
  22. Mani R. S., Shelling J. G., Sykes B. D., Kay C. M. Spectral studies on the calcium binding properties of bovine brain S-100b protein. Biochemistry. 1983 Mar 29;22(7):1734–1740. doi: 10.1021/bi00276a033. [DOI] [PubMed] [Google Scholar]
  23. O'Neil J. D., Dorrington K. J., Hofmann T. Luminescence and circular-dichroism analysis of terbium binding by pig intestinal calcium-binding protein (relative mass = 9000). Can J Biochem Cell Biol. 1984 Jun;62(6):434–442. doi: 10.1139/o84-059. [DOI] [PubMed] [Google Scholar]
  24. O'Neil J. D., Hofmann T. Tyrosine and tyrosinate fluorescence of pig intestinal Ca2+-binding protein. Biochem J. 1987 Apr 15;243(2):611–615. doi: 10.1042/bj2430611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shelling J. G., Sykes B. D., O'Neil J. D., Hofmann T. Proton nuclear magnetic resonance studies of porcine intestinal calcium binding protein. Biochemistry. 1983 May 24;22(11):2649–2654. doi: 10.1021/bi00280a009. [DOI] [PubMed] [Google Scholar]
  26. Strickland E. H., Wilchek M., Horwitz J., Billups C. Effects of hydrogen bonding and temperature upon the near ultraviolet circular dichroism and absorption spectra of tyrosine and O-methyl tyrosine derivatives. J Biol Chem. 1972 Jan 25;247(2):572–580. [PubMed] [Google Scholar]
  27. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  28. Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
  29. Szebenyi D. M., Obendorf S. K., Moffat K. Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature. 1981 Nov 26;294(5839):327–332. doi: 10.1038/294327a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES